Silicon-Based Frequency References

  • S. Mahdi Kashmiri
  • Kofi A. A. Makinwa
Part of the Analog Circuits and Signal Processing book series (ACSP)


This chapter provides an overview of silicon-based frequency references. Reduction of size and cost as well as increased reliability have been the main motivations for the realization of on-chip frequency references. However, the main limitation of such references is the effect of variations in process, voltage, and temperature (PVT) on their output frequency. This chapter reviews various state-of-the-art implementations of silicon-based frequency references. These have been mainly introduced in the open literature or available as products on the market. The chapter’s main goal is to provide an overview of the pros and cons of the selected approaches in order to build a comparison chart. Such overview should help the reader to make a comparison between the approach described in this book, electrothermal frequency references, and the other available solutions.


Frequency Reference Relaxation Oscillator Output Frequency Ring Oscillator Negative Temperature Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bottom VE (1981) A history of the quartz crystal industry in the USA. In: IEEE annual frequency control symposium, Philadelphia, Pennsylvania, pp 3–12Google Scholar
  2. 2.
    Allan D et al (1997) The science of timekeeping, HP Application Note 1289Google Scholar
  3. 3.
    Lam CS (2008) A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry. In: IEEE ultrasonic symposium, pp 694–704Google Scholar
  4. 4.
    McCorquaodale MS et al (2009) On modern and historical short-term frequency stability metrics for frequency sources. In: IEEE frequency control symposium, pp 328–333Google Scholar
  5. 5.
    Oscillators for microcontrollers, Intel Application Note AP-155, 1983Google Scholar
  6. 6.
    Universal Serial Bus (USB) Specifications Rev 3.0, 2008. Available online at:
  7. 7.
    Allan DW et al (1988) Ensemble time and frequency stability of GPS satellite clocks. In: IEEE annual frequency control symposium, pp 465–471Google Scholar
  8. 8.
    McCorquodale MS (2009) Silicon challenges quartz: precision self-referenced solid-state oscillators for frequency control and generation. In: IEEE Toronto section, University of Toronto, Canada, 2009. Available online at:
  9. 9.
    Nathanson HC et al (1967) The resonant gate transistor. IEEE Trans Electron Dev 14(3):117–133CrossRefGoogle Scholar
  10. 10.
    Sadiku M (2002) MEMS. IEEE Potential 21(1):4–5CrossRefGoogle Scholar
  11. 11.
    Nathanson HC et al (1965) A resonant-gate silicon surface transistor with high-Q bandpass properties. IEEE Trans Electron Dev 12(9):507CrossRefGoogle Scholar
  12. 12.
    Tabatabaei S et al (2010) Silicon MEMS oscillators for high-speed digital systems. IEEE Micro 30(2):80–89CrossRefGoogle Scholar
  13. 13.
    MEMS replacing quartz oscillators, SiTime Application Note AN10010, 2009Google Scholar
  14. 14.
    Lutz M (2007) MEMS oscillators for high volume commercial applications. In: IEEE transducers, pp 49–52Google Scholar
  15. 15.
    Wan-Thai Hsu et al (2007) The new heart beat of electronics - Silicon MEMS oscillators. In: IEEE electronic components and technology conference, ECTC, pp 1895–1899Google Scholar
  16. 16.
    Ruffieux D et al (2010) Silicon resonator based 3.2 uW real time clock with 10 ppm frequency accuracy. IEEE J Solid-State Circ 45(1):224–234MathSciNetCrossRefGoogle Scholar
  17. 17.
    Perrott MH et al (2010) A low-area switched-resistor loop-filter technique for fractional-N synthesizers applied to a MEMS based programmable oscillator. In: IEEE international solid-state circuits conference, ISSCC, pp 244–245Google Scholar
  18. 18.
    Nguyen CT-C (2007) MEMS technology for timing and frequency control. In: IEEE transactions on ultrasonics, ferroelectrics and frequency control, pp 251–270Google Scholar
  19. 19.
    Galton I (2002) Delta-sigma data conversion in wireless transceivers. IEEE Trans Microw Theory Tech 50:302–315CrossRefGoogle Scholar
  20. 20.
    Wan-Thai Hsu (2006) Reliability of silicon resonator oscillators. In: IEEE international frequency control symposium and exposition, pp 389–392Google Scholar
  21. 21.
