Skip to main content

Characterising the Neuropathology and Neurobehavioural Phenotype in Friedreich Ataxia

A Systematic Review

  • Chapter
  • First Online:
Tandem Repeat Polymorphisms

Abstract

Friedreich ataxia (FRDA), the most common of the hereditary ataxias, is an autosomal recessive, multisystem disorder characterised by progressive ataxia, sensory symptoms, weakness, scoliosis and cardiomyopathy. FRDA is caused by a GAA expansion in intron one of the FXN gene, leading to reduced levels of the encoded protein frataxin, which is thought to regulate cellular iron homeostasis. The cerebellar and spinocerebellar dysfunction seen in FRDA has known effects on motor function; however until recently slowed information processing has been the main feature consistently reported by the limited studies addressing cognitive function in FRDA. This chapter will systematically review the current literature regarding the neuropathological and neurobehavioural phenotype associated with FRDA. It will evaluate more recent evidence adopting systematic experimental methodologies that postulate that the neurobehavioural phenotype associated with FRDA is likely to involve impairment in cerebello-cortico connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delatycki MB, Williamson R, Forrest SM. Friedreich ataxia: an overview. J Med Gen 2000; 37(1):1–8.

    Article  CAS  Google Scholar 

  2. Friedreich N. Uber degenerative Atrophie der Spinalen Hinterstrange. Virchows Arch Path Anat 1863; 26:433–459.

    Article  Google Scholar 

  3. Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 1981; 104(3):589–620.

    Article  CAS  PubMed  Google Scholar 

  4. Delatycki MB, Paris DB, Gardner RJ et al. Clinical and genetic study of Friedreich ataxia in an Australian population. Am J Med Gen 1999; 87(2):168–174.

    Article  CAS  Google Scholar 

  5. Pandolfo M. Friedreich Ataxia: the clinical picture. J Neurol 2009; 256:3–8.

    Article  PubMed  Google Scholar 

  6. Pandolfo M. Friedreich ataxia. Arch Neurol 2008; 65(10):1296–1303.

    Article  PubMed  Google Scholar 

  7. Shultz JB, Boesch S, Bürk K et al. Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev Neurol 2009; 5:222–234.

    Article  Google Scholar 

  8. Fahey MC, Cremer PD, Swee TA et al. Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia. Brain 2008; 131:1035–1045.

    Article  PubMed  Google Scholar 

  9. Nardulli R, Monitillo V, Losavio E et al. Urodynamic evaluation of 12 ataxic subjects: neurophysiopathologic considerations. Func Neurol 1992; 7(3):223–235.

    CAS  Google Scholar 

  10. Campanella G, Filla A, DeFalco F et al. Friedreich’s ataxia in the south of Italy: a clinical and biochemical survey of 23 patients. Can J Neurol Sci 1980; 7(4):351–357.

    Article  CAS  PubMed  Google Scholar 

  11. Shapiro F, Specht L. The diagnosis and orthopaedic treatment of childhood spinal muscular atrophy, peripheral neuropathy, Friedreich ataxia and arthrogryposis. J Bone Joint Surg — Series A 1993; 75(11): 1699–1714.

    Article  CAS  Google Scholar 

  12. Labelle H, Tohme S, Duhaime M et al. Natural history of scoliosis in Friedreich’s Ataxia. J Bone Joint Surg 1986; 68:564–572.

    Article  CAS  PubMed  Google Scholar 

  13. Folker J, Murdoch B, Cahill L et al. Dysarthria in Friedreich’s Ataxia: a perceptual analysis. Folia Phon Log 2010; 62:97–103.

    Article  Google Scholar 

  14. Ribaï P, Pousset F, Tanguy M et al. Neurological, cardiological and oculomotor progression in 104 patients with Friedreich ataxia during long-term follow-up. Arch Neurol 2007; 64:558–564.

    Article  PubMed  Google Scholar 

  15. Dutka DP, Donnelly JE, Palka P et al. Echocardiographic characterization of cardiomyopathy in Friedreich’s ataxia with tissue Doppler echocardiographically derived myocardial velocity gradients. Circulation 2000; 102(11):1276–1282.

