Skip to main content

Development of Biophysical Assays to Better Understand Adjuvanted Vaccine Formulation Potency and Stability

  • Chapter
  • First Online:
Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines

Abstract

The essential requirements that a vaccine be safe and efficacious can be restated as a formulation that it is made with the appropriate potency that persists over the duration of conditions until it is administered to the patient [1–3]. When a vaccine elicits an immune response of sufficient valence and strength to induce protection against a pathogenic threat without unacceptable adverse effects and the critical biomolecular factors contributing to that response are well defined and characterized, the formulation can be reliably given with a strong assurance of both safety and efficacy. Historically such tests for potency have been functional assays such as infectivity titers and in vivo induction of antibodies [4–8], though these tests are generally time and resource intensive; more importantly, they are “black box,” empirical verification that whatever was tested either worked or didn’t, offering little insight into why the system behaved as it did, and how it could be improved if desired. When a rapid response is needed such as production and distribution to combat an emerging pandemic, such tests are often unfeasible or untimely, as the case of the recent H1N1 flu pandemic demonstrated [9, 10], when several batches of influenza vaccine were produced, shipped, and administered to patients before it was determined the vaccine potency had dropped below specified levels. There is considerable effort and potential reward in both time and cost savings to develop in vitro tests that show correlation to in vivo potency [11–19]. With increased experimental understanding of structural immunology, it may become possible to establish a set of specifications that establish vaccine performance based upon higher order structures, i.e. biophysical critical quality attributes as described in ICH Q6b [20, 21].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marshall V, Baylor NW (2011) Food and Drug Administration regulation and evaluation of vaccines. Pediatrics 127(Suppl 1):S23–S30 (Epub 18 Apr 2011)

    Article  PubMed  Google Scholar 

  2. Knezevic I (2009) Stability evaluation of vaccines: WHO approach. Biologicals 37(6):357–9 (discussion 421–423; Epub 3 Sep 2009)

    Article  PubMed  CAS  Google Scholar 

  3. Falk LA, Ball LK (2001) Current status and future trends in vaccine regulation—USA. Vaccine 19(13–14):1567–72

    Article  PubMed  CAS  Google Scholar 

  4. Schalk JA, de Vries CG, Jongen PM (2005) Potency estimation of measles, mumps and rubella trivalent vaccines with quantitative PCR infectivity assay. Biologicals 33(2):71–9

    Article  PubMed  CAS  Google Scholar 

  5. Giersing BK, Dubovsky F, Saul A, Denamur F, Minor P, Meade B (2006) Potency assay design for adjuvanted recombinant proteins as malaria vaccines. Vaccine 24(20):4264–70

    Article  PubMed  CAS  Google Scholar 

  6. Bose PS, Naspinski J, Kartha G, Bennett PS, Wang CJ, Haynes JI 2nd, Benetti L (2010) Development of a high-throughput rubella virus infectivity assay based on viral activation of caspases. J Virol Methods 167(2):199–204

    Article  PubMed  CAS  Google Scholar 

  7. Arciniega H, Corbel M, Gaines R, Sesardic D, Griffiths E, Jadhav S, Kreeftenberg JG, Knezevic I (2003) Assay of diphtheria vaccine adsorbed (2.7.6). Method of analysis. European Pharmacopoeia, 4th edn., suppl 7. Council of Europe, Strasbourg, pp 2630–2632

    Google Scholar 

  8. US Department of Health, Education and Welfare Public Health Service, National Institute of Health (1952) Minimum requirements: tetanus toxoid, 4th revision. NIH, Bethesda

    Google Scholar 

  9. Ampofo WK, Baylor N, Cobey S, Cox NJ, Daves S, Edwards S, Ferguson N, Grohmann G, Hay A, Katz J, Kullabutr K, Lambert L, Levandowski R, Mishra AC, Monto A, Siqueira M, Tashiro M, Waddell AL, Wairagkar N, Wood J, Zambon M, Zhang W (2011) Improving influenza vaccine virus selection report of a WHO informal consultation held at WHO headquarters, Geneva, Switzerland, 14–16 June 2010. WHO Writing Group. Influenza Other Respi Viruses, Geneva