    SiT8003XT, SiT8102, and SiT9102 data sheets from SiTime. Available online at:
  22. 22.
    DSC1018 data sheet from Discera. Available online at:
  23. 23.
    SiTime’s product selector sheet. Available online at:
  24. 24.
    IDT data sheets of MM8102, MM8103, and MM8103. Available online from
  25. 25.
    Hajimiri A (1999) Design issues in CMOS differential LC oscillators. IEEE J Solid-State Circ 34(5):717–724CrossRefGoogle Scholar
  26. 26.
    Zannoth M et al (1998) A fully integrated VCO at 2 GHz. IEEE J Solid-State Circ 33(12):1987–1991CrossRefGoogle Scholar
  27. 27.
    McCorquodale MS et al (2007) A monolithic and self-referenced RF LC clock generator compliant with USB 2.0. IEEE J Solid-State Circ 42(2):385–399CrossRefGoogle Scholar
  28. 28.
    McCorquodale MS et al (2008) A 0.5-to-480 MHz self-referenced CMOS clock generator with 90 ppm total frequency error and spread-spectrum capability. In: IEEE international solid-state circuits conference, ISSCC, pp 350–351Google Scholar
  29. 29.
    McCorquodale MS et al (2008) A 25 MHz All-CMOS reference clock generator for XO-replacement in serial wire interfaces. In: IEEE international symposium on circuits and systems, ISCAS, pp 2837–2840Google Scholar
  30. 30.
    McCorquodale MS et al (2008) Self-referenced, trimmed and compensated RF CMOS harmonic oscillators as monolithic frequency generators. In: IEEE frequency control symposium, pp 408–413Google Scholar
  31. 31.
    McCorquodale MS et al (2009) A 25-MHz self-referenced solid-state frequency source suitable for XO-replacement. IEEE Trans Circ Syst I Regular Pap 56(5):943–956MathSciNetCrossRefGoogle Scholar
  32. 32.
    McCorquodale MS et al (2010) A silicon die as a frequency source. In: IEEE international frequency control symposium, pp 103–108Google Scholar
  33. 33.
    Groves R (1997) Temperature dependence of Q and inductance in spiral inductors fabricated in a silicon-germanium/BiCMOS technology. IEEE J Solid-State Circ 32(9):1455–1459CrossRefGoogle Scholar
  34. 34.
    McCorquodale MS et al (2011) A history of the development of CMOS oscillators: the dark horse in frequency control. In: IEEE international frequency control symposium, pp 437–442Google Scholar
  35. 35.
    Data sheet of Si500 silicon oscillators. Available from the website of Silicon Labs at:
  36. 36.
    Wikipedia page on RC oscillators. Available online at:
  37. 37.
    McCreary JL (1981) Matching properties, and voltage and temperature dependence of MOS capacitors. IEEE J Solid-State Circ 16(6):608–616CrossRefGoogle Scholar
  38. 38.
    St Onge SA et al (1992) Design of precision capacitors for analog applications. IEEE Trans Compon Hybr Manufact Technol 15(6):1064–1071CrossRefGoogle Scholar
  39. 39.
    Lane WA et al (1992) The design of thin-film polysilicon resistors for analog IC applications. IEEE Trans Electron Dev 36(4):738–744CrossRefGoogle Scholar
  40. 40.
    De Smedt V et al (2009) A 66 μW 86 ppm/°C fully-integrated 6 MHz wienbridge oscillator with a 172 dB phase noise FOM. IEEE J Solid-State Circ 44(7):1990–2001CrossRefGoogle Scholar
  41. 41.
    Paavola M et al (2006) A 3 μW, 2 MHz CMOS frequency reference for capacitive sensor applications. In: IEEE international symposium on circuits and systems, ISCAS, pp 4391–4394Google Scholar
  42. 42.
    Blauschild RA (1994) An integrated time reference. In: IEEE international solid-state circuits conference, ISSCC, pp 56–57Google Scholar
  43. 43.
    De Smedt V et al (2009) A 0.4–1.4 V 24 MHz fully integrated 33 μW, 104 ppm/V supply-independent oscillator for RFIDs. In: IEEE European solid-state circuits conference, ESSCIRC, pp 396–399Google Scholar
  44. 44.
    Wikipedia page on wienbridge oscillators. Available online at:
  45. 45.
