Advertisement

Robotics and Programming Concepts in Early Childhood Education: A Conceptual Framework for Designing Educational Scenarios

Chapter

Abstract

This chapter addresses the teaching of programming through robotics in early childhood education. It discusses the integration of education robotics principles and algorithmic and programming concepts in order to conceive, design and evaluate educational scenarios (didactic sequences). It then proposes a conceptual framework for designing educational scenarios that integrate programmable toys as a guide to teaching programming concepts. A descriptive analysis of the implementation of educational scenarios by in-service early childhood teachers in typical classrooms covers methodological issues emerging from this framework. Furthermore, it provides research results to encompass the conception and designing of educational scenarios in early childhood educational contexts concerning robotics.

Keywords

Early Childhood Mathematical Concept Early Childhood Education Learning Context Programming Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was integrated within the context of the European Fibonacci Project. The authors would like to thank the local coordinator Pr. V. Zogza at the Department of Educational Science and Early Childhood Education, University of Patras, participating schools, teachers and children. The authors would like to thank the anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

References

  1. Beraza, I., Pina, A., & Demo, B. (2010). Soft & hard ideas to improve interaction with robots for kids & teachers. Proceedings of SIMPAR 2010 workshops international conference on simulation, modeling and programming for autonomous robots (549–555), Darmstadt, Germany, November 15–16, 2010.Google Scholar
  2. Bers, M. (2008). Blocks to robots: Learning with technology in the early childhood classroom. New York, NY: Teachers College Press.Google Scholar
  3. Bers, M., & Horn, M. (2010). Tangible programming in early childhood: Revisiting developmental assumptions through new technologies. In I. R. Berson & M. J. Berson (Eds.), High-tech tots: Childhood in a digital world (pp. 49–69). Charlotte, NC: Information Age Publishing.Google Scholar
  4. Clements, D. H., & Nastasi, B. K. (1999). Metacognition, learning, and educational computer environments. Information Technology in Childhood Education Annual, 1, 3–36.Google Scholar
  5. Clements, D., & Sarama, J. (2002). The role of technology in early childhood learning. Teaching Children Mathematics, 8(6), 340–343.Google Scholar
  6. Creswell, W. J. (2009). Research design: Qualitative, quantitative, and mixed methods approaches. Thousand Oaks, CA: SAGE Publications.Google Scholar
  7. Csink, L., & Farkas, K. (2010). Lifelong playing instead of lifelong learning teaching robotics without robots and computers. Proceedings of SIMPAR, workshops international conference on simulation, modeling and programming for autonomous robots (439–448), Darmstadt, Germany, November 15–16, 2010.Google Scholar
  8. De Michele, S. M., Demo, B. G., & Siega, S. (2008). A Piedmont SchoolNet for a K-12 mini-robots programming project: Experience in primary schools. In workshop proceedings of SIMPAR 2008 Intl. Conf. on simulation, modeling and programming for autonomous robots (90–99), Venice, Italy, November 3–4, 2008.Google Scholar
  9. Denis, B., & Baron, G. L. (1993). Regards sur la robotique pédagogique. Proceedings of the 4th international conference on educational robotics. Paris: INRP Technologies nouvelles et education.Google Scholar
  10. Depover, C., Karsenti, T., & Komis, V. (2007). Enseigner avec les technologies: Favoriser les apprentissages, développer des competences. Montréal, QC: Presses de l’Université du Quebec.Google Scholar
  11. Greff, E. (1996). Les apports du jeu de l’enfant-robot à la didactique de l’informatique. Actes du 5ème Colloque Francophone de Didactique de l’Informatique Monastir, Tunisie, Avril, 10–12, 1996 (pp. 67–86).Google Scholar
  12. Greff, E. (1998). Le «jeu de l’enfant-robot »: Une démarche et une réflexion en vue du développement de la pensée algorithmique chez les très jeunes enfants. Revue Sciences et techniques éducatives, 5, 47–61.Google Scholar
  13. Greff, E. (2001). Résolution de problèmes en grande section autour des pivotements à l’aide du robot de plancher. Grand N, 68, 7–16.Google Scholar
  14. Greff, E. (2005). Programme cognitique. Proceedings of International Conference «Noter pour penser». Paris: Université de Psychologie.Google Scholar
  15. Highfield, K. (2010). Robotic toys as a catalyst for mathematical problem solving. Australian Primary Mathematics Classroom, 15(2), 22–27.Google Scholar
  16. Highfield, K., & Mulligan, J. (2008). Young children’s engagement with technological tools: The impact on mathematics learning. Proceedings of international congress in mathematical education 11, Monterrey, Mexico, July 6–13, 2008.Google Scholar