    Google Scholar 

  10. Girard MP, Katz J, Pervikov Y, Palkonyay L, Kieny MP (2010) Report of the 6th meeting on the evaluation of pandemic influenza vaccines in clinical trials World Health Organization, Geneva, Switzerland, 17–18 February 2010. Vaccine 28(42):6811

    Article  PubMed  Google Scholar 

  11. Shanmugham R, Thirumeni N, Rao VS, Pitta V, Kasthuri S, Singanallur NB, Lingala R, Mangamoori LN, Villuppanoor SA (2010) Immunocapture enzyme-linked immunosorbent assay for assessment of in vitro potency of recombinant hepatitis B vaccines. Clin Vaccine Immunol 17(8):1252–60

    Article  PubMed  CAS  Google Scholar 

  12. Hoefnagel MH, Vermeulen JP, Scheper RJ, Vandebriel RJ (2011) Response of MUTZ-3 dendritic cells to the different components of the Haemophilus influenzae type B conjugate vaccine: towards an in vitro assay for vaccine immunogenicity. Vaccine 29(32):5114–21 (Epub 30 May 2011)

    Article  PubMed  CAS  Google Scholar 

  13. Useo R, Hysson F, DeConinck J, Khlandi S, Gervais P (2012) A new alternative in vitro method for quantification of Toxoplasma gondii infectivity. J Parasitol 98(2):299–303 (Epub 19 Oct 2011)

    Google Scholar 

  14. Costa CI, Delgado IF, da Costa JA, de Carvalho RF, Mouta Sda S Jr, Vianna CO, de Moraes MT (2011) Establishment and validation of an ELISA for the quantitation of HBsAg in recombinant hepatitis B vaccines. J Virol Methods 172(1–2):32–7

    Article  PubMed  CAS  Google Scholar 

  15. Karimzadeh H, Ajdary S, Jazayeri SM, Pakzad SR (2010) Validation of an in vitro method for Hepatitis B vaccine potency assay: specification setting. Panminerva Med 52(3):177–82

    PubMed  CAS  Google Scholar 

  16. Gross S, Janssen SW, de Vries B, Terao E, Daas A, Buchheit KH (2010) Collaborative study for the validation of alternative in vitro potency assays for human tetanus immunoglobulins. Biologicals 38(4):501–10

    Article  PubMed  CAS  Google Scholar 

  17. Poirier B, Variot P, Delourme P, Maurin J, Morgeaux S (2010) Would an in vitro ELISA test be a suitable alternative potency method to the in vivo immunogenicity assay commonly used in the context of international Hepatitis A vaccines batch release? Vaccine 28(7):1796–802 (Epub 16 Dec 2009)

    Article  PubMed  CAS  Google Scholar 

  18. Parra M, Yang AL, Lim J, Kolibab K, Derrick S, Cadieux N, Perera LP, Jacobs WR, Brennan M, Morris SL (2009) Development of a murine mycobacterial growth inhibition assay for evaluating vaccines against Mycobacterium tuberculosis. Clin Vaccine Immunol 16(7):1025–32

    Article  PubMed  CAS  Google Scholar 

  19. Rosenberg AS (2006) Effects of protein aggregates: am immunologic perspective. AAPS J 8(3):E501

    Article  PubMed  Google Scholar 

  20. FDA Guidance for Industry (1999) Q6B specifications: test procedures and acceptance criteria for biotechnological/biological products. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073488.pdf. Accessed and current as of Sept 2012

  21. Carpenter J, Cherney B, Lubinecki A, Ma S, Marszal E, Mire-Sluis A, Nikolai T, Novak J, Ragheb J, Simak J (2010) Meeting report on protein particles and immunogenicity of therapeutic proteins: filling in the gaps in risk evaluation and mitigation. Biologicals 38(5):602–11 (Epub 11 Aug 2010)

