Skip to main content

Stem Cell Models for Functional Validation of Prostate Cancer Genes

  • Chapter
  • First Online:
Stem Cells and Prostate Cancer

Abstract

Prostate cancer is a genomically complex disease in which initiation, progression, and metastasis are regulated by numerous molecular processes including oncogene activation or tumor suppressor inactivation. Understanding the molecular mechanisms that drive prostate tumorigenesis has important clinical implications. Putative oncogenes or tumor suppressors are identified using technologies including SNP arrays, microarrays, and whole genome sequencing, but these targets must then be evaluated in cell and animal models to determine the functional consequences of these genomic alterations. Traditionally, potential prostate cancer genes have been validated with human prostate cancer cell line models (i.e., tissue culture and xenograft systems) or genetically engineered mouse (GEM) models. More recently, stem cell models have been utilized to evaluate candidate cancer genes. Because the normal adult prostate stem cell (PSC) shares many properties with the prostate tumor-initiating cell (TIC) including the capabilities for self-renewal, differentiation, and androgen independence, modeling gene alterations in PSCs may be more appropriate than traditional approaches. PSCs can be maintained in cell culture, genetically manipulated, and characterized using techniques including cell sorting, colony formation assays, and prostasphere assays in vitro and tissue recombination in vivo. A number of prostatic oncogenes and tumor suppressors including MYC, ERG, PTEN, P53, NKX3.1, and TAK1 have been evaluated using stem cell models. Compound genetic alterations have also been studied using PSC models. In this chapter we describe current approaches being used to investigate putative oncogenes and tumor suppressors in the context of the PSC and highlight a few examples of recent studies using stem cell models for target validation. We also discuss the limitations of existing models as well as strategies to improve upon these models for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Kheir WG, Hynes PG, Martin PL, Pierce R, Kelly K (2010) Characterizing the contribution of stem/progenitor cells to tumorigenesis in the Pten−/− TP53−/− prostate cancer model. Stem Cells 28:2129–2140

    Article  PubMed  CAS  Google Scholar 

  • Abou-Kheir W, Hynes PG, Martin P, Yin JJ, Liu YN, Seng V, Lake R, Spurrier J, Kelly K (2011) Self-renewing Pten−/− TP53−/− protospheres produce metastatic adenocarcinoma cell lines with multipotent progenitor activity. PLoS One 6:e26112

    Article  PubMed  CAS  Google Scholar 

  • Axanova LS, Chen YQ, McCoy T, Sui G, Cramer SD (2010) 1,25-dihydroxyvitamin D(3) and PI3K/AKT inhibitors synergistically inhibit growth and induce senescence in prostate cancer cells. Prostate 70:1658–1671

    Article  PubMed  CAS  Google Scholar 

  • Barclay WW, Cramer SD (2005) Culture of mouse prostatic epithelial cells from genetically engineered mice. Prostate 63:291–298

    Article  PubMed  CAS  Google Scholar 

  • Barclay WW, Axanova LS, Chen W, Romero L, Maund SL, Soker S, Lees CJ, Cramer SD (2008) Characterization of adult prostatic progenitor/stem cells exhibiting self-renewal and multilineage differentiation. Stem Cells 26:600–610

    Article  PubMed  CAS  Google Scholar 

  • Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, Onofrio R, Carter SL, Park K, Habegger L, Ambrogio L, Fennell T, Parkin M, Saksena G, Voet D, Ramos AH, Pugh TJ, Wilkinson J, Fisher S, Winckler W, Mahan S, Ardlie K, Baldwin J, Simons JW, Kitabayashi N, MacDonald TY, Kantoff PW, Chin L, Gabriel SB, Gerstein MB, Golub TR, Meyerson M, Tewari A, Lander ES, Getz G, Rubin MA, Garraway LA (2011) The genomic complexity of primary human prostate cancer. Nature 470:214–220

    Article  PubMed  CAS  Google Scholar 

  • Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    Article  PubMed  CAS  Google Scholar 

  • Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, Alimonti A, Nardella C, Varmeh S, Scardino PT, Cordon-Cardo C, Gerald W, Pandolfi PP (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41:619–624

    Article  PubMed  CAS  Google Scholar 

  • Casey OM, Fang L, Hynes PG, Abou-Kheir WG, Martin PL, Tillman HS, Petrovics G, Awwad HO, Ward Y, Lake R, Zhang L, Kelly K (2012) TMPRSS2- driven ERG expression in vivo increases self-renewal and maintains expression in a castration resistant subpopulation. PLoS One 7:e41668

    Article  PubMed  CAS  Google Scholar 

  • Chiaverotti T, Couto SS, Donjacour A, Mao JH, Nagase H, Cardiff RD, Cunha GR, Balmain A (2008) Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Am J Pathol 172:236–246

    Article  PubMed  CAS  Google Scholar 

  • Choi N, Zhang B, Zhang L, Ittmann M, Xin L (2012) Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21:253–265

    Article  PubMed  CAS  Google Scholar 

  • Cibull TL, Jones TD, Li L, Eble JN, Ann Baldridge L, Malott SR, Luo Y, Cheng L (2006) Overexpression of Pim-1 during progression of prostatic adenocarcinoma. J Clin Pathol 59:285–288

    Article  PubMed  CAS  Google Scholar 

  • Clarke AR, Maandag ER, van Roon M, van der Lugt NM, van der Valk M, Hooper ML, Berns A, te Riele H (1992) Requirement for a functional Rb-1 gene in murine development. Nature 359:328–330

    Article  PubMed  CAS  Google Scholar 

  • Collins AT, Habib FK, Maitland NJ, Neal DE (2001) Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci 114:3865–3872

    PubMed  CAS  Google Scholar 

  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  PubMed  CAS  Google Scholar 

  • Cunha GR (1972a) Epithelio-mesenchymal interactions in primordial gland structures which become responsive to androgenic stimulation. Anat Rec 172:179–195

    Article  PubMed  CAS  Google Scholar 

  • Cunha GR (1972b) Tissue interactions between epithelium and mesenchyme of urogenital and integumental origin. Anat Rec 172:529–541

    Article  PubMed  CAS  Google Scholar 

  • Cunha GR, Hayward SW, Wang YZ, Ricke WA (2003) Role of the stromal microenvironment in carcinogenesis of the prostate. Int J Cancer 107:1–10

    Article  PubMed  CAS  Google Scholar 

  • Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826

    Article  PubMed  CAS  Google Scholar 

  • Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, Garcia-Echeverria C, Schultz PG, Reddy VA (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA 106:268–273

    Article  PubMed  CAS  Google Scholar 

  • Elefteriou F, Yang X (2011) Genetic mouse models for bone studies—strengths and limitations. Bone 49:1242–1254

    Article  PubMed  CAS  Google Scholar 

  • English HF, Santen RJ, Isaacs JT (1987) Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 11:229–242

    Article  PubMed  CAS  Google Scholar 

  • Evans GS, Chandler JA (1987) Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate 11:339–351

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-­specific recombination in mice. Proc Natl Acad Sci USA 93:10887–10890

    Article  PubMed  CAS  Google Scholar 

  • Galimi F, Saez E, Gall J, Hoong N, Cho G, Evans RM, Verma IM (2005) Development of ecdysone-­regulated lentiviral vectors. Mol Ther 11:142–148

    Article  PubMed  CAS  Google Scholar 

  • Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON (2010) Identification of a cell of origin for human prostate cancer. Science 329:568–571

    Article  PubMed  CAS  Google Scholar 

  • Goldstein AS, Drake JM, Burnes DL, Finley DS, Zhang H, Reiter RE, Huang J, Witte ON (2011) Purification and direct transformation of epithelial progenitor cells from primary human prostate. Nat Protoc 6:656–667

    Article  PubMed  CAS  Google Scholar 

  • Goodyear SM, Amatangelo MD, Stearns ME (2009) Dysplasia of human prostate CD133(hi) sub-­population in NOD-SCIDS is blocked by c-myc anti-sense. Prostate 69:689–698

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-­responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    Article  PubMed  CAS  Google Scholar 

  • Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, Asangani IA, Ateeq B, Chun SY, Siddiqui J, Sam L, Anstett M, Mehra R, Prensner JR, Palanisamy N, Ryslik GA, Vandin F, Raphael BJ, Kunju LP, Rhodes DR, Pienta KJ, Chinnaiyan AM, Tomlins SA (2012) The mutational landscape of lethal castration-­resistant prostate cancer. Nature 487:239–243

    Article  PubMed  CAS  Google Scholar 

  • Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481:306–313

    Article  PubMed  CAS  Google Scholar 

  • Imagawa W, Tomooka Y, Nandi S (1982) Serum-free growth of normal and tumor mouse mammary epithelial cells in primary culture. Proc Natl Acad Sci USA 79:4074–4077

