On the Computable Theory of Bounded Analytic Functions

  • Timothy H. McNichollEmail author
Part of the Fields Institute Communications book series (FIC, volume 65)


The theory of bounded analytic functions is reexamined from the viewpoint of computability theory.


Computability theory Computable analysis Complex analysis Blaschke products 

Mathematics Subject Classification

03F60 30J05 30J10 



I first of all want to thank my departed colleague Alec Matheson for introducing me to the beautiful world of bounded analytic functions and for setting in motion the research direction described in this paper. Many thanks to the referee and to Barry Cooper for their helpful comments. I also thank Javad Mashreghi for his encouragement. Finally, I thank my wife Susan for her support.


  1. 1.
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009) zbMATHCrossRefGoogle Scholar
  2. 2.
    Boone, W.W.: The word problem. Proc. Natl. Acad. Sci. USA 44, 1061–1065 (1958) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Braverman, M., Cook, S.: Computing over the reals: foundations for scientific computing. Not. Am. Math. Soc. 53(3), 318–329 (2006) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Barry Cooper, S.: Computability Theory. Chapman & Hall/CRC, Boca Raton (2004) zbMATHGoogle Scholar
  5. 5.
    Cutland, N.: Computability: An Introduction to Recursive Function Theory. Cambridge University Press, Cambridge (1980) zbMATHGoogle Scholar
  6. 6.
    Frostman, O.: Potential d’equilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Meddelanden Lunds Univ. Mat. Sem. 3, 1–118 (1935) Google Scholar
  7. 7.
    Garnett, J.B.: Bounded Analytic Functions. Academic Press, New York (1981) zbMATHGoogle Scholar
  8. 8.
    Grzegorczyk, A.: On the definitions of computable real continuous functions. Fundam. Math. 44, 61–71 (1957) MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hertling, P.: An effective Riemann mapping theorem. Theor. Comput. Sci. 219, 225–265 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kalantari, I., Welch, L.: Point-free topological spaces, functions and recursive points; filter foundation for recursive analysis. I. Ann. Pure Appl. Log. 93(1–3), 125–151 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kalantari, I., Welch, L.: Recursive and nonextendible functions over the reals; filter foundation for recursive analysis. II. Ann. Pure Appl. Log. 98(1–3), 87–110 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kleene, S.: On notation for ordinal numbers. J. Symb. Log. 3(4), 150–155 (1938) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lerman, M.: Degrees of Unsolvability: Local and Global Theory. Perspectives in Mathematical Logic. Springer, Berlin (1983) zbMATHGoogle Scholar
  14. 14.
    Matheson, A., McNicholl, T.H.: Computable analysis and Blaschke products. Proc. Am. Math. Soc. 136(1), 321–332 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    McNicholl, T.H.: Uniformly computable aspects of inner functions: estimation and factorization. Math. Log. Q. 54(5), 508–518 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Myhill, J.: A recursive function defined on a compact interval and having a continuous derivative that is not recursive. Michigan J. Math. 18, 97–98 (1971) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Naftalevič, A.G.: On interpolation by functions of bounded characteristic. Vilniaus Valst. Univ. Moksl. Darb. Mat. Fiz. Chem. Moksl. Ser. 5, 5–27 (1956) Google Scholar
  18. 18.
    Odifreddi, P.G.: Classical Recursion Theory. The Theory of Functions and Sets of Natural Numbers, 1st edn. North-Holland, Amsterdam (1989) zbMATHGoogle Scholar
  19. 19.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Perspectives in Mathematical Logic. Springer, Berlin (1989) zbMATHGoogle Scholar
  20. 20.
    Pour-El, M.B., Caldwell, J.: On a simple definition of computable function of a real variable—with applications to functions of a complex variable. Z. Math. Log. Grundl. Math. 21, 1–19 (1975) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987) zbMATHGoogle Scholar
  22. 22.
    Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987) Google Scholar
  23. 23.
    Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. J. Symb. Log. 14, 145–158 (1949) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Specker, E.: Der Satz vom Maximum in der rekursiven Analysis. In: Heyting, A. (ed.) Constructivity in Mathematics: Proceedings of the Colloquium Held at Amsterdam, 1957. Studies in Logic and the Foundations of Mathematics, pp. 254–265. North-Holland, Amsterdam (1959) Google Scholar
  25. 25.
    Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proc. Lond. Math. Soc., Ser. 2 42, 220–265 (1936) Google Scholar
  26. 26.
    Andreev, V.V., McNicholl, T.H.: Computing interpolating sequences. Theory Comput. Syst. 46(2), 340–350 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Weihrauch, K.: Computable Analysis. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2000) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsIowa State UniversityAmesUSA

Personalised recommendations