Skip to main content

Abstract

Vaccines are considered one of the most valuable public health intervention tools. Nevertheless, the performance of many existing vaccines is far from optimal and there are still diseases for which no vaccine is available. A key issue in the development of improved and new vaccines is safety, since most vaccines are given to healthy individuals. In order to improve safety profiles, the use of well-defined (recombinant) purified antigens for the generation of subunit vaccines has become leading in vaccine development programs. In addition, there is an increasing interest to explore other modes of vaccine administration besides the use of needles. Since purified soluble antigens are usually poorly immunogenic, even more when delivered through the mucosal (nasal, oral) routes, the addition of safe adjuvants to increase the efficacy of vaccines is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mbow ML, De Gregorio E, Valiante NM, Rappuoli R (2010) New adjuvants for human vaccines. Curr Opin Immunol 22:411–416

    Article  PubMed  CAS  Google Scholar 

  2. Carleton HA (2010) Pathogenic bacteria as vaccine vectors: teaching old bugs new tricks. Yale J Biol Med 83:217–222

    PubMed  Google Scholar 

  3. Detmer A, Glenting J (2006) Live bacterial vaccines—a review and identification of potential hazards. Microb Cell Fact 5:23

    Article  PubMed  Google Scholar 

  4. Frey J (2007) Biological safety concepts of genetically modified live bacterial vaccines. Vaccine 25:5598–5605

    Article  PubMed  CAS  Google Scholar 

  5. Kudela P, Kollera VJ, Lubitz W (2010) Bacterial ghosts (BGs)—advanced antigen and drug delivery system. Vaccine 28:5760–5767

    Article  PubMed  CAS  Google Scholar 

  6. Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 5:349–362

    Article  Google Scholar 

  7. Adams MR, Marteau P (1995) On the safety of lactic acid bacteria from food. Int J Food Microbiol 27:263–264

    Article  PubMed  CAS  Google Scholar 

  8. Code of federal regulations (1995) Title 21—Food and drugs; chapter I—Food and Drug Administration, Department of Health and Human Services; subchapter B—Food for human consumption; Part 184—Direct food substances affirmed as Generally Recognized as Safe. U.S. Food and Drug Administration

    Google Scholar 

  9. Villatoro-Hernandez J, Montes-de-Oca-Luna R, Kuipers OP (2011) Targeting diseases with genetically engineered Lactococcus lactis and its course towards medical translation. Expert Opin Biol Ther 11:261–267

    Article  PubMed  Google Scholar 

  10. Yam KK, Pouliot P, N’diaye MM, Fournier S, Olivier M, Cousineau B (2008) Innate inflammatory responses to the Gram-positive bacterium Lactococcus lactis. Vaccine 26:2689–2699

    Article  PubMed  CAS  Google Scholar 

  11. Staats HF, Ennis FA Jr (1999) IL-1 is an effective adjuvant for mucosal and systemic immune responses when co-administered with protein antigens. J Immunol 162:6141–6147

    PubMed  CAS  Google Scholar 

  12. Afonso LC, Sharton TM, Vieira LQ, Wysocka M, Trinchieri G, Scott P (1994) The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 263:235–237

    Article  PubMed  CAS  Google Scholar 

  13. Groux H, Cottrez F (2003) The complex role of interleukin-10 in autoimmunity. J Autoimmun 20:281–285

    Article  PubMed  CAS  Google Scholar 

  14. Lee P (2010) Biocontainment strategies for live lactic acid bacteria vaccine vectors. Bioeng Bugs 1:75–77

    Article  PubMed  Google Scholar 

  15. van Roosmalen ML, Kanninga R, El Khattabi M, Neef J, Audouy S, Bosma T, Kuipers A, Post E, Steen A, Kok J, Buist G, Kuipers OP, Robillard G, Leenhouts K (2006) Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria. Methods 38:144–149

    Article  PubMed  Google Scholar 

  16. Bosma T, Kanninga R, Neef J, Audouy SA, van Roosmalen ML, Steen A, Buist G, Kok J, Kuipers OP, Robillard G, Leenhouts K (2006) A novel surface display system for proteins on non-genetically modified Gram-positive bacteria. Appl Environ Microbiol 72:880–889

    Article  PubMed  CAS  Google Scholar 

  17. Dziarski R, Gupta D (2005) Staphylococcus aureus peptidoglycan is a Toll-like receptor 2 activator: a reevaluation. Infect Immun 73:5212–5216

    Article  PubMed  CAS  Google Scholar 

  18. Steen A, Buist G, Leenhouts KJ, El Khattabi M, Grijpstra F, Zomer AL, Venema G, Kuipers OP, Kok J (2003) Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem 278:23874–23881

    Article  PubMed  CAS  Google Scholar 

  19. Buist G, Kok J, Leenhouts KJ, Dabrowska M, Venema G, Haandrikman AJ (1995) Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J Bacteriol 177:1554–1563

    PubMed  CAS  Google Scholar 

  20. Buist G, Steen A, Kok J, Kuipers OP (2008) LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol 68:838–847

    Article  PubMed  CAS  Google Scholar 

  21. Bateman A, Bycroft M (2000) The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol 299:1113–1119

    Article  PubMed  CAS  Google Scholar 

  22. Bielnicki J, Devedjiev Y, Derewenda U, Dauter Z, Joachimiak A, Derewenda ZS (2006) B. subtilis YkuD protein at 2.0 A resolution: insights into the structure and function of a novel, ubiquitous family of bacterial enzymes. Proteins 62:144–151

    Article  PubMed  CAS  Google Scholar 

  23. Nickson AA, Stoll KE, Clarke J (2008) Folding of a LysM domain: entropy-enthalpy compensation in the transition state of an ideal two-state folder. J Mol Biol 380:557–569

    Article  PubMed  CAS  Google Scholar 

  24. Petrović DM, Leenhouts K, van Roosmalen ML, Kleinjan F, Broos J (2012) Monitoring lysin motif-ligand interactions via tryptophan analog fluorescence spectroscopy. Anal Biochem 428:111–118

    Article  CAS  Google Scholar 

  25. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comp Chem 19:1639–1662

    Article  CAS  Google Scholar 

  26. Andre G, Leenhouts K, Hols P, Dufrene YF (2008) Detection and localization of single LysM-peptidoglycan interactions. J Bacteriol 190:7079–7086

    Article  PubMed  CAS  Google Scholar 

  27. Zeng G, Chen J, Zhong L, Wang R, Jiang L, Cai J, Yan L, Huang D, Chen CY, Chen ZW (2009) NSOM- and AFM-based nanotechnology elucidates nano-structural and atomic-force features of a Y. pestis V immunogen-containing particle vaccine capable of eliciting robust response. Proteomics 9:1538–1547

    Article  PubMed  CAS  Google Scholar 

  28. Audouy SA, van Selm S, van Roosmalen ML, Post E, Kanninga R, Neef J, Estevão S, Nieuwenhuis EES, Adrian PV, Leenhouts K, Hermans PWM (2007) Development of lactococcal GEM-based pneumococcal vaccines. Vaccine 25:2497–2506

    Article  PubMed  CAS  Google Scholar 

  29. Ramirez K, Ditamo Y, Rodriguez L, Picking WL, Roosmalen ML, Leenhouts K, Pasetti MF (2010) Neonatal mucosal immunization with a non-living, non-genetically modified Lactococcus lactis vaccine carrier induces systemic and local Th1-type immunity and protects against lethal bacterial infection. Mucosal Immunol 3:159–171

    Article  PubMed  CAS  Google Scholar 

  30. Audouy SA, van Roosmalen ML, Neef J, Kanninga R, Post E, van Deemter M, Metselaar H, van Selm S, Robillard GT, Leenhouts KJ, Hermans PWM (2006) Lactococcus lactis GEM particles displaying pneumococcal antigens induce local and systemic immune responses following intranasal immunization. Vaccine 24:5434–5441

    Article  PubMed  CAS  Google Scholar 

  31. Saluja V, Amorij JP, van Roosmalen ML, Leenhouts K, Huckriede A, Hinrichs WLJ, Frijlink HW (2010) Intranasal delivery of influenza subunit vaccine formulated with GEM particles as an adjuvant. AAPS J 12:109–116

    Article  PubMed  CAS  Google Scholar 

  32. Saluja V, Visser MR, ter Veer W, van Roosmalen ML, Leenhouts K, Hinrichs WLJ, Huckriede A, Frijlink HW (2010) Influenza antigen-sparing by immune stimulation with Gram-positive enhancer matrix (GEM) particles. Vaccine 28:7963–7969

    Article  PubMed  CAS  Google Scholar 

  33. de Haan A, Haijema BJ, Voorn P, Meijerhof T, van Roosmalen ML, Leenhouts K (2012) Bacterium-like particles supplemented with inactivated influenza antigen induce cross-protective influenza-specific antibody responses through intranasal administration. Vaccine 30:4884–4891

    Article  PubMed  CAS  Google Scholar 

  34. Nganou-Makamdop K, van Roosmalen ML, Audouy SA, van Gemert GJ, Leenhouts K, Hermsen CC, Sauerwein RW (2012) Bacterium-like particles as multi-epitope delivery platform for Plasmodium berghei circumsporozoite protein induce complete protection against malaria in mice. Malar J 11:50

    Article  PubMed  CAS  Google Scholar 

  35. Moran TM, Park H, Fernandez-Sesma A, Schulman JL (1999) Th2 responses to inactivated influenza virus can be converted to Th1 responses and facilitate recovery from heterosubtypic virus infection. J Infect Dis 180:579–585

    Article  PubMed  CAS  Google Scholar 

  36. Hovden AO, Cox RJ, Haaheim LR (2005) Whole influenza virus vaccine is more immunogenic than split influenza virus vaccine and induces primarily an IgG2a response in BALB/c mice. Scand J Immunol 62:36–44

    Article  PubMed  CAS  Google Scholar 

  37. Rimmelzwaan GF, Fouchier RA, Osterhaus AD (2007) Influenza virus-specific cytotoxic T lymphocytes: a correlate of protection and a basis for vaccine development. Curr Opin Biotechnol 18:529–536

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to acknowledge my colleagues at Mucosis and the collaborators of Mucosis for sharing unpublished data and for their valuable contributions to the work and ideas described in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kees Leenhouts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leenhouts, K. (2013). Mimopathâ„¢-Based Vaccine Delivery. In: Singh, M. (eds) Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5380-2_12

Download citation

Publish with us

Policies and ethics