Skip to main content

Silicon-Based Frequency References

  • Chapter
  • First Online:
Electrothermal Frequency References in Standard CMOS

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

This chapter provides an overview of silicon-based frequency references. Reduction of size and cost as well as increased reliability have been the main motivations for the realization of on-chip frequency references. However, the main limitation of such references is the effect of variations in process, voltage, and temperature (PVT) on their output frequency. This chapter reviews various state-of-the-art implementations of silicon-based frequency references. These have been mainly introduced in the open literature or available as products on the market. The chapter’s main goal is to provide an overview of the pros and cons of the selected approaches in order to build a comparison chart. Such overview should help the reader to make a comparison between the approach described in this book, electrothermal frequency references, and the other available solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bottom VE (1981) A history of the quartz crystal industry in the USA. In: IEEE annual frequency control symposium, Philadelphia, Pennsylvania, pp 3–12

    Google Scholar 

  2. Allan D et al (1997) The science of timekeeping, HP Application Note 1289

    Google Scholar 

  3. Lam CS (2008) A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry. In: IEEE ultrasonic symposium, pp 694–704

    Google Scholar 

  4. McCorquaodale MS et al (2009) On modern and historical short-term frequency stability metrics for frequency sources. In: IEEE frequency control symposium, pp 328–333

    Google Scholar 

  5. Oscillators for microcontrollers, Intel Application Note AP-155, 1983

    Google Scholar 

  6. Universal Serial Bus (USB) Specifications Rev 3.0, 2008. Available online at: http://www.usb.org

  7. Allan DW et al (1988) Ensemble time and frequency stability of GPS satellite clocks. In: IEEE annual frequency control symposium, pp 465–471

    Google Scholar 

  8. McCorquodale MS (2009) Silicon challenges quartz: precision self-referenced solid-state oscillators for frequency control and generation. In: IEEE Toronto section, University of Toronto, Canada, 2009. Available online at: http://www.toronto.ieee.ca/chapters/ssc/mccorquodaleUToronto09.pdf

  9. Nathanson HC et al (1967) The resonant gate transistor. IEEE Trans Electron Dev 14(3):117–133

    Article  Google Scholar 

  10. Sadiku M (2002) MEMS. IEEE Potential 21(1):4–5

    Article  Google Scholar 

  11. Nathanson HC et al (1965) A resonant-gate silicon surface transistor with high-Q bandpass properties. IEEE Trans Electron Dev 12(9):507

    Article  Google Scholar 

  12. Tabatabaei S et al (2010) Silicon MEMS oscillators for high-speed digital systems. IEEE Micro 30(2):80–89

    Article  Google Scholar 

  13. MEMS replacing quartz oscillators, SiTime Application Note AN10010, 2009

    Google Scholar 

  14. Lutz M (2007) MEMS oscillators for high volume commercial applications. In: IEEE transducers, pp 49–52

    Google Scholar 

  15. Wan-Thai Hsu et al (2007) The new heart beat of electronics - Silicon MEMS oscillators. In: IEEE electronic components and technology conference, ECTC, pp 1895–1899

    Google Scholar 

  16. Ruffieux D et al (2010) Silicon resonator based 3.2 uW real time clock with 10 ppm frequency accuracy. IEEE J Solid-State Circ 45(1):224–234

    Article  MathSciNet  Google Scholar 

  17. Perrott MH et al (2010) A low-area switched-resistor loop-filter technique for fractional-N synthesizers applied to a MEMS based programmable oscillator. In: IEEE international solid-state circuits conference, ISSCC, pp 244–245

    Google Scholar 

  18. Nguyen CT-C (2007) MEMS technology for timing and frequency control. In: IEEE transactions on ultrasonics, ferroelectrics and frequency control, pp 251–270

    Google Scholar 

  19. Galton I (2002) Delta-sigma data conversion in wireless transceivers. IEEE Trans Microw Theory Tech 50:302–315

    Article  Google Scholar 

  20. Wan-Thai Hsu (2006) Reliability of silicon resonator oscillators. In: IEEE international frequency control symposium and exposition, pp 389–392

