Blaschke Products and Their Applications pp 223-248 | Cite as
On the Computable Theory of Bounded Analytic Functions
Chapter
- 857 Downloads
Abstract
The theory of bounded analytic functions is reexamined from the viewpoint of computability theory.
Keywords
Computability theory Computable analysis Complex analysis Blaschke productsMathematics Subject Classification
03F60 30J05 30J10Notes
Acknowledgements
I first of all want to thank my departed colleague Alec Matheson for introducing me to the beautiful world of bounded analytic functions and for setting in motion the research direction described in this paper. Many thanks to the referee and to Barry Cooper for their helpful comments. I also thank Javad Mashreghi for his encouragement. Finally, I thank my wife Susan for her support.
References
- 1.Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009) zbMATHCrossRefGoogle Scholar
- 2.Boone, W.W.: The word problem. Proc. Natl. Acad. Sci. USA 44, 1061–1065 (1958) MathSciNetzbMATHCrossRefGoogle Scholar
- 3.Braverman, M., Cook, S.: Computing over the reals: foundations for scientific computing. Not. Am. Math. Soc. 53(3), 318–329 (2006) MathSciNetzbMATHGoogle Scholar
- 4.Barry Cooper, S.: Computability Theory. Chapman & Hall/CRC, Boca Raton (2004) zbMATHGoogle Scholar
- 5.Cutland, N.: Computability: An Introduction to Recursive Function Theory. Cambridge University Press, Cambridge (1980) zbMATHGoogle Scholar
- 6.Frostman, O.: Potential d’equilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Meddelanden Lunds Univ. Mat. Sem. 3, 1–118 (1935) Google Scholar
- 7.Garnett, J.B.: Bounded Analytic Functions. Academic Press, New York (1981) zbMATHGoogle Scholar
- 8.Grzegorczyk, A.: On the definitions of computable real continuous functions. Fundam. Math. 44, 61–71 (1957) MathSciNetzbMATHGoogle Scholar
- 9.Hertling, P.: An effective Riemann mapping theorem. Theor. Comput. Sci. 219, 225–265 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Kalantari, I., Welch, L.: Point-free topological spaces, functions and recursive points; filter foundation for recursive analysis. I. Ann. Pure Appl. Log. 93(1–3), 125–151 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Kalantari, I., Welch, L.: Recursive and nonextendible functions over the reals; filter foundation for recursive analysis. II. Ann. Pure Appl. Log. 98(1–3), 87–110 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Kleene, S.: On notation for ordinal numbers. J. Symb. Log. 3(4), 150–155 (1938) MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Lerman, M.: Degrees of Unsolvability: Local and Global Theory. Perspectives in Mathematical Logic. Springer, Berlin (1983) zbMATHGoogle Scholar
- 14.Matheson, A., McNicholl, T.H.: Computable analysis and Blaschke products. Proc. Am. Math. Soc. 136(1), 321–332 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
- 15.McNicholl, T.H.: Uniformly computable aspects of inner functions: estimation and factorization. Math. Log. Q. 54(5), 508–518 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Myhill, J.: A recursive function defined on a compact interval and having a continuous derivative that is not recursive. Michigan J. Math. 18, 97–98 (1971) MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Naftalevič, A.G.: On interpolation by functions of bounded characteristic. Vilniaus Valst. Univ. Moksl. Darb. Mat. Fiz. Chem. Moksl. Ser. 5, 5–27 (1956) Google Scholar
- 18.Odifreddi, P.G.: Classical Recursion Theory. The Theory of Functions and Sets of Natural Numbers, 1st edn. North-Holland, Amsterdam (1989) zbMATHGoogle Scholar
- 19.Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Perspectives in Mathematical Logic. Springer, Berlin (1989) zbMATHGoogle Scholar
- 20.Pour-El, M.B., Caldwell, J.: On a simple definition of computable function of a real variable—with applications to functions of a complex variable. Z. Math. Log. Grundl. Math. 21, 1–19 (1975) MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987) zbMATHGoogle Scholar
- 22.Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987) Google Scholar
- 23.Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. J. Symb. Log. 14, 145–158 (1949) MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Specker, E.: Der Satz vom Maximum in der rekursiven Analysis. In: Heyting, A. (ed.) Constructivity in Mathematics: Proceedings of the Colloquium Held at Amsterdam, 1957. Studies in Logic and the Foundations of Mathematics, pp. 254–265. North-Holland, Amsterdam (1959) Google Scholar
- 25.Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proc. Lond. Math. Soc., Ser. 2 42, 220–265 (1936) Google Scholar
- 26.Andreev, V.V., McNicholl, T.H.: Computing interpolating sequences. Theory Comput. Syst. 46(2), 340–350 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
- 27.Weihrauch, K.: Computable Analysis. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2000) zbMATHCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 2013