    Article  CAS  PubMed  Google Scholar 

  16. Mottram PM, Delatycki MB, Donelan L et al. Early changes in left ventricular long axis function in Friedreich ataxia — relation with the FXN gene mutation and cardiac structural change. J Am Soc Echo 2011;24(7):782–789.

    Article  Google Scholar 

  17. Rance G, Fava R, Baldock H et al. Speech perception ability in individuals with Friedreich ataxia. Brain 2008; 131:2002–2012.

    Article  PubMed  Google Scholar 

  18. Rance G, Corben L, Barker E et al. Auditory perception in individuals with Friedreich’s ataxia. Audiol Neurotol 2010; 15:229–240.

    Article  Google Scholar 

  19. Meyer C, Schmid G, Görlitz S et al. Cardiomyopathy in Friedreich ataxia: Assessment by cardiac MRI. Mov Dis 2007; 22(11):1615–1622.

    Article  Google Scholar 

  20. Tsou AY, Paulsen EK, Lagedrost SJ et al. Mortality in Friedreich ataxia. J Neurol Sci 2011; 307:46–49.

    Article  PubMed  Google Scholar 

  21. Campuzano V, Montermini L, Molto MD et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996; 271(5254):1423–1427.

    Article  CAS  PubMed  Google Scholar 

  22. Voncken M, Ioannou P, Delatycki MB. Friedreich ataxia-update on pathogenesis and possible therapies. Neurogenetics 2004; 5(1):1–8.

    Article  PubMed  Google Scholar 

  23. Evans-Galea MV, Corben LA, Hasell J et al. A novel deletion-insertion mutation identified in exon 3 of FXN in two siblings with a severe Friedreich ataxia phenotype. Neurogenetics 2011.

    Google Scholar 

  24. Forrest SM, Knight M, Delatycki MB et al. The correlation of clinical phenotype in Friedreich ataxia with the site of point mutations in the FRDA gene. Neurogenetics 1998; l(4):253–257.

    Article  Google Scholar 

  25. Cossée M, Dürr A, Schmitt M et al. Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol 1999; 45(2):200–206.

    Article  PubMed  Google Scholar 

  26. Schmucker S, Reutenauer L, Devos et al. Identification of an atypical Friedreich ataxia patient with no GAA expansion but with a homozygous point mutation in the mitochondrial targeting sequence of frataxin. Presented at the Friedreich ataxia scientific meeting; Strasbourg, France. 2011

    Google Scholar 

  27. 27. Boehm T, Scheiber-Mojdehkar B, Kluge B et al. Variations of frataxin protein levels in normal individuals. Neurol Sci 2010:327–330.

    Article  PubMed  Google Scholar 

  28. Delatycki MB, Paris D, Gardner RJ et al. Sperm DNA analysis in a Friedreich ataxia premutation carrier suggests both meiotic and mitotic expansion in the FRDA gene. J Med Gen 1998; 35(9):713–716.

    Article  CAS  Google Scholar 

  29. Pianese L, Cavalcanti F, De Michele G et al. The effect of parental gender on the GAA dynamic mutation in the FRDA gene. Am J Hum Gen 1997; 60(2):460–463.

    CAS  Google Scholar 

  30. Campuzano V, Montermini L, Lutz Y et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Gen 1997; 6(11): 1771–1780.

    Article  CAS  PubMed  Google Scholar 

  31. Santos R, Lefevre S, Sliwa S et al. Friedreich Ataxia: Molecular mechanisms, redox considerations and therapeutic opportunities. Ant Red Sig 2010; 13(5):651–690.

    CAS  Google Scholar 

  32. Al-Mahdawi S, Pinto RM, Ismail O et al. The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Gen 2008; 17(5):735–746.

    Article  CAS  PubMed  Google Scholar 

  33. Punga T, Bühler M. Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation. EMBO Mol Med 2010; 2:120–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Herman D, Jenssen K, Burnett R et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol 2007; 2(10):551–558.