    Model 200A Audio Oscillator, 1939, description from HP virtual museum. Available online at:
  46. 46.
    Hewlett WR (1939) Variable frequency oscillation generator, patent filed on 11 July 1939Google Scholar
  47. 47.
    Johns DA, Martin K (1997) Analog integrated circuits. Wiley, New YorkGoogle Scholar
  48. 48.
    Olmos A (2003) A temperature compensated fully trimmable on-chip IC oscillator. In: IEEE symposium on integrated circuits and systems design, pp 181–186Google Scholar
  49. 49.
    Vilas Boas A et al (2004) A temperature compensated digitally trimmable on-chip IC oscillator with low voltage inhibit capability. In: IEEE international symposium on circuits and systems, ISCAS, pp 501–504Google Scholar
  50. 50.
    Choe K et al (2009) A precision relaxation oscillator with a self-clocked offset-cancellation scheme for implantable biomedical SoCs. In: IEEE international solid-state circuits conference, ISSCC, pp 402–403Google Scholar
  51. 51.
    Enz CC et al (1996) Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE 84(11):1584–1614CrossRefGoogle Scholar
  52. 52.
    Gierkink SLJ, van Tuijl E (2002) A coupled sawtooth oscillator combining low jitter with high control linearity. IEEE J Solid-State Circ 37(6):702–710CrossRefGoogle Scholar
  53. 53.
    Geraedts et al PFJ (2008) A 90 μW 12 MHz relaxation oscillator with a –162 dB FOM. In: IEEE international solid-state circuits conference, ISSCC, pp 348–349Google Scholar
  54. 54.
    Tokunaga Y et al (2010) An on-chip CMOS relaxation oscillator with voltage averaging feedback. IEEE J Solid-State Circ 45(6):1150–1158CrossRefGoogle Scholar
  55. 55.
    McNeill JA (1997) Jitter in ring oscillators. IEEE J Solid-State Circ 32(6):870–879CrossRefGoogle Scholar
  56. 56.
    Wikipedia page on ring oscillators. Available online at:
  57. 57.
    Sundaresan K et al (2006) Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J Solid-State Circ 41(2):433–442CrossRefGoogle Scholar
  58. 58.
    Shyu Y et al (1999) A process and temperature compensated ring oscillator. In: IEEE Asia Pacific conference on ASICs, pp 283–286Google Scholar
  59. 59.
    Maneatis JG (1996) Low-jitter process-independent DLL and PLL based on self-biased techniques. IEEE J Solid-State Circ 31(11):1723–1732CrossRefGoogle Scholar
  60. 60.
    Razavi B (2000) Design of analog CMOS integrated circuits. McGraw-Hill, BostonGoogle Scholar
  61. 61.
    Pertijs MAP, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, DordrechtGoogle Scholar
  62. 62.
    Lee J et al (2009) A 10 MHz 80 μW 67 ppm/°C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18 μm CMOS. In: IEEE symposium on VLSI circuits, pp 226–227Google Scholar
  63. 63.
    Ueno K et al (2009) A 30-MHz, 90-ppm/°C fully-integrated clock reference generator with frequency-locked loop. In: IEEE European solid-state circuits conference, ESSCIRC, pp 392–395Google Scholar
  64. 64.
    Sebastiano F et al (2009) A low-voltage mobility-based frequency reference for crystal-less ULP radios. IEEE J Solid-State Circ 44(7):2002–2009CrossRefGoogle Scholar
  65. 65.
    Sebastiano F et al (2011) A 65-nm CMOS temperature-compensated mobility-based frequency reference for wireless sensor networks. IEEE J Solid-State Circ 46(7):1544–1552CrossRefGoogle Scholar
  66. 66.
    Denier U (2010) Analysis and design of an ultralow-power CMOS relaxation oscillator. IEEE Trans Circ Syst-I Regular Pap 57(8):1973–1982MathSciNetCrossRefGoogle Scholar
  67. 67.
    Sebastiano F et al (2010) A 1.2-V 10-μW NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2 °C (3σ) from −70 °C to 125 °C. IEEE J Solid-State Circ 45(12):2591–2601CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. Mahdi Kashmiri
    • 1
  • Kofi A. A. Makinwa
    • 2
  1. 1.Texas Instruments, Inc.DelftThe Netherlands
  2. 2.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations