Skip to main content

Prostate Stem Cells, Hormones, and Development

  • Chapter
  • First Online:
Stem Cells and Prostate Cancer

Abstract

While it is established that prostate cancer is a hormone-dependent ­disease, the cell(s) of origin of prostate cancer, i.e., the tumor-initiating cells, is still in debate. Strong evidence has emerged which indicates that prostate cancer can originate from both basal and luminal epithelial cell populations. In addition, prostate epithelial stem cells are candidates for the tumor-initiating cell based on work in hematopoietic and breast cancers and because of the growing acceptance of the cancer stem cell paradigm. To appreciate the interrelationships between the multiple cells of origin of prostate cancer, it may be necessary to first fully understand the prostate stem cell differentiation lineage during normal development and adult tissue maintenance as well as the factors that regulate stem cell self-renewal and lineage commitment. Recent advances in stem cell research have permitted isolation of prostate stem cells and shed light on the hierarchical relationship between the epithelial stem cells and their differentiated lineage. Furthermore, prostate cancer stem cells have been isolated and characterized from several prostate tumors which may provide an explanation for the known clinical and molecular heterogeneity of human prostate cancers. Although prostate stem cells and prostate cancer stem cells appear to be androgen receptor negative, new findings have established key roles for several other hormones in regulating prostate stem cells and their niche. Together, this new knowledge should allow for greater insight into the details of prostate development and to increased understanding of prostate cancer initiation and progression. In this chapter we will highlight recent advances in hormone modulation of prostate stem cells and their early progeny in development, normal tissue homeostasis, and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, Yasuda H, Smyth GK, Martin TJ, Lindeman GJ et al (2010) Control of mammary stem cell function by steroid ­hormone signalling. Nature 465:798–802

    Article  PubMed  CAS  Google Scholar 

  • Berry PA, Maitland NJ, Collins AT (2008) Androgen receptor signalling in prostate: effects of stromal factors on normal and cancer stem cells. Mol Cell Endocrinol 288:30–37

    Article  PubMed  CAS  Google Scholar 

  • Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P, Norton CR, Gridley T, Cardiff RD, Cunha GR et al (1999) Roles for Nkx3.1 in prostate development and cancer. Gen Devel 13:966–977

    Article  CAS  Google Scholar 

  • Bhatt RI, Brown MD, Hart CA, Gilmore P, Ramani VA, George NJ, Clarke NW (2003) Novel method for the isolation and characterisation of the putative prostatic stem cell. Cytometry A 54:89–99

    Article  PubMed  Google Scholar 

  • Brown MD, Gilmore PE, Hart CA, Samuel JD, Ramani VA, George NJ, Clarke NW (2007) Characterization of benign and malignant prostate epithelial Hoechst 33342 side populations. Prostate 67:1384–1396

    Article  PubMed  Google Scholar 

  • Chan KW, Yu KL, Rivier J, Chow BK (1998) Identification and characterization of a receptor from goldfish specific for a teleost growth hormone-releasing hormone-like peptide. Neuroendocrinology 68:44–56

    Article  PubMed  CAS  Google Scholar 

  • Chan QK, Lam HM, Ng CF, Lee AY, Chan ES, Ng HK, Ho SM, Lau KM (2010) Activation of GPR30 inhibits the growth of prostate cancer cells through sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G(2) cell-cycle arrest. Cell Death Differ 17:1511–1523

    Article  PubMed  CAS  Google Scholar 

  • Cocciadiferro L, Miceli V, Kang KS, Polito LM, Trosko JE, Carruba G (2009) Profiling cancer stem cells in androgen-responsive and refractory human prostate tumor cell lines. Ann NY Acad Sci 1155:257–262

    Article  PubMed  CAS  Google Scholar 

  • Collins AT, Habib FK, Maitland NJ, Neal DE (2001) Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci 114:3865–3872

    PubMed  CAS  Google Scholar 

  • Cunha GR (1973) The role of androgens in the epithelio-mesenchymal interactions involved in prostatic morphogenesis in embryonic mice. Anat Rec 175:87–96