    Article  CAS  Google Scholar 

  35. Rai M, Soragni E, Jenssen K et al. HD AC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PloS One 2008; 3:el958.

    Article  CAS  Google Scholar 

  36. Evans-Galea MV, Carrodus N, Rowley SN et al. FXN methylation predicts expression and clinical outcome in Friedreich ataxia. Ann Neurol 2011 In press.

    Google Scholar 

  37. Cossee M, Puccio H, Gansmuller A et al. Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Gen 2000; 9(8):1219–1226.

    Article  CAS  PubMed  Google Scholar 

  38. Pandolfo M, Pastore A. The pathogenesis of Friedreich ataxia and the structure and function of frataxin. JNeurol 2009; 256(Suppl 1):9–17.

    CAS  Google Scholar 

  39. Calabrese V, Lodi R, Tonon C et al. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s Ataxia. J Neurol Sci 2005; 233(1–2): 145–162.

    Article  CAS  PubMed  Google Scholar 

  40. Koeppen AH. Friedreich’s ataxia: pathology, pathogenesis and molecular genetics. J Neurol Sci 2011; 303(1–2):l–12.

    Google Scholar 

  41. Junck L, Gilman S, Gebarski SS et al. Structural and functional brain imaging in Friedreich’s ataxia. Arch Neurol 1994; 51(4):349–355.

    Article  CAS  PubMed  Google Scholar 

  42. Koeppen AH. Neuropathology of the inherited ataxias. In: Manto U-M, Pandolfo M, eds. The Cerebellum and its Disorders. Cambridge: Cambridge University Press, 2002: 387–409.

    Google Scholar 

  43. Koeppen AH, Morral JA, Davis AN et al. The dorsal root ganglion in Friedreich’s ataxia. Acta Neuropath 2009; 118(6):763–776.

    Article  PubMed  Google Scholar 

  44. Koeppen AH, Morral JA, McComb RD et al. The neuropathology of late-onset Friedreich’s ataxia. Cerebellum 2011; 10(1):96–103.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Botez MI, Leveille J, Lambert R et al. Single photon emission computed tomography (SPECT) in cerebellar disease: cerebello-cerebral diaschisis. Eur Neurol 1991; 31(6):405–412.

    Article  CAS  PubMed  Google Scholar 

  46. Ormerod IE, Harding AE, Miller DH et al. Magnetic resonance imaging in degenerative ataxic disorders. J Neurol Neurosurg Psych 1994; 57(1):51–57.

    Article  CAS  Google Scholar 

  47. Klockgether T, Zuhlke C, Schulz JB et al. Friedreich’s ataxia with retalned tendon reflexes: molecular genetics, clinical neurophysiology and magnetic resonance imaging. Neurology 1996; 46(1): 118–121.

    Article  CAS  PubMed  Google Scholar 

  48. Delia Nave R, Ginestroni A, Giannelli M et al. Brain structural damage in Friedreich’s ataxia. J Neurol, Neurosurg, Psych 2008; 79:82–85.

    Article  Google Scholar 

  49. De Michele G, Mainenti PP, Soricelli A et al. Cerebral blood flow in spinocerebellar degenerations: a single photon emission tomography study in 28 patients. J Neurol 1998; 245(9):603–608.

    Article  PubMed  Google Scholar 

  50. Gilman S, Junck L, Markel DS et al. Cerebral glucose hypermetabolism in Friedreich’s ataxia detected with positron emission tomography. Ann Neurol 1990; 28(6):750–757.

    Article  CAS  PubMed  Google Scholar 

  51. Brighina F, Scalia S, Gennuso M et al. Hypo-excitability of cortical areas in patients affected by Friedreich ataxia: A TMS study. J Neurol Sci 2005; 235:19–22.

    Article  CAS  PubMed  Google Scholar 

  52. DellaNave R, Ginestroni A, Tessa C et al. Brain white mattertracts degeneration in Friedreich ataxia. An in vivo MRI study usingtract-based spatial statistics and voxel-based morphometry Neurolmage 2008; 40(1): 19–35.