  17. Highfield, K., Mulligan, J., & Hedberg, J. (2008). Early mathematics learning through exploration with programmable toys. Proceedings of the joint meeting of PME 32 and PME-NA XXX, vol. 3 (pp. 169–176), Morelia, México, July 17–21, 2008.Google Scholar
  18. Hirst, A., Johnson, J., Petre, M., Price, B., & Richards, M. (2003). What is the best programming environment/language for teaching robotics using Lego Mindstorms? Artificial Life Robotics, 7, 124–131.CrossRefGoogle Scholar
  19. João-Monteiro, M., Cristóvão-Morgado, R., Bulas-Cruz, M., & Morgado, L. (2003). A robot in kindergarten. Proceedings Eurologo’2003 - Re-inventing technology on education, Porto, Portugal, August 27–30, 2003.Google Scholar
  20. Kazakoff, R. E., Sullivan, A., & Bers, U. M. (2013). The effect of a classroom-based intensive robotics and programming workshop on sequencing ability in early childhood. Early Childhood Education, 41, 245–255.CrossRefGoogle Scholar
  21. Kelly, E. Α., Lesh, A. R., & Baek, Y. J. (2008). Handbook of design research methods in education. New York, NY: Routledge.Google Scholar
  22. Komis, V. (2010). Teaching material for in-service teachers training: Integration and use of ICT to the teaching practice. 2nd Phase of training. Patras: Institute of Research and Science on Computer Technology.Google Scholar
  23. Komis, V., & Misirli, A. (2011). Robotique pédagogique et concepts préliminaires de la programmation à l’école maternelle: Une étude de cas basée sur le jouet programmable Bee-Bot. In Proceedings of the 4th conference of “Didactics of Informatics” – DIDAPRO, 24–26 octobre 2011, Université de Patras (pp. 271–284). Athènes: New Technologies Editions.Google Scholar
  24. Komis, V., & Misirli, A. (2012). L’usage des jouets programmables à l’école maternelle: Concevoir et utiliser des scenarios éducatifs de robotique pédagogique. Revue Skhôlé, 17, 143–154.Google Scholar
  25. Komis V., & Misirli A. (2013). Étude des processus de construction d’algorithmes et de programmes par les petits enfants à l’aide de jouets programmables enfants à l’aide de jouets programmable Dans Sciences et technologies de l’information et de la communication (STIC) en milieu éducatif: Objets et méthodes d’enseignement et d’apprentissage, de la maternelle à l’université. Clermont-Ferrand, France, October, 28–30, 2013. oai:edutice.archives-ouvertes.fr:edutice-00875628.Google Scholar
  26. Komis, V., Tzavara, A., Karsenti, T., Collin, S., & Simard, S. (2013). Educational scenarios with ICT: An operational design and implementation framework. In R. McBride & M. Searson (Eds.), Proceedings of society for information technology & teacher education international conference 2013 (pp. 3244–3251). Chesapeake, VA: AACE.Google Scholar
  27. Kopelke, K. (2007). Making your classroom buzz with Bee-Bots: Ideas and activities for the early phase.. Sippy Downs, QLD: ICT Learning Innovation Centre – Department of Education, Training and the Arts, Queensland Government.Google Scholar
  28. Leroux, P., Nonnon, P., & Ginestié, J. (2005). Actes du 8ème colloque francophone de Robotique Pédagogique (Revue Skhôlé, Ed.). IUFM Aix-Marseille, ISBN: 1263-5898, 135 pages.Google Scholar
  29. Misirli, A., & Komis, V. (2012). Early childhood children’s representations regarding the Bee-Bot programmable toy. Proceedings of the 6th Conference of Didactics of Informatics, Florina, Greece. April 20–22, 2012, (pp. 331–340).Google Scholar
  30. Misirli, A., & Komis, V. (2013). Construire les notions de l’orientation et de la direction à l’aide des jouets programmables: Une étude de cas dans des écoles maternelles en Grèce. Actes du 1er Colloque eTIC: Ecole et TICE, Clermont-Ferrand, France, October 3–4, 2013.Google Scholar
  31. The Greek Institute of Educational Policy. (2011). New curriculum for early childhood education. Athens: The Greek Institute of Educational Policy (IEP).Google Scholar
  32. Papert, S. (1980). Mind-storms, children, computers and powerful ideas. New York, NY: Basic Books.Google Scholar
  33. Pekarova, J. (2008). Using a programmable toy at preschool age: Why and how? Proceedings workshop of SIMPAR 2008 international conference on simulation, modeling and programming for autonomous robots (pp. 112–121), Venice, Italy, November 3–4, 2008.Google Scholar
  34. Resnick, M. (2006). Computer as paintbrush: Technology, play and the creative society. In D. Singer, R. Golikoff, & K. Hirsh-Pasek (Eds.), Play = learning: How play motivates and enhances children’s cognitive and social-emotional growth. New York, NY: Oxford University Press.Google Scholar
  35. Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM Education, 5, 17–28.Google Scholar
  36. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar
  37. Yelland, N. (2007). Shift to the future: Rethinking learning with new technologies in education. New York, NY: Routledge.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Educational Sciences and Early Childhood EducationUniversity of PatrasRioGreece

Personalised recommendations