    Article  PubMed  CAS  Google Scholar 

  • Isaacs JT, Coffey DS (1989) Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl 2:33–50

    Google Scholar 

  • Ishkanian AS, Mallof CA, Ho J, Meng A, Albert M, Syed A, van der Kwast T, Milosevic M, Yoshimoto M, Squire JA, Lam WL, Bristow RG (2009) High-resolution array CGH identifies novel regions of genomic alteration in intermediate-risk prostate cancer. Prostate 69:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359:295–300

    Article  PubMed  CAS  Google Scholar 

  • Jin RJ, Lho Y, Wang Y, Ao M, Revelo MP, Hayward SW, Wills ML, Logan SK, Zhang P, Matusik RJ (2008) Down-regulation of p57Kip2 induces prostate cancer in the mouse. Cancer Res 68:3601–3608

    Article  PubMed  CAS  Google Scholar 

  • King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH, Taylor BS, Sander C, Cardiff RD, Couto SS, Gerald WL, Sawyers CL (2009) Cooperativity of TMPRSS2-ERG with PI3-­kinase pathway activation in prostate oncogenesis. Nat Genet 41:524–526

    Article  PubMed  CAS  Google Scholar 

  • Klezovitch O, Risk M, Coleman I, Lucas JM, Null M, True LD, Nelson PS, Vasioukhin V (2008) A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci USA 105:2105–2110

    Article  PubMed  Google Scholar 

  • Kubota K, Preislef HD, Lok MS, Minowada J (1981) Lack of effect of colony-stimulating activity on human myeloid leukemia cell line (ML-2) cells. Leuk Res 5:311–320

    Article  PubMed  CAS  Google Scholar 

  • Kusama Y, Enami J, Kano Y (1989) Growth and morphogenesis of mouse prostate epithelial cells in collagen gel matrix culture. Cell Biol Int Rep 13:569–575

    Article  PubMed  CAS  Google Scholar 

  • Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J, Witte ON (2010) Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci USA 107:2610–2615

    Article  PubMed  CAS  Google Scholar 

  • Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K, Lee WH, Bradley A (1992) Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359:288–294

    Article  PubMed  CAS  Google Scholar 

  • Lei Q, Jiao J, Xin L, Chang CJ, Wang S, Gao J, Gleave ME, Witte ON, Liu X, Wu H (2006) NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell 9:367–378

    Article  PubMed  CAS  Google Scholar 

  • Li H, Chen X, Calhoun-Davis T, Claypool K, Tang DG (2008) PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Res 68:1820–1825

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Chang BL, Cramer S, Koty PP, Li T, Sun J, Turner AR, Von Kap-Herr C, Bobby P, Rao J, Zheng SL, Isaacs WB, Xu J (2007) Deletion of a small consensus region at 6q15, including the MAP3K7 gene, is significantly associated with high-grade prostate cancers. Clin Cancer Res 13:5028–5033

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Xie CC, Zhu Y, Li T, Sun J, Cheng Y, Ewing CM, Dalrymple S, Turner AR, Isaacs JT, Chang BL, Zheng SL, Isaacs WB, Xu J (2008) Homozygous deletions and recurrent amplifications implicate new genes involved in prostate cancer. Neoplasia 10:897–907

    PubMed  CAS  Google Scholar 

  • Liu J, Pascal LE, Isharwal S, Metzger D, Ramos Garcia R, Pilch J, Kasper S, Williams K, Basse PH, Nelson JB, Chambon P, Wang Z (2011) Regenerated luminal epithelial cells are derived from preexisting luminal epithelial cells in adult mouse prostate. Mol Endocrinol 25:1849–1857

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Lindberg J, Sui G, Luo J, Egevad L, Li T, Xie C, Wan M, Kim ST, Wang Z, Turner AR, Zhang Z, Feng J, Yan Y, Sun J, Bova GS, Ewing CM, Yan G, Gielzak M, Cramer SD, Vessella RL, Zheng SL, Gronberg H, Isaacs WB, Xu J (2012) Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer. Oncogene 31:3939–3948

    Article  PubMed  CAS  Google Scholar 

  • Luchman HA, Friedman HC, Villemaire ML, Peterson AC, Jirik FR (2008) Temporally controlled prostate epithelium-specific gene alterations. Genesis 46:229–234

    Article  PubMed  CAS  Google Scholar 

  • Lukacs RU, Memarzadeh S, Wu H, Witte ON (2010) Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell 7:682–693

    Article  PubMed  CAS  Google Scholar 

  • Maddison LA, Sutherland BW, Barrios RJ, Greenberg NM (2004) Conditional deletion of Rb causes early stage prostate cancer. Cancer Res 64:6018–6025

    Article  PubMed  CAS  Google Scholar 

  • Maund SL, Barclay WW, Hover LD, Axanova LS, Sui G, Hipp JD, Fleet JC, Thorburn A, Cramer SD (2011) Interleukin-1alpha mediates the antiproliferative effects of 1,25-dihydroxyvitamin D3 in prostate progenitor/stem cells. Cancer Res 71:5276–5286

    Article  PubMed  CAS  Google Scholar 

  • McKeehan WL, Adams PS, Rosser MP (1982) Modified nutrient medium MCDB 151, defined growth factors, cholera toxin, pituitary factors, and horse serum support epithelial cell and suppress fibroblast proliferation in primary cultures of rat ventral prostate cells. In Vitro 18:87–91

    Article  PubMed  CAS  Google Scholar 

  • Memarzadeh S, Xin L, Mulholland DJ, Mansukhani A, Wu H, Teitell MA, Witte ON (2007) Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor. Cancer Cell 12:572–585

    Article  PubMed  CAS  Google Scholar 

  • Mulholland DJ, Xin L, Morim A, Lawson D, Witte O, Wu H (2009) Lin-Sca-1+CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer Res 69:8555–8562

    Article  PubMed  CAS  Google Scholar 

  • Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, Gleave M, Wu H (2012) Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res 72:1878–1889

    Article  PubMed  CAS  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708

    Article  PubMed  CAS  Google Scholar 

  • Peehl DM, Stamey TA (1984) Serial propagation of adult human prostatic epithelial cells with cholera toxin. In Vitro 20:981–986

    Article  PubMed  CAS  Google Scholar 

  • Peehl DM, Stamey TA (1986) Growth responses of normal, benign hyperplastic, and malignant human prostatic epithelial cells in vitro to cholera toxin, pituitary extract, and hydrocortisone. Prostate 8:51–61

    Article  PubMed  CAS  Google Scholar 

  • Qin J, Liu X, Laffin B, Chen X, Choy G, Jeter CR, Calhoun-Davis T, Li H, Palapattu GS, Pang S, Lin K, Huang J, Ivanov I, Li W, Suraneni MV, Tang DG (2012) The PSA(−/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell 10:556–569

    Article  PubMed  CAS  Google Scholar 

  • Ratnacaram CK, Teletin M, Jiang M, Meng X, Chambon P, Metzger D (2008) Temporally controlled ablation of PTEN in adult mouse prostate epithelium generates a model of invasive prostatic adenocarcinoma. Proc Natl Acad Sci USA 105:2521–2526

    Article  PubMed  CAS  Google Scholar 

  • Robbins CM, Tembe WA, Baker A, Sinari S, Moses TY, Beckstrom-Sternberg S, Beckstrom-­Sternberg J, Barrett M, Long J, Chinnaiyan A, Lowey J, Suh E, Pearson JV, Craig DW, Agus DB, Pienta KJ, Carpten JD (2011) Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors. Genome Res 21:47–55

    Article  PubMed  CAS  Google Scholar 

  • Sadowski PD (1995) The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 51:53–91

    Article  PubMed  CAS  Google Scholar 

  • Scherl A, Li JF, Cardiff RD, Schreiber-Agus N (2004) Prostatic intraepithelial neoplasia and intestinal metaplasia in prostates of probasin-RAS transgenic mice. Prostate 59:448–459

    Article  PubMed  CAS  Google Scholar 

  • Shaw A, Papadopoulos J, Johnson C, Bushman W (2006) Isolation and characterization of an immortalized mouse urogenital sinus mesenchyme cell line. Prostate 66:1347–1358

    Article  PubMed  CAS  Google Scholar 

  • Shen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24:1967–2000

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Gipp J, Bushman W (2007) Anchorage-independent culture maintains prostate stem cells. Dev Biol 312:396–406

    Article  PubMed  CAS  Google Scholar 

  • Solimini NL, Xu Q, Mermel CH, Liang AC, Schlabach MR, Luo J, Burrows AE, Anselmo AN, Bredemeyer AL, Li MZ, Beroukhim R, Meyerson M, Elledge SJ (2012) Recurrent hemizygous deletions in cancers may optimize proliferative potential. Science 337:104–109

    Article  PubMed  CAS  Google Scholar 

  • Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22

    Article  PubMed  CAS  Google Scholar 

  • Thompson TC, Southgate J, Kitchener G, Land H (1989) Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 56:917–930

    Article  PubMed  CAS  Google Scholar 

  • Thompson TC, Park SH, Timme TL, Ren C, Eastham JA, Donehower LA, Bradley A, Kadmon D, Yang G (1995) Loss of p53 function leads to metastasis in ras+myc-initiated mouse prostate cancer. Oncogene 10:869–879

    PubMed  CAS  Google Scholar 

  • Timme T L, Yang G, Rogers E, Kadmon D, Morganstern J P, Park S H, Thompson T C (1996) Retroviral transduction of transforming growth factor-beta1 induces pleiotropic benign prostatic growth abnormalities in mouse prostate reconstitutions. Lab Invest 74: 747–760

    PubMed  CAS  Google Scholar 

  • Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, Cao Q, Prensner JR, Rubin MA, Shah RB, Mehra R, Chinnaiyan AM (2008) Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10:177–188

    Article  PubMed  CAS  Google Scholar 

  • Tran CP, Lin C, Yamashiro J, Reiter RE (2002) Prostate stem cell antigen is a marker of late ­intermediate prostate epithelial cells. Mol Cancer Res 1:113–121

    PubMed  CAS  Google Scholar 

  • van Bokhoven A, Varella-Garcia M, Korch C, Johannes WU, Smith EE, Miller HL, Nordeen SK, Miller GJ, Lucia MS (2003) Molecular characterization of human prostate carcinoma cell lines. Prostate 57:205–225

    Article  PubMed  Google Scholar 

  • Wang Y, Hayward SW, Donjacour AA, Young P, Jacks T, Sage J, Dahiya R, Cardiff RD, Day ML, Cunha GR (2000) Sex hormone-induced carcinogenesis in Rb-deficient prostate tissue. Cancer Res 60:6008–6017

    PubMed  CAS  Google Scholar 

  • Wang S, Garcia AJ, Wu M, Lawson DA, Witte ON, Wu H (2006) Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc Natl Acad Sci USA 103:1480–1485

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, Hu YP, Price SM, Abate-Shen C, Shen MM (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461:495–500

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Kim J, Roh M, Franco OE, Hayward SW, Wills ML, Abdulkadir SA (2010) Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma. Oncogene 29:2477–2487

    Article  PubMed  CAS  Google Scholar 

  • Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66:1883–1890. discussion 1895–1886

    Google Scholar 

  • Wu M, Shi L, Cimic A, Romero L, Sui G, Lees CJ, Cline JM, Seals DF, Sirintrapun JS, McCoy TP, Liu W, Kim JW, Hawkins GA, Peehl DM, Xu J, Cramer SD (2012) Suppression of Tak1 promotes prostate tumorigenesis. Cancer Res 72:2833–2843

    Article  PubMed  CAS  Google Scholar 

  • Xin L, Lawson DA, Witte ON (2005) The Sca-1 cell surface marker enriches for a prostate-­regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 102:6942–6947

    Article  PubMed  CAS  Google Scholar 

  • Xin L, Lukacs RU, Lawson DA, Cheng D, Witte ON (2007) Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cells 25:2760–2769

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Guzman R, Richards J, Imagawa W, McCormick K, Nandi S (1980) Growth factor- and cyclic nucleotide-induced proliferation of normal and malignant mammary epithelial cells in primary culture. Endocrinology 107:35–41

    Article  PubMed  CAS  Google Scholar 

  • Zong Y, Xin L, Goldstein AS, Lawson DA, Teitell MA, Witte ON (2009) ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc Natl Acad Sci USA 106:12465–12470

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the following individuals for their scientific contributions to this chapter: Lina Romero for FACS analysis and characterization of PrP/SCs from different genetic backgrounds; Molishree Joshi for isolation of Tak1L/L MPECs and microscopy; Wenhong Chen and Michael Lilly for Pim1 studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott D. Cramer Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ulkus, L., Wu, M., Cramer, S.D. (2013). Stem Cell Models for Functional Validation of Prostate Cancer Genes. In: Cramer, S. (eds) Stem Cells and Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6498-3_9

Download citation

Publish with us

Policies and ethics