    Google Scholar 

  53. Akhlaghi H, Corben LA, Georgiou-Karistianis N et al. Superior cerebellar peduncle atrophy in Friedreich’s Ataxia correlates with disease symptoms. Cerebellum 2011; 10:81–87.

    Article  PubMed  Google Scholar 

  54. Synofzik M, Godau J, Lindig T et al. Transcranial sonography reveals cerebellar, nigral and forebrain abnormalities in Friedreich’s ataxia. Neurodeg Dis 2011; 8(6):470–475.

    Article  Google Scholar 

  55. França AE, D’Abreu A, Yasuda CL et al. A combined voxel-based morphometry and 1H-MRS study in patients with Friedreich’s ataxia. J Neurol 2009; 256:1114–1120.

    Article  PubMed  Google Scholar 

  56. Pagani E, Ginestroni A, Delia Nave R et al. Assessment of brain white matter fiber bundle atrophy in patients with Friedreich ataxia. Radiology 2010; 255(3):882–889.

    Article  PubMed  Google Scholar 

  57. Koeppen AH, Michael SC, Knutson MD et al. The dentate nucleus in Friedreich’s ataxia: the role of nonresponsive proteins. Acta Neuropath 2007; 114:163–173.

    Article  CAS  PubMed  Google Scholar 

  58. Koeppen AH, Davis AN, Morral JA. The cerebellar component of Friedreich’s ataxia. Acta Neuropath 2011; 122(3):323–330.

    Article  PubMed  Google Scholar 

  59. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 2000; 31:236–250.

    Article  CAS  PubMed  Google Scholar 

  60. Bidichandani SI, Ashizawa T, Patel PI. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Gen 1998; 62(1): 111–121.

    Article  CAS  Google Scholar 

  61. De Michele G, Filla A, Criscuolo C et al. Determinants of onset age in Friedreich’s ataxia. J Neurol 1998; 245(3):166–168.

    Article  PubMed  Google Scholar 

  62. Mateo I, Llorca J, Volpini V et al. Expanded GAA repeats and clinical variation in Friedreich’s ataxia. Acta Neurol Scand 2004; 109(1):75–78.

    Article  CAS  PubMed  Google Scholar 

  63. Montermini L, Richter A, Morgan K et al. Phenotypic variability in Friedreich ataxia: role of the associated GAA triplet repeat expansion. Ann Neurol 1997; 41(5):675–682.

    Article  CAS  PubMed  Google Scholar 

  64. Montermini L, Andermann E, Labuda M et al. The Friedreich ataxia GAA triplet repeat: premutation and normal alleles. Hum Mol Gen 1997; 6(8):1261–1266.

    Article  CAS  PubMed  Google Scholar 

  65. La Pean A, Jeffries N, Grow C et al. Predictors of progression in patients with Friedreich ataxia. Mov Dis 2008; 23(14):2026–2032.

    Google Scholar 

  66. Maione S, Giunta A, Filla A et al. May age onset be relevant in the occurrence of left ventricular hypertrophy in Friedreich’s ataxia? Clin Cardiol 1997; 20(2):141–145.

    Article  CAS  PubMed  Google Scholar 

  67. Montermini L, Kish SJ, Jiralerspong S et al. Somatic mosaicism for Friedreich’s ataxia GAA triplet repeat expansions in the central nervous system. Neurology 1997; 49(2):606–610.

    Article  CAS  PubMed  Google Scholar 

  68. Sandi C, Pinto RM, Al-Mahdawi S et al. Prolongedtreatment with pimelic o-aminobenzamide HD AC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model. Neurobiol Dis 2011; 42:496–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Castaldo I, Pinelli M, Monticelli A et al. DNA methylation in intron 1 of the frataxin gene is related to GAA repeat length and age of onset in Friedreich ataxia patients. J Med Gen 2008; 45(12):808–812.

    Article  CAS  Google Scholar 

  70. Dürr A, Cossee M, Agid Y et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. New Eng J Med 1996; 335(16): 1169–1175.