    Article  PubMed  CAS  Google Scholar 

  • Cunha GR (1976) Epithelial-stromal interactions in development of the urogenital tract. Int Rev Cytol 47:137–194

    Article  PubMed  CAS  Google Scholar 

  • Cunha GR (1984) Prostatic epithelial morphogenesis, growth, and secretory cytodifferentiation are elicited via trophic influences from mesenchyme. In: Progress in cancer research and therapy (ed. F. Bresciani), 31:121–128. New York: Raven Press

    Google Scholar 

  • Cunha G, Fujii H, Neubauer B, Shannon J, Sawyer L, Reese B (1983) Epithelial-mesenchymal interactions in prostatic development. I. Morphological observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder. J Cell Biol 96:1662–1670

    Article  PubMed  CAS  Google Scholar 

  • Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ, Sugimura Y (1987) The endocrinology and developmental biology of the prostate. Endocr Rev 8:338–363

    Article  PubMed  CAS  Google Scholar 

  • Dagvadorj A, Collins S, Jomain JB, Abdulghani J, Karras J, Zellweger T, Li H, Nurmi M, Alanen K, Mirtti T et al (2007) Autocrine prolactin promotes prostate cancer cell growth via Janus kinase-2-signal transducer and activator of transcription-5a/b signaling pathway. Endocrinology 148:3089–3101

    Article  PubMed  CAS  Google Scholar 

  • Ding XW, Wu JH, Jiang CP (2010) ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci 86:631–637

    Article  PubMed  CAS  Google Scholar 

  • Donjacour AA, Cunha GR (1993) Assessment of prostatic protein secretion in tissue recombinants made of urogenital sinus mesenchyme and urothelium from normal or androgen-insensitive mice. Endocrinology 132:2342–2350

    Article  PubMed  CAS  Google Scholar 

  • Donjacour AA, Cunha GR (1995) Induction of prostatic morphology and secretion in urothelium by seminal vesicle mesenchyme. Development 121:2199–2207

    PubMed  CAS  Google Scholar 

  • Garraway LA, Lin D, Signoretti S, Waltregny D, Dilks J, Bhattacharya N, Loda M (2003) Intermediate basal cells of the prostate: in vitro and in vivo characterization. Prostate 55:206–218

    Article  PubMed  Google Scholar 

  • Garraway IP, Sun W, Tran CP, Perner S, Zhang B, Goldstein AS, Hahm SA, Haider M, Head CS, Reiter RE et al (2010) Human prostate sphere-forming cells represent a subset of basal ­epithelial cells capable of glandular regeneration in vivo. Prostate 70:491–501

    PubMed  Google Scholar 

  • Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON (2008) Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc Natl Acad Sci USA 105:20882–20887

    Article  PubMed  CAS  Google Scholar 

  • Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON (2010a) Identification of a cell of origin for human prostate cancer. Science 329:568–571

    Article  PubMed  CAS  Google Scholar 

  • Goldstein AS, Stoyanova T, Witte ON (2010b) Primitive origins of prostate cancer: In vivo evidence for prostate-regenerating cells and prostate cancer-initiating cells. Mol Oncol 4:385–396

    Article  PubMed  Google Scholar 

  • Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Salm SN, Coetzee S, Xiong X, Burger PE, Shapiro E, Lepor H, Moscatelli D, Wilson EL (2006) Proximal prostatic stem cells are programmed to regenerate a proximal-distal ductal axis. Stem Cells 24:1859–1868

    Article  PubMed  CAS  Google Scholar 

  • Gu G, Yuan J, Wills M, Kasper S (2007) Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 67:4708–4715

    Google Scholar 

  • Guo C, Liu H, Zhang BH, Cadaneanu RM, Mayle AM, Garraway IP (2012) Epcam, CD44, and CD49f distinguish sphere-forming human prostate basal cells from a subpopulation with predominant tubule initiation capability. PLoS One 7:e34219

    Article  PubMed  CAS  Google Scholar 

  • Hayashi N, Sugimura Y, Kawamura J, Donjacour AA, Cunha GR (1991) Morphological and functional heterogeneity in the rat prostatic gland. Biol Reprod 45:308–321

    Article  PubMed  CAS  Google Scholar 

  • Hayward S, Cunha G, Dahiya R (1996) Normal development and carcinogenesis of the prostate; a unifying hypothesis. Ann NY Acad Sci 784:50–62

    Article  PubMed  CAS  Google Scholar 

  • Hu WY, Shi GB, Lam HM, Hu DP, Ho SM, Madueke IC, Kajdacsy-Balla A, Prins GS (2011) Estrogen-initiated transformation of prostate epithelium derived from normal human prostate stem-progenitor cells. Endocrinology 152:2150–2163

    Article  PubMed  CAS  Google Scholar 

  • Hu WY, Shi GB, Hu DP, Nelles JL, Prins GS (2012) Actions of estrogens and endocrine disrupting chemicals on human prostate stem/progenitor cells and prostate cancer risk. Mol Cell Endocrinol 354:63–73

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Pu Y, Hu WY, Birch L, Luccio-Camelo D, Yamaguchi T, Prins GS (2009) The role of Wnt5a in prostate gland development. Dev Biol 328(2):188– 199

    Article  PubMed  CAS  Google Scholar 

  • Hudson DL (2004) Epithelial stem cells in human prostate growth and disease. Prostate Cancer Prostatic Dis 7:188–194

    Article  PubMed  CAS  Google Scholar 

  • Hudson DL, O’Hare M, Watt FM, Masters JR (2000) Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells. Lab Invest 80:1243–1250

    Article  PubMed  CAS  Google Scholar 

  • Huss JJ, Lai L, Barrios RJ, Hirschi KK, Greenberg NM (2004) Retinoic acid slows progression and promotes apoptosis of spontaneous prostate cancer. Prostate 61:142–152

    Article  PubMed  CAS  Google Scholar 

  • Isaacs JT (2008) Prostate stem cells and benign prostatic hyperplasia. Prostate 68:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Isaacs JT, Coffey DS (1989) Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl 2:33–50

    Article  PubMed  CAS  Google Scholar 

  • Isaacs JT, Barrack ER, Isaacs WB, Coffey DS (1981) The relationship of cellular structure and function: the matrix system. Prog Clin Biol Res 75A:1–24

    Google Scholar 

  • Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL, Stingl J, Waterhouse PD, Khokha R (2010) Progesterone induces adult mammary stem cell expansion. Nature 465:803–807

    Article  PubMed  CAS  Google Scholar 

  • Kasper S (2007) Characterizing the prostate stem cell. J Urol 178:375

    Article  PubMed  Google Scholar 

  • Kasper S (2008) Exploring the origins of the normal prostate and prostate cancer stem cell. Stem Cell Rev 4:193–201

    Article  PubMed  CAS  Google Scholar 

  • Kasper S (2009) Identification, characterization, and biological relevance of prostate cancer stem cells from clinical specimens. Urol Oncol 27:301–303

    Article  PubMed  Google Scholar 

  • Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J, Witte ON (2010) Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci USA 107:2610–2615

    Article  PubMed  CAS  Google Scholar 

  • Leong KG, Wang BE, Johnson L, Gao WQ (2008) Generation of a prostate from a single cell. Nature 456:804–808

    Article  PubMed  CAS  Google Scholar 

  • Liu AY, True L (2002) Characterization of prostate cell types by CD cell surface molecules. Am J Pathol 160:37–43

    Article  PubMed  CAS  Google Scholar 

  • Liu AY, Roudier MP, True LD (2004) Heterogeneity in primary and metastatic prostate cancer as defined by cell surface CD profile. Am J Pathol 165:1543–1556

    Article  PubMed  Google Scholar 

  • Liu J, Pascal LE, Isharwal S, Metzger D, Ramos Garcia R, Pilch J, Kasper S, Williams K, Basse PH, Nelson JB et al (2011) Regenerated luminal epithelial cells are derived from preexisting luminal epithelial cells in adult mouse prostate. Mol Endocrinol 25:1849–1857

    Article  PubMed  CAS  Google Scholar 

  • Long RM, Morrissey C, Fitzpatrick JM, Watson RW (2005) Prostate epithelial cell differentiation and its relevance to the understanding of prostate cancer therapies. Clin Sci (Lond) 108:1–11

    Article  CAS  Google Scholar 

  • Lowsley OS (1912) The development of the human prostate gland with reference to the development of other structures at the neck of the urinary bladder. Am J Anat 13:299–348

    Article  Google Scholar 

  • Lukacs RU, Goldstein AS, Lawson DA, Cheng D, Witte ON (2010) Isolation, cultivation and characterization of adult murine prostate stem cells. Nat Protoc 5:702–713

    Article  PubMed  CAS  Google Scholar 

  • Maitland NJ, Collins AT (2008) Prostate cancer stem cells: a new target for therapy. J Clin Oncol 26:2862–2870

    Article  PubMed  Google Scholar 

  • Maitland NJ, Frame FM, Polson ES, Lewis JL, Collins AT (2011) Prostate cancer stem cells: do they have a basal or luminal phenotype? Horm Cancer 2:47–61

    Article  PubMed  Google Scholar 

  • Mathew G, Timm EA Jr, Sotomayor P, Godoy A, Montecinos VP, Smith GJ, Huss WJ (2009) ABCG2-mediated DyeCycle Violet efflux defined side population in benign and malignant prostate. Cell Cycle 8:1053–1061

    Article  PubMed  CAS  Google Scholar 

  • Maund SL, Barclay WW, Hover LD, Axanova LS, Sui G, Hipp JD, Fleet JC, Thorburn A, Cramer SD (2011) Interleukin-1alpha mediates the antiproliferative effects of 1,25-dihydroxyvitamin D3 in prostate progenitor/stem cells. Cancer Res 71:5276–5286

    Article  PubMed  CAS  Google Scholar 

  • McCormick DL, Rao KVN, Steele VE, Lubet RA, Kelloff GJ, Bosland MC (1999) Chemoprevention of rat prostate carcinogenesis by 9-cis-retinoic acid. Canc Res 59:521–524

    CAS  Google Scholar 

  • McNeal JE (1983) The prostate gland: morphology and pathobiology. Monogr Urol 4:3–11

    Google Scholar 

  • McPherson SJ, Hussain S, Balanathan P, Hedwards SL, Niranjan B, Grant M, Chandrasiri UP, Toivanen R, Wang Y, Taylor RA et al (2010) Estrogen receptor-beta activated apoptosis in benign hyperplasia and cancer of the prostate is androgen independent and TNFalpha mediated. Proc Natl Acad Sci USA 107:3123–3128

    Article  PubMed  CAS  Google Scholar 

  • Metallo CM, Ji L, de Pablo JJ, Palecek SP (2008) Retinoic acid and bone morphogenetic protein signaling synergize to efficiently direct epithelial differentiation of human embryonic stem cells. Stem Cells 26:372–380

    Article  PubMed  CAS  Google Scholar 

  • Miki J, Rhim J (2008) Prostate cell cultures as in vitro models for the study of normal stem cells and cancer stem cells. Prostate Cancer Prostatic Dis 11:32–39

    Article  PubMed  CAS  Google Scholar 

  • Moore KL, Persaud TVN (2008) Before we are born, essentials of embryology and birth defects, 7th edn. Saunders/Elsevier, Philadelphia

    Google Scholar 

  • Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441:1068–1074

    Article  PubMed  CAS  Google Scholar 

  • Oldridge EE, Pellacani D, Collins AT, Maitland NJ (2012) Prostate cancer stem cells: are they androgen-responsive? Mol Cell Endocrinol 360(1–2):14–24

    Article  PubMed  CAS  Google Scholar 

  • Presnell SC, Petersen B, Heidaran M (2002) Stem cells in adult tissues. Semin Cell Dev Biol 13:369–376

    Article  PubMed  CAS  Google Scholar 

  • Prins GS (1993) Development of the prostate. In: Reproductive issues and the aging male (Eds. F. Haseltine, A. Paulsen, C. Wang), pp 101–112. Embryonic, Inc, New York

    Google Scholar 

  • Prins GS, Birch L (1995) The developmental pattern of androgen receptor expression in rat prostate lobes is altered after neonatal exposure to estrogen. Endocrinology 136:1303–1314

    Article  PubMed  CAS  Google Scholar 

  • Prins GS, Korach KS (2008) The role of estrogens and estrogen receptors in normal prostate growth and disease. Steroids 73:233–244

    Article  PubMed  CAS  Google Scholar 

  • Prins GS, Putz O (2008) Molecular signaling pathways that regulate prostate gland development. Differentiation 6:641–659

    Article  Google Scholar 

  • Prins GS, Cooke PS, Birch L, Donjacour AA, Yalcinkaya TM, Siiteri PK, Cunha GR (1992) Androgen receptor expression and 5a-reductase activity along the proximal-distal axis of the rat prostatic duct. Endocrinology 130:3066–3073

    Article  PubMed  CAS  Google Scholar 

  • Prins GS, Birch L, Woodham C (1995) Effect of neonatal estrogen on androgen receptor protein and mRNA levels in developing rat ventral prostate. Paper presented at: 77th annual meeting of the endocrine society, Washington, DC

    Google Scholar 

  • Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI (2011) Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat Commun 2:162

    Article  PubMed  Google Scholar 

  • Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT (2003) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117:3539–3545

    Article  Google Scholar 

  • Ricke WA, McPherson SJ, Bianco JJ, Cunha GR, Wang Y, Risbridger GP (2008) Prostatic hormonal carcinogenesis is mediated by in situ estrogen production and estrogen receptor alpha signaling. FASEB J 22:1512–1520

    Article  PubMed  CAS  Google Scholar 

  • Robinson EJ, Neal DE, Collins AT (1998) Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate 37:149–160

    Article  PubMed  CAS  Google Scholar 

  • Rouet V, Bogorad RL, Kayser C, Kessal K, Genestie C, Bardier A, Grattan DR, Kelder B, Kopchick JJ, Kelly PA et al (2010) Local prolactin is a target to prevent expansion of basal/stem cells in prostate tumors. Proc Natl Acad Sci USA 107:15199–15204

    Article  PubMed  CAS  Google Scholar 

  • Rumpold H, Heinrich E, Untergasser G, Hermann M, Pfister G, Plas E, Berger P (2002) Neuroendocrine differentiation of human prostatic primary epithelial cells in vitro. Prostate 53:101–108

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi P, Misteli T (2011) In vitro generation of human cells with cancer stem cell properties. Nat Cell Biol 13:1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Schalken JA (2007) Prostate cancer stem cells. In: Prostate cancer: biology, genetics and the new therapeutics (Eds. L. Chung, W. Isaacs, J. Simons), pp 63-72, 2nd edn. Humana, Totowa

    Chapter  Google Scholar 

  • Schenk JM, Riboli E, Chatterjee N, Leitzmann MF, Ahn J, Albanes D, Reding DJ, Wang Y, Friesen MD, Hayes RB et al (2009) Serum retinol and prostate cancer risk: a nested case-control study in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev 18:1227–1231

    Article  PubMed  CAS  Google Scholar 

  • Sharifi N, Hurt EM, Farrar WL (2008) Androgen receptor expression in prostate cancer stem cells: is there a conundrum? Cancer Chemother Pharmacol 62:921–923

    Article  PubMed  CAS  Google Scholar 

  • Sissung TM, Danesi R, Kirkland CT, Baum CE, Ockers SB, Stein EV, Venzon D, Price DK, Fig. WD (2011) Estrogen receptor a and aromatase polymorphisms affect risk, prognosis, and therapeutic outcome in men with castration-resistant prostate cancer treated with docetaxel-based therapy. J Clin Endocrinol Metab 95:E368–E372

    Article  Google Scholar 

  • Smith S, Neaves W, Teitelbaum S (2007) Adult versus embryonic stem cells: treatments. Science 316:1422–1423