    Article  PubMed  Google Scholar 

  22. Duffy CE, Stanley WM (1945) Studies on the biochemical, biophysical and immunogenic properties of Japanese B type encephalitis virus and vaccines. J Exp Med 82(6):385–410

    Article  CAS  Google Scholar 

  23. Büttel IC, Chamberlain P, Chowers Y, Ehmann F, Greinacher A, Jefferis R, Kramer D, Kropshofer H, Lloyd P, Lubiniecki A, Krause R, Mire-Sluis A, Platts-Mills T, Ragheb JA, Reipert BM, Schellekens H, Seitz R, Stas P, Subramanyam M, Thorpe R, Trouvin JH, Weise M, Windisch J, Schneider CK (2011) Taking immunogenicity assessment of therapeutic proteins to the next level. Biologicals 39(2):100–9 (Epub 24 Feb 2011)

    Article  PubMed  Google Scholar 

  24. Hermeling S, Crommelin DJ, Schellekens H, Jiskoot W (2004) Structure-immunogenicity relationships of therapeutic proteins. Pharm Res 21(6):897–903

    Article  PubMed  CAS  Google Scholar 

  25. Barandun S, Kistler P, Jeunet F, Isliker H (1962) Intravenous administration of human γ-globulin. Vox Sang 7:157–174

    Article  PubMed  CAS  Google Scholar 

  26. Ellis E, Henney C (1969) Adverse reactions following administration of human gamma globulin. J Allergy 43:45–54

    Article  PubMed  CAS  Google Scholar 

  27. Moore W, Leppert P (1980) Role of aggregated human growth hormone (hGH) in development of antibodies to hGH. J Clin Endocrinol Metab 51:691–697

    Article  PubMed  CAS  Google Scholar 

  28. van Beers MM, Sauerborn M, Gilli F, Brinks V, Schellekens H, Jiskoot W (2011) Oxidized and aggregated recombinant human interferon beta is immunogenic in human interferon beta transgenic mice. Pharm Res 28(10):2393–402 (Epub 5 May 2011)

    Article  PubMed  Google Scholar 

  29. Luo Q, Joubert MK, Stevenson R, Ketchem RR, Narhi LO, Wypych J (2011) Chemical modifications in therapeutic protein aggregates generated under different stress conditions. J Biol Chem 286(28):25134–44 (Epub 25 Apr 2011)

    Article  PubMed  CAS  Google Scholar 

  30. St John RJ, Carpenter JF, Balny C, Randolph TW (2001) High pressure refolding of recombinant human growth hormone from insoluble aggregates. Structural transformations, kinetic barriers, and energetics. J Biol Chem 276(50):46856–63 (Epub 8 Oct 2001)

    Article  PubMed  CAS  Google Scholar 

  31. Purohit VS, Middaugh CR, Balasubramanian SV (2006) Influence of aggregation on immunogenicity of recombinant human Factor VIII in hemophilia A mice. J Pharm Sci 95(2):358–71

    Article  PubMed  CAS  Google Scholar 

  32. Kumar S, Singh SK, Wang X, Rup B, Gill D (2011) Coupling of aggregation and immunogenicity in biotherapeutics: T- and B-cell immune epitopes may contain aggregation-prone regions. Pharm Res 28(5):949–61 (Epub 25 Mar 2011)

    Article  PubMed  CAS  Google Scholar 

  33. Kartoglu U, Ozgüler NK, Wolfson LJ, Kurzatkowski W (2010) Validation of the shake test for detecting freeze damage to adsorbed vaccines. Bull World Health Organ 88(8):624–31 (Epub 9 Feb 2010)

    Article  PubMed  Google Scholar 

  34. International Union of Pure and Applied Chemistry (IUPAC) (1997) Compendium of chemical terminology, 2nd ed. (the “Gold Book”). http://goldbook.iupac.org Accessed and current (Rel 2.3.2) Sept 2012

  35. Philo JS (2009) A critical review of methods for size characterization of non-particulate protein aggregates. Curr Pharm Biotechnol 10(4):359–72

    Article  PubMed  CAS  Google Scholar 

  36. Barnard JG, Singh S, Randolph TW, Carpenter JF (2011) Subvisible particle counting provides a sensitive method of detecting and quantifying aggregation of monoclonal antibody caused by freeze-thawing: insights into the roles of particles in the protein aggregation pathway. J Pharm Sci 100(2):492–503

    Article  PubMed  CAS  Google Scholar 

  37. Gabrielson JP, Brader ML, Pekar AH, Mathis KB, Winter G, Carpenter JF, Randolph TW (2007) Quantitation of aggregate levels in a recombinant humanized monoclonal antibody formulation by size-exclusion chromatography, asymmetrical flow field flow fractionation, and sedimentation velocity. J Pharm Sci 96(2):268–79

    Article  PubMed  CAS  Google Scholar 

  38. Pekar A, Sukumar M (2007) Quantitation of aggregates in therapeutic proteins using sedimentation velocity analytical ultracentrifugation: practical considerations that affect precision and accuracy. Anal Biochem 367(2):225–37 (Epub 27 Apr 2007)

    Article  PubMed  CAS  Google Scholar 

  39. Liu J, Andya JD, Shire SJ (2006) A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. AAPS J 8(3):E580–9

    Article  PubMed  CAS  Google Scholar 

  40. Chuan YP, Fan YY, Lua L, Middelberg AP (2008) Quantitative analysis of virus-like particle size and distribution by field-flow fractionation. Biotechnol Bioeng 99(6):1425–33

    Article  PubMed  CAS  Google Scholar 

  41. Cao S, Pollastrini J, Jiang Y (2009) Separation and characterization of protein aggregates and particles by field flow fractionation. Curr Pharm Biotechnol 10(4):382–90

    Article  PubMed  CAS  Google Scholar 

  42. Wuchner K, Büchler J, Spycher R, Dalmonte P, Volkin DB (2010) Development of a microflow digital imaging assay to characterize protein particulates during storage of a high concentration IgG1 monoclonal antibody formulation. J Pharm Sci 99(8):3343–61

    Article  PubMed  CAS  Google Scholar 

  43. Sharma DK, King D, Oma P, Merchant C (2010) Micro-flow imaging: flow microscopy applied to sub-visible particulate analysis in protein formulations. AAPS J 12(3):455–64 (Epub 2 Jun 2010)

    Article  PubMed  CAS  Google Scholar 

  44. Kahook MY, Liu L, Ruzycki P, Mandava N, Carpenter JF, Petrash JM, Ammar DA (2010) High-molecular-weight aggregates in repackaged bevacizumab. Retina 30(6):887–92

    Article  PubMed  Google Scholar 

  45. Strehl R, Rombach-Riegraf V, Kiez M, Egodage K, Bluemel M, Jeschke M, Koulov AV (2011) Discrimination between silicone oil droplets and proteins aggregates in biopharmaceuticals: a novel multiparametric image filter for sub-visible particle in microflow imaging analysis. Pharm Res 29(2):594–602 (Epub 17 Sep 2011)

    Google Scholar 

  46. Li Y, Lubchenko V, Vekilov PG (2011) The use of dynamic light scattering and brownian microscopy to characterize protein aggregation. Rev Sci Instrum 82(5):053106

    Article  PubMed  Google Scholar 

  47. Bogdanovic J, Colon J, Baker C, Huo Q (2010) A label-free nanoparticle aggregation assay for protein complex/aggregate detection and study. Anal Biochem 405(1):96–102 (Epub 8 Jun 2010)

    Article  PubMed  CAS  Google Scholar 

  48. Kiese S, Pappenberger A, Friess W, Mahler HC (2010) Equilibrium studies of protein aggregates and homogeneous nucleation in protein formulation. J Pharm Sci 99(2):632–44

    PubMed  CAS  Google Scholar 

  49. Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 27(5):796–810 (Epub 4 Mar 2010)

    Article  PubMed  CAS  Google Scholar 

  50. Wozniak A, van Mameren J, Ragona S (2009) Single-molecule force spectroscopy using the Nanotracker optical tweezers platform: from design to application. Curr Pharm Biotechnol 10(5):467–73

    Article  PubMed  CAS  Google Scholar 

  51. Filipe V, Poole R, Kutscher M, Forier K, Braeckmans K, Jiskoot W (2011) Fluorescence single particle tracking for the characterization of submicron protein aggregates in biological fluids and complex formulations. Pharm Res 28(5):1112–20 (Epub 5 Feb 2011)

    Article  PubMed  CAS  Google Scholar 

  52. Hulse W, Forbes R (2011) A Taylor dispersion analysis method for the sizing of therapeutic proteins and their aggregates using nanolitre sample quantities. Int J Pharm 416(1):394–7 (Epub 2 Jul 2011)

    Article  PubMed  CAS  Google Scholar 

  53. Hawe A, Hulse WL, Jiskoot W, Forbes RT (2011) Taylor dispersion analysis compared to dynamic light scattering for the size analysis of therapeutic peptides and proteins and their aggregates. Pharm Res 28(9):2302–10 (Epub 11 May 2011)

    Article  PubMed  CAS  Google Scholar 

  54. Singh SK, Afonina N, Awwad M, Bechtold-Peters K, Blue JT, Chou D, Cromwell M, Krause HJ, Mahler HC, Meyer BK, Narhi L, Nesta DP, Spitznagel T (2010) An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci 99(8):3302–21

    Article  PubMed  CAS  Google Scholar 

  55. Ludwig DB, Webb JN, Fernandez C, Carpenter JF, Randolph TW (2011) Quaternary conformational stability; the effect of reversible self-association on the fibrillation of two insulin analogs. Biotechnology Bioengineering 108(11):2359–70

    Google Scholar 

  56. Mahler HC, Friess W, Grauschopf U, Kiese S (2009) Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 98(9):2909–34

    Article  PubMed  CAS  Google Scholar 

  57. Bertucci C, Pistolozzi M, De Simone A (2011) Structural characterization of recombinant therapeutic proteins by circular dichroism. Curr Pharm Biotechnol 12(10):1508–16

    Google Scholar 

  58. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 175(2):119–39

    Google Scholar 

  59. Ausar SF, Foubert TR, Hudson MH, Vedvick TS, Middaugh CR (2006) Conformational stability and disassembly of Norwalk virus-like particles. Effect of pH and temperature. J Biol Chem 281(28):19478–88 (Epub 4 May 2006)

    Article  PubMed  CAS  Google Scholar 

  60. Ganesan A, Moore BD, Kelly SM, Price NC, Rolinski OJ, Birch DJ, Dunkin IR, Halling PJ (2009) Optical spectroscopic methods for probing the conformational stability of immobilised enzymes. Chemphyschem 10(9–10):1492–9

    Article  PubMed  CAS  Google Scholar 

  61. Li CH, Li T (2009) Application of vibrational spectroscopy to the structural characterization of monoclonal antibody and its aggregate. Curr Pharm Biotechnol 10(4):391–9

    Article  PubMed  CAS  Google Scholar 

  62. Agopian A, Ronzon F, Sauzéat E, Sodoyer R, El Habib R, Buchet R, Chevalier M (2007) Secondary structure analysis of HIV-1-gp41 in solution and adsorbed to aluminum hydroxide by Fourier transform infrared spectroscopy. Biochim Biophys Acta 1774(3):351–8 (Epub 3 Jan 2007)

    Article  PubMed  CAS  Google Scholar 

  63. Ferrer EG, Gómez AV, Añón MC, Puppo MC (2011) Structural changes in gluten protein structure after addition of emulsifier. A Raman spectroscopy study. Spectrochim Acta A Mol Biomol Spectrosc 79(1):278–81 (Epub 25 Feb 2011)

    Article  PubMed  CAS  Google Scholar 

  64. Seo JA, Hédoux A, Guinet Y, Paccou L, Affouard F, Lerbret A, Descamps M (2010) Thermal denaturation of beta-lactoglobulin and stabilization mechanism by trehalose analyzed from Raman spectroscopy investigations. J Phys Chem B 114(19):6675–84

    Article  PubMed  CAS  Google Scholar 

  65. Lucas LH, Ersoy BA, Kueltzo LA, Joshi SB, Brandau DT, Thyagarajapuram N, Peek LJ, Middaugh CR (2006) Probing protein structure and dynamics by second-derivative ultraviolet absorption analysis of cation-{pi} interactions. Protein Sci 15(10):2228–43 (Epub 8 Sep 2006)

    Article  PubMed  CAS  Google Scholar 

  66. Bermudez A, Moreno-Vranich A, Patarroyo ME (2011) Protective immunity provided by a new modified SERA protein peptide: its immunogenetic characteristics and correlation with 3D structure. Amino Acids 43(1):183–94 ( Epub 6 Sep 2011).

    Google Scholar 

  67. Celigoy J, Ramirez B, Tao L, Rong L, Yan L, Feng YR, Quinnan GV, Broder CC, Caffrey M (2011) Probing the HIV gp120 envelope glycoprotein conformation by NMR. J Biol Chem 286(27):23975–81 (Epub 18 May 2011)

    Article  PubMed  CAS  Google Scholar 

  68. Ahmed MA, Bamm VV, Harauz G, Ladizhansky V (2010) Solid-state NMR spectroscopy of membrane-associated myelin basic protein—conformation and dynamics of an immunodominant epitope. Biophys J 99(4):1247–55

    Article  PubMed  CAS  Google Scholar 

  69. Foucault M, Mayol K, Receveur-Bréchot V, Bussat MC, Klinguer-Hamour C, Verrier B, Beck A, Haser R, Gouet P, Guillon C (2010) UV and X-ray structural studies of a 101-residue long Tat protein from a HIV-1 primary isolate and of its mutated, detoxified, vaccine candidate. Proteins 78(6):1441–56

    PubMed  CAS  Google Scholar 

  70. Rizwan SB, Assmus D, Boehnke A, Hanley T, Boyd BJ, Rades T, Hook S (2011) Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines. Eur J Pharm Biopharm 79(1):15–22 (Epub 13 Jan 2011)

    Article  PubMed  CAS  Google Scholar 

  71. Yu F, Joshi SM, Ma YM, Kingston RL, Simon MN, Vogt VM (2001) Characterization of Rous sarcoma virus Gag particles assembled in vitro. J Virol 75(6):2753–64

    Article  PubMed  CAS  Google Scholar 

  72. Grigsby IF, Zhang W, Johnson JL, Fogarty KH, Chen Y, Rawson JM, Crosby AJ, Mueller JD, Mansky LM (2010) Biophysical analysis of HTLV-1 particles reveals novel insights into particle morphology and Gag stochiometry. Retrovirology 7:75

    Article  PubMed  Google Scholar 

  73. Singh B, Khurana L, Bandyopadhyay S, Kapil R, Katare O (2011) Development of optimized self-nano-emulsifying drug delivery systems (SNEDDS) of carvedilol and with enhanced bioavailability potential. Drug Delivery 18(8):599–612 (Epub 18 Oct 2011).

    Google Scholar 

  74. Pandey RS, Dixit VK (2009) Evaluation of ISCOMs for immunization against hepatitis B. Curr Pharm Biotechnol 10(7):709–16

    Article  PubMed  CAS  Google Scholar 

  75. Harris JR, Soliakov A, Lewis RJ, Depoix F, Watkinson A, Lakey JH (2011) Alhydrogel® adjuvant, ultrasonic dispersion and protein binding: a TEM and analytical study. Micron 43(2–3):192–200 (Epub 27 Jul 2011).

    Google Scholar 

  76. Zhao Q, Towne V, Brown M, Wang Y, Abraham D, Oswald CB, Gimenez JA, Washabaugh MW, Kennedy R, Sitrin RD (2011) In-depth process understanding of RECOMBIVAX HB(®) maturation and potential epitope improvements with redox treatment: multifaceted biochemical and immunochemical characterization. Vaccine 29(45):7936–41 (Epub 25 Aug 2011)

    Article  PubMed  CAS  Google Scholar 

  77. Zhao Q, Wang Y, Abraham D, Towne V, Kennedy R, Sitrin RD (2011) Protein-excipient interactions: mechanisms and biophysical characterization applied to protein real time monitoring of antigenicity development of HBsAg virus-like particles (VLPs) during heat- and redox-treatment. Biochem Biophys Res Commun 408(3):447–53 (Epub 19 Apr 2011)

    Article  PubMed  CAS  Google Scholar 

  78. Hearty S, Conroy PJ, Ayyar BV, Byrne B, O’Kennedy R (2010) Surface plasmon resonance for vaccine design and efficacy studies: recent applications and future trends. Expert Rev Vaccines 9(6):645–64

    Article  PubMed  CAS  Google Scholar 

  79. Manta B, Obal G, Ricciardi A, Pritsch O, Denicola A (2011) Tools to evaluate the conformation of protein products. Biotechnol J 6(6):731–41. doi:10.1002/biot.20110010710.1002/biot.201100107 (Epub 12 May 2011)

    Article  PubMed  CAS  Google Scholar 

  80. Han Y, Wang B, Liu H (2011) The novel use of a routine quantitative system to analyze the activity, content and affinity of an antibody to hepatitis B core antigen. J Clin Virol 52(4):295–9 (Epub 5 Oct 2011).

    Google Scholar 

  81. Tleugabulova D, Falcón V, Pentón E (1998) Evidence for the denaturation of recombinant hepatitis B surface antigen on aluminium hydroxide gel. J Chromatogr B Biomed Sci Appl 720(1–2):153–63

    Article  PubMed  CAS  Google Scholar 

  82. Hansen B, Belfast M, Soung G, Song L, Egan PM, Capen R, Hogenesch H, Mancinelli R, Hem SL (2009) Effect of the strength of adsorption of hepatitis B surface antigen to aluminum hydroxide adjuvant on the immune response. Vaccine 27(6):888–92 (Epub 9 Dec 2008)

    Article  PubMed  CAS  Google Scholar 

  83. Saini V, Jain V, Sudheesh MS, Dixit S, Gaur RL, Sahoo MK, Joseph SK, Verma SK, Jaganathan KS, Murthy PK, Kohli D (2010) Humoral and cell-mediated immune-responses after administration of a single-shot recombinant hepatitis B surface antigen vaccine formulated with cationic poly(l-lactide) microspheres. J Drug Target 18(3):212–22

    Article  PubMed  CAS  Google Scholar 

  84. Zhu D, McClellan H, Dai W, Gebregeorgis E, Kidwell MA, Aebig J, Rausch KM, Martin LB, Ellis RD, Miller L, Wu Y (2011) Long term stability of a recombinant Plasmodium falciparum AMA1 malaria vaccine adjuvanted with Montanide(®) ISA 720 and stabilized with glycine. Vaccine 29(20):3640–5 (Epub 8 Apr 2011)

    Article  PubMed  CAS  Google Scholar 

  85. Maarschalkerweerd A, Wolbink GJ, Stapel SO, Jiskoot W, Hawe A (2011) Comparison of analytical methods to detect instability of etanercept during thermal stress testing. Eur J Pharm Biopharm 78(2):213–21 (Epub 24 Jan 2011)

    Article  PubMed  Google Scholar 

  86. Farnsworth A, Cyr TD, Li C, Wang J, Li X (2011) Antigenic stability of H1N1 pandemic vaccines correlates with vaccine strain. Vaccine 29(8):1529–33 (Epub 4 Jan 2011)

    Article  PubMed  CAS  Google Scholar 

  87. Croft NP, Purcell AW (2011) Peptidomimetics: modifying peptides in the pursuit of better vaccines. Expert Rev Vaccines 10(2):211–26

    Article  PubMed  CAS  Google Scholar 

  88. Saini V, Jain V, Sudheesh MS, Jaganathan KS, Murthy PK, Kohli DV (2011) Comparison of humoral and cell-mediated immune responses to cationic PLGA microspheres containing recombinant hepatitis B antigen. Int J Pharm 408(1–2):50–7 (Epub 1 Feb 2011)

    Article  PubMed  CAS  Google Scholar 

  89. Hansen B, Malyala P, Singh M, Sun Y, Srivastava I, Hogenesch H, Hem SL (2011) Effect of the strength of adsorption of HIV 1 SF162dV2gp140 to aluminum-containing adjuvants on the immune response. J Pharm Sci 100(8):3245–50. doi:10.1002/jps.22555 (Epub 18 Mar 2011)

    Article  PubMed  CAS  Google Scholar 

  90. Hansen B, Sokolovska A, HogenEsch H, Hem SL (2007) Relationship between the strength of antigen adsorption to an aluminum-containing adjuvant and the immune response. Vaccine 25(36):6618–24 (Epub 16 Jul 2007)

    Article  PubMed  CAS  Google Scholar 

  91. Hem SL, Hogenesch H (2010) Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Vaccine 28(31):4868–70 (Epub 18 May 2010)

    Article  PubMed  CAS  Google Scholar 

  92. Morefield GL (2011) A rational, systematic approach for the development of vaccine formulations. AAPS J 13(2):191–200 (Epub 23 Feb 2011)

    Article  PubMed  CAS  Google Scholar 

  93. Hem SL, HogenEsch H, Middaugh CR, Volkin DB (2007) Preformulation studies—the next advance in aluminum adjuvant-containing vaccines. Expert Rev Vaccines 6(5):685–98

    Article  PubMed  CAS  Google Scholar 

  94. Bershteyn A, Hanson MC, Crespo MP, Moon JJ, Li AV, Suh H, Irvine DJ (2011) Robust IgG responses to nanograms of antigen using a biomimetic lipid-coated particle vaccine. J Controlled Release 157(3):354–65 (Epub 24 Jul 2011).

    Google Scholar 

  95. Jeworrek C, Evers F, Howe J, Brandenburg K, Tolan M, Winter R (2011) Effects of specific versus nonspecific ionic interactions on the structure and lateral organization of lipopolysaccharides. Biophys J 100(9):2169–77

    Article  PubMed  CAS  Google Scholar 

  96. Brandenburg K, Seydel U (2010) Conformation and supramolecular structure of lipid A. Adv Exp Med Biol 667:25–38

    Article  PubMed  Google Scholar 

  97. Brandenburg K, Schromm AB, Gutsmann T (2010) Endotoxins: relationship between structure, function, and activity. Subcell Biochem 53:53–67

    Article  PubMed  CAS  Google Scholar 

  98. Gutsmann T, Schromm AB, Brandenburg K (2007) The physicochemistry of endotoxins in relation to bioactivity. Int J Med Microbiol 297(5):341–52

    Article  PubMed  CAS  Google Scholar 

  99. Brandenburg K, Garidel P, Fukuoka S, Howe J, Koch MH, Gutsmann T, Andrä J (2010) Molecular basis for endotoxin neutralization by amphipathic peptides derived from the alpha-helical cationic core-region of NK-lysin. Biophys Chem 150(1–3):80–7

    Article  PubMed  CAS  Google Scholar 

  100. Kaconis Y, Kowalski I, Howe J, Brauser A, Richter W, Razquin-Olazarán I, Iñigo-Pestaña M, Garidel P, Rössle M, Martinez de Tejada G, Gutsmann T, Brandenburg K (2011) Biophysical mechanisms of endotoxin neutralization by cationic amphiphilic peptides. Biophys J 100(11):2652–61

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research in this chapter was supported in part by grant #42387 from the Bill and Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Chesko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chesko, J., Vedvick, T., Reed, S. (2013). Development of Biophysical Assays to Better Understand Adjuvanted Vaccine Formulation Potency and Stability. In: Singh, M. (eds) Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5380-2_5

Download citation

Publish with us

Policies and ethics