    Google Scholar 

  21. SiT8003XT, SiT8102, and SiT9102 data sheets from SiTime. Available online at: http://www.sitime.com

  22. DSC1018 data sheet from Discera. Available online at: http://www.discera.com

  23. SiTime’s product selector sheet. Available online at: http://www.sitime.com/support/product-selector

  24. IDT data sheets of MM8102, MM8103, and MM8103. Available online from http://www.idt.com

  25. Hajimiri A (1999) Design issues in CMOS differential LC oscillators. IEEE J Solid-State Circ 34(5):717–724

    Article  Google Scholar 

  26. Zannoth M et al (1998) A fully integrated VCO at 2 GHz. IEEE J Solid-State Circ 33(12):1987–1991

    Article  Google Scholar 

  27. McCorquodale MS et al (2007) A monolithic and self-referenced RF LC clock generator compliant with USB 2.0. IEEE J Solid-State Circ 42(2):385–399

    Article  Google Scholar 

  28. McCorquodale MS et al (2008) A 0.5-to-480 MHz self-referenced CMOS clock generator with 90 ppm total frequency error and spread-spectrum capability. In: IEEE international solid-state circuits conference, ISSCC, pp 350–351

    Google Scholar 

  29. McCorquodale MS et al (2008) A 25 MHz All-CMOS reference clock generator for XO-replacement in serial wire interfaces. In: IEEE international symposium on circuits and systems, ISCAS, pp 2837–2840

    Google Scholar 

  30. McCorquodale MS et al (2008) Self-referenced, trimmed and compensated RF CMOS harmonic oscillators as monolithic frequency generators. In: IEEE frequency control symposium, pp 408–413

    Google Scholar 

  31. McCorquodale MS et al (2009) A 25-MHz self-referenced solid-state frequency source suitable for XO-replacement. IEEE Trans Circ Syst I Regular Pap 56(5):943–956

    Article  MathSciNet  Google Scholar 

  32. McCorquodale MS et al (2010) A silicon die as a frequency source. In: IEEE international frequency control symposium, pp 103–108

    Google Scholar 

  33. Groves R (1997) Temperature dependence of Q and inductance in spiral inductors fabricated in a silicon-germanium/BiCMOS technology. IEEE J Solid-State Circ 32(9):1455–1459

    Article  Google Scholar 

  34. McCorquodale MS et al (2011) A history of the development of CMOS oscillators: the dark horse in frequency control. In: IEEE international frequency control symposium, pp 437–442

    Google Scholar 

  35. Data sheet of Si500 silicon oscillators. Available from the website of Silicon Labs at: http://www.silabs.com

  36. Wikipedia page on RC oscillators. Available online at: http://en.wikipedia.org/wiki/RC_oscillator

  37. McCreary JL (1981) Matching properties, and voltage and temperature dependence of MOS capacitors. IEEE J Solid-State Circ 16(6):608–616

    Article  Google Scholar 

  38. St Onge SA et al (1992) Design of precision capacitors for analog applications. IEEE Trans Compon Hybr Manufact Technol 15(6):1064–1071

    Article  Google Scholar 

  39. Lane WA et al (1992) The design of thin-film polysilicon resistors for analog IC applications. IEEE Trans Electron Dev 36(4):738–744

    Article  Google Scholar 

  40. De Smedt V et al (2009) A 66 μW 86 ppm/°C fully-integrated 6 MHz wienbridge oscillator with a 172 dB phase noise FOM. IEEE J Solid-State Circ 44(7):1990–2001

    Article  Google Scholar 

  41. Paavola M et al (2006) A 3 μW, 2 MHz CMOS frequency reference for capacitive sensor applications. In: IEEE international symposium on circuits and systems, ISCAS, pp 4391–4394

    Google Scholar 

  42. Blauschild RA (1994) An integrated time reference. In: IEEE international solid-state circuits conference, ISSCC, pp 56–57

    Google Scholar 

  43. De Smedt V et al (2009) A 0.4–1.4 V 24 MHz fully integrated 33 μW, 104 ppm/V supply-independent oscillator for RFIDs. In: IEEE European solid-state circuits conference, ESSCIRC, pp 396–399

    Google Scholar 

  44. Wikipedia page on wienbridge oscillators. Available online at: http://en.wikipedia.org/wiki/Wien_bridge_oscillator

  45. Model 200A Audio Oscillator, 1939, description from HP virtual museum. Available online at: http://www.hp.com/hpinfo/abouthp/histnfacts/museum/earlyinstruments/0002/index.html