    Article  PubMed  Google Scholar 

  71. Filla A, De Michele G, Coppola G et al. Accuracy of clinical diagnostic criteria for Friedreich’s ataxia. Mov Dis 2000; 15(6):1255–1258.

    Article  CAS  Google Scholar 

  72. Bidichandani SI, Garcia CA, Patel PI et al. Very late-onset Friedreich ataxia despite large GAA triplet repeat expansions. Arch Neurol 2000; 57(2):246–251.

    Article  CAS  PubMed  Google Scholar 

  73. Bhidayasiri SP, P Stefan, D Geschwind. Late onset Friedreich Ataxia. Phenotypic analysis, magnetic resonance imaging findings and review of the literature. Arch Neurol 2005; 62:1865–1869.

    Article  PubMed  Google Scholar 

  74. De Michele G, Filla A, Cavalcanti F et al. Late onset Friedreich’s disease: clinical features and mapping of mutation to the FRDA locus. J Neurol Neurosurg Psych 1994; 57(8):977–979.

    Article  Google Scholar 

  75. Palau F, De Michele G, Vilchez JJ et al. Early-onset ataxia with cardiomyopathy and ret alned tendon reflexes maps to the Friedreich’s ataxia locus on chromosome 9q. Ann Neurol 1995; 37(3):359–362.

    Article  CAS  PubMed  Google Scholar 

  76. Barbeau A, Roy M, Sadibelouiz M et al. Recessive ataxia in Acadians and “Cajuns”. Can J Neurol Sci 1984; 11(4 Suppl):526–533.

    Article  CAS  PubMed  Google Scholar 

  77. Richter A, Poirier J, Mercier J et al. Friedreich ataxia in Acadian families from eastern Canada: clinical diversity with conserved haplotypes. Am J Med Gen 1996; 64(4):594–601.

    Article  CAS  Google Scholar 

  78. Wollmann T, Barroso J, Monton F et al. Neuropsychological test performance of patients with Friedreich’s ataxia. J Clin Exp Neuropsych 2002; 24(5):677–686.

    Article  Google Scholar 

  79. Holmes G. The cerebellum of man (The Hughlings Jackson memorial lecture). Brain 1939; 62:1–30.

    Article  Google Scholar 

  80. Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol 1991; 48(11):1178–1187.

    Article  CAS  PubMed  Google Scholar 

  81. Grafman J, Litvan I, Massaquoi S et al. Cognitive planning deficit in patients with cerebellar atrophy. Neurology 1992; 42(8): 1493–1496.

    Article  CAS  PubMed  Google Scholar 

  82. Schmahmann JD, Sherman JC. The cerebellarcognitive affective syndrome. Brain 1998; 121(Pt 4):561–579.

    Article  PubMed  Google Scholar 

  83. Botez-Marquard T, Bard C, Leveille J et al. A severe frontal-parietal lobe syndrome following cerebellar damage. Eur J Neurol 2001; 8(4):347–353.

    Article  CAS  PubMed  Google Scholar 

  84. Thach WT. On the mechanism of cerebellar contributions to cognition. Cerebellum 2007;6:163–167.

    Article  CAS  PubMed  Google Scholar 

  85. Baillieux H, De Smet HJ, Paquier PF et al. Cerebellar neurocognition: Insights into the bottom of the brain. Clin Neurol Neurosurg 2008; 110:763–773.

    Article  PubMed  Google Scholar 

  86. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Ann Rev Neurosci 2009; 32:413–434.

    Article  CAS  PubMed  Google Scholar 

  87. Timmann D, Drepper J, Frings M et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex 2010; 46(7):845–857.

    Article  CAS  PubMed  Google Scholar 

  88. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 2003; 89(1):634–639.

    Article  PubMed  Google Scholar 

  89. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 2010; 46(7):831–844.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Flood MK, Perlman SL. The mental status of patients with Friedreich’s ataxia. J Neurosci Nurs 1987; 19(5):251–255.