    Article  PubMed  CAS  Google Scholar 

  • Timms BG, Mohs TJ, Didio LJ (1994) Ductal budding and branching patterns in the developing prostate. J Urol 151:1427–1432

    PubMed  CAS  Google Scholar 

  • Tomasetti C, Levy D (2010) Role of symmetric and asymmetric division of stem cells in developing drug resistance. Proc Natl Acad Sci USA 107:16766–16771

    Article  PubMed  CAS  Google Scholar 

  • Tsujimura A, Koikawa Y, Salm S, Takao T, Coetzee S, Moscatelli D, Shapiro E, Lepor H, Sun TT, Wilson EL (2002) Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J Cell Biol 157:1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Vander Griend DJ, Karthaus WL, Dalrymple S, Meeker A, DeMarzo AM, Isaacs JT (2008) The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res 68:9703–9711

    Article  PubMed  CAS  Google Scholar 

  • Vander Griend DJ, D’Antonio J, Gurel B, Antony L, Demarzo AM, Isaacs JT (2010) Cell-­autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells. Prostate 70:90–99

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen A, Kaufman JM, Goemaere S, van Pottelberg I (2002) Estradiol in elderly men. Aging Male 5:98–102

    PubMed  CAS  Google Scholar 

  • Vezina CM, Lin TM, Peterson RE (2009) AHR signaling in prostate growth, morphogenesis, and disease. Biochem Pharmacol 77:566–576

    Article  PubMed  CAS  Google Scholar 

  • Wang ZA, Shen MM (2011) Revisiting the concept of cancer stem cells in prostate cancer. Oncogene 30:1261–1271

    Article  PubMed  Google Scholar 

  • Wang Y, Hayward S, Cao M, Thayer K, Cunha G (2001a) Cell differentiation lineage in the prostate. Differentiation 68:270–279

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Chang WY, Prins GS, van Breeman RB (2001b) Simultaneous determination of all-trans, 9-cis, 13-cis retinoic acid and retinal in rat prostate using liquid. J Mass Spectrom 36:882–888

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Prins GS, Coschigano KT, Kopchick JJ, Green JE, Ray VH, Hedayat S, Christov KT, Unterman TG, Swanson SM (2005) Disruption of growth hormone signaling retards early stages of prostate carcinogenesis in the C3(1)/T antigen mouse. Endocrinology 146:5188–5196

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Wang Z, Sarkar FH, Wei W (2012) Targeting prostate cancer stem cells for cancer therapy. Discov Med 13:135–142

    Article  PubMed  Google Scholar 

  • Wu M, Kwon HY, Rattis F, Blum J, Zhao C, Ashkenazi R, Jackson TL, Gaiano N, Oliver T, Reya T (2007) Imaging hematopoietic precursor division in real time. Cell Stem Cell 1:541–554

    Article  PubMed  CAS  Google Scholar 

  • Xin L, Lawson DA, Witte ON (2005) The Sca-1 cell surface marker enriches for a prostate-­regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 102:6942–6947

    Article  PubMed  CAS  Google Scholar 

  • Xin L, Lukacs RU, Lawson DA, Cheng D, Witte ON (2007) Self-renewal and multilineage ­differentiation in vitro from murine prostate stem cells. Stem Cells 25:2760–2769

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of several individuals for their generous contributions towards data highlighted in this text: Dr. Susan Kasper (University of Cincinnati) and Dr. Larisa Nonn (University of Illinois at Chicago) for provisions of cells; Dr. Steve Swanson (University of Illinois at Chicago) for GHR and IGF-1R analysis; Dr. Guang-Bin Shi, Dan-Ping Hu, and Jacqueline Rinaldi for technical assistance; and Lynn Birch for editorial assistance. The research is supported by NIH grant RC2 ES018758.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail S. Prins Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Prins, G.S., Hu, WY. (2013). Prostate Stem Cells, Hormones, and Development. In: Cramer, S. (eds) Stem Cells and Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6498-3_1

Download citation

Publish with us

Policies and ethics