Skip to main content
  • 1281 Accesses

Abstract

Nanoemulsions (NEs) are high-energy oil-in-water emulsions smaller than 1,000 nm that disrupt the outer lipid membrane of pathogenic microbes [1–4]. Building on studies that demonstrated the potential of NE to prevent influenza infection [5], it was recognized that NE inactivated influenza virus generated greater immune responses than formalin inactivated influenza virus when administered intranasally [6]. Subsequent studies have demonstrated this material acts as a mucosal adjuvant with numerous antigens including recombinant anthrax protective antigen (PA) [7], killed-vaccinia virus [8], recombinant human immunodeficiency (HIV) gp120 [9], recombinant hepatitis B surface antigen (HBsAg) [10], and purified Burkholderia cenocepacia outer membrane protein (OMP) [11]. In addition, it was recognized that the surfactant in the NE is locked at the interface between the oil droplets and water and does not appear to denature proteins. This confers thermostability to the antigen [10, 12–14] and potentially allows for the elimination of the cold chain required for all currently available vaccines [15]. The mechanisms by which adjuvants enhance the immune response are starting to be elucidated and include improved antigen delivery as well as innate immune activation [16]. The NE adjuvant acts via both mechanisms as it enhances antigen uptake by dendritic cells (DCs) as well as activating Toll like receptors (TLR) 2 and 4; this enhances both humoral and cell-mediated Th1 and Th17 immune responses [17]. Importantly, NE mucosal adjuvant activity occurs without damaging the mucosal epithelium [10] and has been demonstrated to be safe and well tolerated in early phase human clinical trials (Stanberry, submitted). In this review, we will delineate the physical and chemical properties, mechanisms of activity, preclinical studies, and clinical experience available regarding mucosal NE adjuvants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Myc A, Vanhecke T, Landers JJ, Hamouda T, Baker JR Jr (2002) The fungicidal activity of novel nanoemulsion (X8W60PC) against clinically important yeast and filamentous fungi. Mycopathologia 155(4):195–201

    Article  PubMed  CAS  Google Scholar 

  2. Hamouda T, Hayes MM, Cao Z, Tonda R, Johnson K, Wright DC et al (1999) A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against Bacillus species. J Infect Dis 180(6):1939–1949

    Article  PubMed  CAS  Google Scholar 

  3. Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JR Jr (2001) A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol Res 156(1):1–7

    Article  PubMed  CAS  Google Scholar 

  4. Chepurnov AA, Bakulina LF, Dadaeva AA, Ustinova EN, Chepurnova TS, Baker JR Jr (2003) Inactivation of Ebola virus with a surfactant nanoemulsion. Acta Trop 87(3):315–320

    Article  PubMed  CAS  Google Scholar 

  5. Donovan BW, Reuter JD, Cao Z, Myc A, Johnson KJ, Baker JR Jr (2000) Prevention of murine influenza A virus pneumonitis by surfactant nano-emulsions. Antivir Chem Chemother 11(1):41–49

    PubMed  CAS  Google Scholar 

  6. Myc A, Kukowska-Latallo JF, Bielinska AU, Cao P, Myc PP, Janczak K et al (2003) Development of immune response that protects mice from viral pneumonitis after a single intranasal immunization with influenza A virus and nanoemulsion. Vaccine 21(25–26):3801–3814

    Article  PubMed  CAS  Google Scholar 

  7. Bielinska AU, Janczak KW, Landers JJ, Makidon P, Sower LE, Peterson JW et al (2007) Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. Infect Immun 75(8):4020–4029

    Article  PubMed  CAS  Google Scholar 

  8. Bielinska AU, Chepurnov AA, Landers JJ, Janczak KW, Chepurnova TS, Luker GD et al (2008) A novel, killed-virus nasal vaccinia virus vaccine. Clin Vaccine Immunol 15(2):348–358

    Article  PubMed  CAS  Google Scholar 

  9. Bielinska AU, Janczak KW, Landers JJ, Markovitz DM, Montefiori DC, Baker JR Jr (2008) Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces Th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates. AIDS Res Hum Retroviruses 24(2):271–281

    Article  PubMed  CAS  Google Scholar 

  10. Makidon PE, Bielinska AU, Nigavekar SS, Janczak KW, Knowlton J, Scott AJ et al (2008) Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PLoS One 3(8):e2954

    Article  PubMed  Google Scholar 

  11. Makidon PE, Knowlton J, Groom JV 2nd, Blanco LP, LiPuma JJ, Bielinska AU et al (2010) Induction of immune response to the 17 kDa OMPA Burkholderia cenocepacia polypeptide and protection against pulmonary infection in mice after nasal vaccination with an OMP nanoemulsion-based vaccine. Med Microbiol Immunol 199(2):81–92

    Article  PubMed  CAS  Google Scholar 

  12. Hamouda T, Chepurnov A, Mank N, Knowlton J, Chepurnova T, Myc A et al (2010) Efficacy, immunogenicity and stability of a novel intranasal nanoemulsion-adjuvanted influenza vaccine in a murine model. Hum Vaccin 6(7):1–10

    Article  Google Scholar 

  13. Makidon PE, Nigavekar SS, Bielinska AU, Mank N, Shetty AM, Suman J et al (2010) Characterization of stability and nasal delivery systems for immunization with nanoemulsion-based vaccines. J Aerosol Med Pulm Drug Deliv 23(2):77–89

    Article  PubMed  CAS  Google Scholar 

  14. Hamouda T, Sutcliffe JA, Ciotti S, Baker JR Jr (2011) Intranasal immunization of ferrets with commercial trivalent influenza vaccines formulated in a nanoemulsion-based adjuvant. Clin Vaccine Immunol 18(7):1167–1175

    Article  PubMed  CAS  Google Scholar 

  15. Chen X, Fernando GJ, Crichton ML, Flaim C, Yukiko SR, Fairmaid EJ et al (2011) Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J Control Release 152(3):349–355

    Article  PubMed  CAS  Google Scholar 

  16. Schijns VEJC, O’Hagan DT (2006) Immunopotentiators in modern vaccines. Elsevier Academic, Amsterdam

    Book  Google Scholar 

  17. Bielinska AU, Gerber M, Blanco LP, Makidon PE, Janczak KW, Beer M et al (2010) Induction of Th17 cellular immunity with a novel nanoemulsion adjuvant. Crit Rev Immunol 30(2):189–199

    Article  PubMed  CAS  Google Scholar 

  18. Barany E, Lindberg M, Loden M (2000) Unexpected skin barrier influence from nonionic emulsifiers. Int J Pharm 195(1–2):189–195

    Article  PubMed  CAS  Google Scholar 

  19. O’Hagan DT, Rappuoli R (2004) Novel approaches to vaccine delivery. Pharm Res 21(9):1519–1530

    Article  PubMed  Google Scholar 

  20. Duthie MS, Windish HP, Fox CB, Reed SG (2010) Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 239(1):178–196

    Article  Google Scholar 

  21. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  PubMed  CAS  Google Scholar 

  22. Gogolak P, Rethi B, Hajas G, Rajnavolgyi E (2003) Targeting dendritic cells for priming cellular immune responses. J Mol Recognit 16(5):299–317

    Article  PubMed  CAS  Google Scholar 

  23. Gilroy KL, Cumming SA, Pitt AR (2010) A simple, sensitive and selective quantum-dot-based western blot method for the simultaneous detection of multiple targets from cell lysates. Anal Bioanal Chem 398(1):547–554

    Article  PubMed  CAS  Google Scholar 

  24. Basak S, Hoffmann A (2008) Crosstalk via the NF-kappaB signaling system. Cytokine Growth Factor Rev 19(3–4):187–197

    Article  PubMed  CAS  Google Scholar 

  25. Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19(1):24–32

    Article  PubMed  CAS  Google Scholar 

  26. Schulze-Luehrmann J, Ghosh S (2006) Antigen-receptor signaling to nuclear factor kappa B. Immunity 25(5):701–715

    Article  PubMed  CAS  Google Scholar 

  27. Takeda K (2005) Evolution and integration of innate immune recognition systems: the Toll-like receptors. J Endotoxin Res 11(1):51–55

    PubMed  CAS  Google Scholar 

  28. Amanna IJ, Slifka MK (2011) Contributions of humoral and cellular immunity to vaccine-induced protection in humans. Virology 411(2):206–215

    Article  PubMed  CAS  Google Scholar 

  29. McAleer JP, Kolls JK (2011) Mechanisms controlling Th17 cytokine expression and host defense. J Leukoc Biol 90(2):263–270

    Article  PubMed  CAS  Google Scholar 

  30. Graham BS (1995) Pathogenesis of respiratory syncytial virus vaccine-augmented pathology. Am J Respir Crit Care Med 152(4 Pt 2):S63–S66

    PubMed  CAS  Google Scholar 

  31. Polack FP, Hoffman SJ, Crujeiras G, Griffin DE (2003) A role for nonprotective complement-fixing antibodies with low avidity for measles virus in atypical measles. Nat Med 9(9):1209–1213

    Article  PubMed  CAS  Google Scholar 

  32. Delgado MF, Coviello S, Monsalvo AC, Melendi GA, Hernandez JZ, Batalle JP et al (2009) Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat Med 15(1):34–41

    Article  PubMed  CAS  Google Scholar 

  33. Castilow EM, Olson MR, Varga SM (2007) Understanding respiratory syncytial virus (RSV) vaccine-enhanced disease. Immunol Res 39(1–3):225–239

    Article  PubMed  CAS  Google Scholar 

  34. Boukhvalova MS, Prince GA, Soroush L, Harrigan DC, Vogel SN, Blanco JC (2006) The TLR4 agonist, monophosphoryl lipid A, attenuates the cytokine storm associated with respiratory syncytial virus vaccine-enhanced disease. Vaccine 24(23):5027–5035

    Article  PubMed  CAS  Google Scholar 

  35. Lindell DM, Morris SB, White MP, Kallal LE, Lundy PK, Hamouda T et al (2011) A novel inactivated intranasal respiratory syncytial virus vaccine promotes viral clearance without Th2 associated vaccine-enhanced disease. PLoS One 6(7):e21823

    Article  PubMed  CAS  Google Scholar 

  36. Sweet C, Smith H (1980) Pathogenicity of influenza virus. Microbiol Rev 44(2):303–330

    PubMed  CAS  Google Scholar 

  37. Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T et al (2004) Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N Engl J Med 350(9):896–903

    Article  PubMed  CAS  Google Scholar 

  38. Clements ML, Betts RF, Tierney EL, Murphy BR (1986) Resistance of adults to challenge with influenza A wild-type virus after receiving live or inactivated virus vaccine. J Clin Microbiol 23(1):73–76

    PubMed  CAS  Google Scholar 

  39. Block SL, Reisinger KS, Hultquist M, Walker RE (2007) Comparative immunogenicities of frozen and refrigerated formulations of live attenuated influenza vaccine in healthy subjects. Antimicrob Agents Chemother 51(11):4001–4008

    Article  PubMed  CAS  Google Scholar 

  40. Beyer WE, Palache AM, de Jong JC, Osterhaus AD (2002) Cold-adapted live influenza vaccine versus inactivated vaccine: systemic vaccine reactions, local and systemic antibody response, and vaccine efficacy. A meta-analysis. Vaccine 20(9–10):1340–1353

    Article  PubMed  CAS  Google Scholar 

  41. Brandtzaeg P (2009) Mucosal immunity: induction, dissemination, and effector functions. Scand J Immunol 70(6):505–515

    Article  PubMed  CAS  Google Scholar 

  42. Lawson LB, Norton EB, Clements JD (2011) Defending the mucosa: adjuvant and carrier formulations for mucosal immunity. Curr Opin Immunol 23(3):414–420

    Article  PubMed  CAS  Google Scholar 

  43. Pasetti MF, Simon JK, Sztein MB, Levine MM (2011) Immunology of gut mucosal vaccines. Immunol Rev 239(1):125–148

    Article  PubMed  CAS  Google Scholar 

  44. Zaiss DM, Boog CJ, van Eden W, Sijts AJ (2010) Considerations in the design of vaccines that induce CD8 T cell mediated immunity. Vaccine 28(49):7716–7722

    Article  PubMed  CAS  Google Scholar 

  45. Kolls JK, Khader SA (2010) The role of Th17 cytokines in primary mucosal immunity. Cytokine Growth Factor Rev 21(6):443–448

    Article  PubMed  CAS  Google Scholar 

  46. Aujla SJ, Dubin PJ, Kolls JK (2007) Th17 cells and mucosal host defense. Semin Immunol 19(6):377–382

    Article  PubMed  CAS  Google Scholar 

  47. Glezen WP (2003) Effect of maternal antibodies on the infant immune response. Vaccine 21(24):3389–3392

    Article  PubMed  CAS  Google Scholar 

  48. Dagan R, Goldblatt D, Maleckar JR, Yaich M, Eskola J (2004) Reduction of antibody response to an 11-valent pneumococcal vaccine coadministered with a vaccine containing acellular pertussis components. Infect Immun 72(9):5383–5391

    Article  PubMed  CAS  Google Scholar 

  49. Thiem VD, Lin FY, Canh do G, Son NH, Anh DD, Mao ND et al (2011) The vi conjugate typhoid vaccine is safe, elicits protective levels of IgG anti-vi, and is compatible with routine infant vaccines. Clin Vaccine Immunol 18(5):730–735

    Article  PubMed  CAS  Google Scholar 

  50. Elgueta R, de Vries VC, Noelle RJ (2010) The immortality of humoral immunity. Immunol Rev 236:139–150

    Article  PubMed  CAS  Google Scholar 

  51. Welch PG, Fattom A, Moore J Jr, Schneerson R, Shiloach J, Bryla DA et al (1996) Safety and immunogenicity of Staphylococcus aureus type 5 capsular polysaccharide-Pseudomonas aeruginosa recombinant exoprotein A conjugate vaccine in patients on hemodialysis. J Am Soc Nephrol 7(2):247–253

    PubMed  CAS  Google Scholar 

  52. Shinefield H, Black S, Fattom A, Horwith G, Rasgon S, Ordonez J et al (2002) Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N Engl J Med 346(7):491–496

    Article  PubMed  Google Scholar 

  53. Hatsukami DK, Rennard S, Jorenby D, Fiore M, Koopmeiners J, de Vos A et al (2005) Safety and immunogenicity of a nicotine conjugate vaccine in current smokers. Clin Pharmacol Ther 78(5):456–467

    Article  PubMed  CAS  Google Scholar 

  54. Dagan R, Melamed R, Muallem M, Piglansky L, Greenberg D, Abramson O et al (1996) Reduction of nasopharyngeal carriage of pneumococci during the second year of life by a heptavalent conjugate pneumococcal vaccine. J Infect Dis 174(6):1271–1278

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the volunteers participating in the clinical trials as well as the large number of personnel that have worked on the development and testing of the NE adjuvants. These include, but are not limited to: Anna Bielinska, Susan Ciotti, Mary Flack, Stephen Gracon, Casey Johnson, Lyou-fu Ma, Paul Makidon, Andrzej Myc, David Peralta, Douglas Smith, and Paula Robinson. Funding sources include: Defense Advanced Research Project Agency (DARPA) contract #MDA 972-1-007 of the Unconventional Pathogen Countermeasures Program, National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID) Great Lakes Regional Center of Excellence for Biodefense and Emerging Infectious Diseases, University of Chicago, award U54 AI57153, the Bill & Melinda Gates Foundation Grand Challenges in Global Health Initiative 37868, the Ruth Dow Doan Endowment, the Burroughs Welcome Fund, and the Michigan Nanotechnology Institute for Medicine and Biological Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hamouda, T., Simon, J., Fattom, A., Baker, J. (2013). NanoBio™ Nanoemulsion for Mucosal Vaccine Delivery. In: Singh, M. (eds) Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5380-2_13

Download citation

Publish with us

Policies and ethics