    Article  CAS  PubMed  Google Scholar 

  91. Giordani B, Boivan M, Berent S et al. Cognitive and emotional function in Friedreich’s Ataxia. J Clin Expl Neuropsychol 1989; 11:53–54.

    Google Scholar 

  92. Botez-Marquard T, Botez MI. Cognitive behavior in heredodegenerative ataxias. Eur Neurol 1993; 33(5):351–357.

    Article  CAS  PubMed  Google Scholar 

  93. Botez-Marquard T, Botez MI. Olivopontocerebellar atrophy and Friedreich’s ataxia: neuropsychological consequences of bilateral versus unilateral cerebellar lesions. Int Rev Neurobiol 1997; 41:387–410.

    Article  CAS  PubMed  Google Scholar 

  94. Hart RP, Henry GK, Kwentus JA et al. Information processing speed of children with Friedreich’s ataxia. Dev Med Child Neurol 1986; 28(3):310–313.

    Article  CAS  PubMed  Google Scholar 

  95. Hart RP, Kwentus JA, Leshner RT et al. Information processing speed in Friedreich’s ataxia. Ann Neurol 1985; 17(6):612–614.

    Article  CAS  PubMed  Google Scholar 

  96. White M, Lalonde R, Botez-Marquard T. Neuropsychologic and neuropsychiatric characteristics of patients with Friedreich’s ataxia. Acta Neurol Scand 2000; 102(4):222–226.

    Article  CAS  PubMed  Google Scholar 

  97. Wollmann T, Nieto-Barco A, Monton-Alvarez F et al. Ataxia de Friedreich: analisis de parametres de resonancia magnetica y correlates con el enlentecimiento cognitivo y motor. Rev Neurol 2004; 38(3):217–222.

    CAS  PubMed  Google Scholar 

  98. Corben LA, Georgiou-Karistianis N, Fahey MC et al. Towards an understanding of cognitive function in Friedreich Ataxia. Brain Res Bull 2006; 70:197–202.

    Article  PubMed  Google Scholar 

  99. Manto M, Lorivel T. Cognitive repercussions of hereditary cerebellar disorders. Cortex 2011;47(1):81–100.

    Article  PubMed  Google Scholar 

  100. Lynch DR, Farmer JM, Balcer LJ et al. Friedreich ataxia: effects of genetic understanding on clinical evaluation and therapy. Arch Neurol 2002; 59(5):743–747.

    Article  PubMed  Google Scholar 

  101. Mantovan MC, Martinuzzi A, Squarzanti F et al. Exploring mental status in Friedreich’s ataxia: a combined neuropsychological, behavioural and neuroimaging study. Eur J Neurol 2006; 13:827–835.

    Article  CAS  PubMed  Google Scholar 

  102. Lalonde R, Botez T, Botez MI. Methodologic considerations in neuropsychologic testing of ataxic patients. Arch Neurol 1992; 49(3):218–219.

    Article  CAS  PubMed  Google Scholar 

  103. de Nóbrega E, Nieto A, Barrosso J et al. Differential impairment in semantic, phonemic and action fluency performance in Friedreich’s ataxia: Possible evidence of prefrontal dysfunction. J Int Neuropsych Soc 2007; 13:944–952.

    Article  Google Scholar 

  104. Ciancarelli I, Cofini V, Carolei A. Evaluation of neuropsychological functions in patients with Friedreich ataxia before and after cognitive therapy. Func Neurol 2010; 25(2):81–85.

    Google Scholar 

  105. Bürk K. Cognition in hereditary ataxia. Cerebellum 2007; 6:280–286.

    Article  PubMed  Google Scholar 

  106. Corben LA, Delatycki MB, Bradshaw JL et al. Impairment in motor reprogramming in Friedreich ataxia reflecting possible cerebellar dysfunction. J Neurol 2010; 257(5):782–791.

    Article  PubMed  Google Scholar 

  107. Corben LA, Akhlaghi H, Georgiou-Karistianis N et al. Impaired inhibition of prepotent motor tendencies in Friedreich ataxia demonstrated by the Simon interference task. Brain Cog 2011; 76(1): 140–145.