  46. Hewlett WR (1939) Variable frequency oscillation generator, patent filed on 11 July 1939

    Google Scholar 

  47. Johns DA, Martin K (1997) Analog integrated circuits. Wiley, New York

    Google Scholar 

  48. Olmos A (2003) A temperature compensated fully trimmable on-chip IC oscillator. In: IEEE symposium on integrated circuits and systems design, pp 181–186

    Google Scholar 

  49. Vilas Boas A et al (2004) A temperature compensated digitally trimmable on-chip IC oscillator with low voltage inhibit capability. In: IEEE international symposium on circuits and systems, ISCAS, pp 501–504

    Google Scholar 

  50. Choe K et al (2009) A precision relaxation oscillator with a self-clocked offset-cancellation scheme for implantable biomedical SoCs. In: IEEE international solid-state circuits conference, ISSCC, pp 402–403

    Google Scholar 

  51. Enz CC et al (1996) Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE 84(11):1584–1614

    Article  Google Scholar 

  52. Gierkink SLJ, van Tuijl E (2002) A coupled sawtooth oscillator combining low jitter with high control linearity. IEEE J Solid-State Circ 37(6):702–710

    Article  Google Scholar 

  53. Geraedts et al PFJ (2008) A 90 μW 12 MHz relaxation oscillator with a –162 dB FOM. In: IEEE international solid-state circuits conference, ISSCC, pp 348–349

    Google Scholar 

  54. Tokunaga Y et al (2010) An on-chip CMOS relaxation oscillator with voltage averaging feedback. IEEE J Solid-State Circ 45(6):1150–1158

    Article  Google Scholar 

  55. McNeill JA (1997) Jitter in ring oscillators. IEEE J Solid-State Circ 32(6):870–879

    Article  Google Scholar 

  56. Wikipedia page on ring oscillators. Available online at: http://en.wikipedia.org/wiki/Ring_oscillator

  57. Sundaresan K et al (2006) Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J Solid-State Circ 41(2):433–442

    Article  Google Scholar 

  58. Shyu Y et al (1999) A process and temperature compensated ring oscillator. In: IEEE Asia Pacific conference on ASICs, pp 283–286

    Google Scholar 

  59. Maneatis JG (1996) Low-jitter process-independent DLL and PLL based on self-biased techniques. IEEE J Solid-State Circ 31(11):1723–1732

    Article  Google Scholar 

  60. Razavi B (2000) Design of analog CMOS integrated circuits. McGraw-Hill, Boston

    Google Scholar 

  61. Pertijs MAP, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, Dordrecht

    Google Scholar 

  62. Lee J et al (2009) A 10 MHz 80 μW 67 ppm/°C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18 μm CMOS. In: IEEE symposium on VLSI circuits, pp 226–227

    Google Scholar 

  63. Ueno K et al (2009) A 30-MHz, 90-ppm/°C fully-integrated clock reference generator with frequency-locked loop. In: IEEE European solid-state circuits conference, ESSCIRC, pp 392–395

    Google Scholar 

  64. Sebastiano F et al (2009) A low-voltage mobility-based frequency reference for crystal-less ULP radios. IEEE J Solid-State Circ 44(7):2002–2009

    Article  Google Scholar 

  65. Sebastiano F et al (2011) A 65-nm CMOS temperature-compensated mobility-based frequency reference for wireless sensor networks. IEEE J Solid-State Circ 46(7):1544–1552

    Article  Google Scholar 

  66. Denier U (2010) Analysis and design of an ultralow-power CMOS relaxation oscillator. IEEE Trans Circ Syst-I Regular Pap 57(8):1973–1982

    Article  MathSciNet  Google Scholar 

  67. Sebastiano F et al (2010) A 1.2-V 10-μW NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2 °C (3σ) from −70 °C to 125 °C. IEEE J Solid-State Circ 45(12):2591–2601

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kashmiri, S.M., Makinwa, K.A.A. (2013). Silicon-Based Frequency References. In: Electrothermal Frequency References in Standard CMOS. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6473-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6473-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6472-3

  • Online ISBN: 978-1-4614-6473-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics