Hyperbolic Derivatives Determine a Function Uniquely

  • Line BaribeauEmail author
Part of the Fields Institute Communications book series (FIC, volume 65)


The notion of hyperbolic derivative for functions from the unit disc to itself is well known. Recently, Rivard has proposed a definition for higher-order derivatives. We prove that the sequence of hyperbolic derivatives of order n (n=0,1,2,…) of a function f determines this function uniquely.


Hyperbolic derivative Divided differences 

Mathematics Subject Classification

30E05 30F45 30C80 30B70 



This research was supported by NSERC (Canada) through the Discovery Grants program.


  1. 1.
    Baribeau, L., Rivard, P., Wegert, E.: On hyperbolic divided differences and the Nevanlinna-Pick problem. Comput. Methods Funct. Theory 9, 391–405 (2009) MathSciNetzbMATHGoogle Scholar
  2. 2.
    Beardon, A.F., Minda, D.: A multi-point Schwarz-Pick lemma. J. Anal. Math. 92, 81–104 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cho, K.Y., Kim, S.-A., Sugawa, T.: On a multi-point Schwarz-Pick lemma. arXiv:1102.0337v1 [math.CV]
  4. 4.
    Garnett, J.B.: Bounded Analytic Functions. Graduate Texts in Mathematics, vol. 236. Springer, New York (2007) Google Scholar
  5. 5.
    Kim, S.-A., Sugawa, T.: Invariant differential operators associated with a conformal metric. Mich. Math. J. 55(2), 459–479 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Peschl, E.: Les invariants différentiels non holomorphes et leur rôle dans la théorie des fonctions. Rend. Semin. Mat. Messina 1, 100–108 (1955) MathSciNetGoogle Scholar
  7. 7.
    Rivard, P.: A Schwarz-Pick theorem for higher-order hyperbolic derivatives. Proc. Am. Math. Soc. 139, 209–217 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Rivard, P.: Some applications of higher-order hyperbolic derivatives. Complex Anal. Oper. Theory. doi: 10.1007/s11785-011-0172-z
  9. 9.
    Rivard, P.: Sur la théorie des dérivées hyperboliques. Doctoral thesis, Université Laval (2011) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Département de mathématiques et de statistiqueUniversité LavalQuébecCanada

Personalised recommendations