    Article  CAS  Google Scholar 

  108. Corben LA, Georgiou-Karistianis N, Bradshaw JL et al. The Fitts task reveals impairments in planning and online control of movement in Friedreich ataxia: reduced cerebellar-cortico connectivity? Neuroscience 2011; 192:382–390.

    Article  CAS  PubMed  Google Scholar 

  109. Corben LA, Delatycki MB, Bradshaw JL et al. Utilisation of advance motor information is impaired in Friedreich ataxia. Cerebellum 2011: June 2. DOI 10.1007/s12311-011-0289-7.

    Google Scholar 

  110. Salthouse TA, Heddon T. Interpreting reaction time measures in between-group comparisons. J Clin Exp Neuropsychol 2002; 24(7):858–872.

    Article  PubMed  Google Scholar 

  111. Fielding J, Corben L, Cremer P et al. Disruption to higher order processes in Friedreich ataxia. Neuropsychologia 2010; 48(1):235–42.

    Article  PubMed  Google Scholar 

  112. Hocking DR, Fielding J, Corben L A et al. Ocular Motor Fixation Deficits in Friedreich Ataxia. Cerebellum 2010; 9:411–418.

    Article  PubMed  Google Scholar 

  113. Liu X, Banich M, Jacobson B et al. Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. Neuroimage 2004; 22(3):1097–1106.

    Article  PubMed  Google Scholar 

  114. Klopper F, Delatycki M.B, Corben LA et al. The test of everyday attention reveals significant sustained volitional attention and working memory deficits in Friedreich Ataxia. J Int Neuropsy Soc 2011; 17:196–200.

    Article  Google Scholar 

  115. Timmann D, Drepper J, Maschke M et al. Motor deficits cannot explain impaired cognitive associative learning in cerebellar patients. Neuropsychologia 2002; 40(7):788–800.

    Article  PubMed  Google Scholar 

  116. Koziel LF, Budding DE. The cerebellum: Quality control, creativity, intuition and unconscious working memory. Subcortical structures and cognition: Implicationforneuropsychological assessment. New York: Springer; 2009; pp.124–65.

    Chapter  Google Scholar 

  117. Ito M. Control ofmental activities by internal models in the cerebellum. Nat Rev Neurosci2008;9(4):304–313.

    Article  CAS  PubMed  Google Scholar 

  118. Courchesne E, Allen G. Prediction and preparation, fundamental functions of the cerebellum. Learn Mem 1997; 4(1):1–35.

    Article  CAS  PubMed  Google Scholar 

  119. Leggio MG, Chiricozzi FR, Clausi S et al. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex 2011; 47(1):137–144.

    Article  PubMed  Google Scholar 

  120. Ebner TJ, Pasalar S. Cerebellum predicts the future motor state. Cerebellum 2008; 7:583–588.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Thiruvady D, Georgiou-Karistianis N, Egan G et al. Functional connectivity of the prefrontal cortex in Huntington’s disease. JNeurol, Neurosurg, Psych 2007; 78(2):127–133.

    Article  CAS  Google Scholar 

  122. Medina FJ, Tunez I. Huntington’s disease: the value of transcranial meganetic stimulation. Curr Med Chem 2010; 17(23):2482–2491.

    Article  CAS  PubMed  Google Scholar 

  123. Stagg CJ, O’Shea J, Johansen-Berg H. Imaging the effects of rTMS-induced cortical plasticity. Res Neurol Neurosci 2010; 28(4):425–436.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise A. Corben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Corben, L.A., Georgiou-Karistianis, N., Bradshaw, J.L., Evans-Galea, M.V., Churchyard, A.J., Delatycki, M.B. (2012). Characterising the Neuropathology and Neurobehavioural Phenotype in Friedreich Ataxia. In: Hannan, A.J. (eds) Tandem Repeat Polymorphisms. Advances in Experimental Medicine and Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5434-2_11

Download citation

Publish with us

Policies and ethics