NCX1: Mechanism of Transport

  • Michela OttoliaEmail author
  • Kenneth D. Philipson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 961)


The plasma membrane Na+/Ca2+ exchanger (NCX) plays a critical role in the maintenance of Ca2+ homeostasis in a variety of tissues. NCX accomplishes this task by either lowering or increasing the intracellular Ca2+ concentration, a process which depends on electrochemical gradients. During each cycle, three Na+ are transported in the opposite direction to one Ca2+, resulting in an electrogenic transport that can be measured as an ionic current.

The residues involved in ion translocation are unknown. A residue thought to be important for Na+ and/or Ca2+ transport, Ser110, was replaced with a cysteine, and the properties of the resulting exchanger mutant were analyzed using the giant patch technique. Data indicate that this residue, located in transmembrane segment 2 (part of the α-1 repeat), is important for both Na+ and Ca2+ translocations. Using cysteine susceptibility analysis, we demonstrated that Ser110 is exposed to the cytoplasm when the exchanger is in the inward state configuration.


Sodium-calcium exchange α repeats Ion translocation 


  1. H.F. Altimimi, E.H. Fung, R.J. Winkfein, P.P. Schnetkamp, Residues contributing to the Na+-binding pocket of the SLC24 Na+/Ca2+-K+ Exchanger NCKX2. J. Biol. Chem. 285, 15245–15255 (2010)PubMedCrossRefGoogle Scholar
  2. E.L. Compton, E.M. Taylor, J.A. Mindell, The 3-4 loop of an archaeal glutamate transporter homolog experiences ligand-induced structural changes and is essential for transport. Proc. Natl. Acad. Sci. U. S. A. 107, 12840–12845 (2010)PubMedCrossRefGoogle Scholar
  3. D.W. Hilgemann, A. Collins, D.P. Cash, G.A. Nagel, Cardiac Na+-Ca2+ exchange system in giant membrane patches. Ann. N. Y. Acad. Sci. 639, 126–139 (1991a)PubMedCrossRefGoogle Scholar
  4. D.W. Hilgemann, D.A. Nicoll, K.D. Philipson, Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger. Nature 35, 715–718 (1991b)CrossRefGoogle Scholar
  5. T. Iwamoto, T.Y. Nakamura, Y. Pan, A. Uehara, I. Imanaga, M. Shigekawa, Unique topology of the internal repeats in the cardiac Na+/Ca2+ exchanger. FEBS Lett. 446, 264–268 (1999)PubMedCrossRefGoogle Scholar
  6. T. Iwamoto, A. Uehara, I. Imanaga, M. Shigekawa, The Na+/Ca2+ exchanger NCX1 has oppositely oriented reentrant loop domains that contain conserved aspartic acids whose mutation alters its apparent Ca2+ affinity. J. Biol. Chem. 275, 38571–38580 (2000)PubMedCrossRefGoogle Scholar
  7. H. Krishnamurthy, C.L. Piscitelli, E. Gouaux, Unlocking the molecular secrets of sodium-coupled transporters. Nature 459, 347–355 (2009)PubMedCrossRefGoogle Scholar
  8. S. Matsuoka, D.W. Hilgemann, Steady-state and dynamic properties of cardiac sodium-calcium exchange. Ion and voltage dependencies of the transport cycle. J. Gen. Physiol. 100, 963–1001 (1992)PubMedCrossRefGoogle Scholar
  9. D.A. Nicoll, S. Longoni, K.D. Philipson, Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250, 562–565 (1990)PubMedCrossRefGoogle Scholar
  10. D.A. Nicoll, L.V. Hryshko, S. Matsuoka, J.S. Frank, K.D. Philipson, Mutation of amino acid residues in the putative transmembrane segments of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 271, 13385–13391 (1996)PubMedCrossRefGoogle Scholar
  11. D.A. Nicoll, M. Ottolia, L. Lu, Y. Lu, K.D. Philipson, A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 274, 910–917 (1999)PubMedCrossRefGoogle Scholar
  12. M. Ottolia, D.A. Nicoll, K.D. Philipson, Mutational analysis of the alpha-1 repeat of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 280, 1061–1069 (2005)PubMedCrossRefGoogle Scholar
  13. K.D. Philipson, D.A. Nicoll, M. Ottolia, B.D. Quednau, H. Reuter, S. John, Z. Qiu, The Na+/Ca2+ exchange molecule: an overview. Ann. N. Y. Acad. Sci. 976, 1–10 (2002)PubMedCrossRefGoogle Scholar
  14. S.M. Pogwizd, D.M. Bers, Na/Ca exchange in heart failure: contractile dysfunction and arrhythmogenesis. Ann. N. Y. Acad. Sci. 976, 454–465 (2002)PubMedCrossRefGoogle Scholar
  15. Z. Qiu, D.A. Nicoll, K.D. Philipson, Helix packing of functionally important regions of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 276, 194–199 (2001)PubMedCrossRefGoogle Scholar
  16. E.M. Schwarz, S. Benzer, Calx, a Na+-Ca2+ exchanger gene of Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 94, 10249–10254 (1997)PubMedCrossRefGoogle Scholar
  17. E. Schwarz, S. Benzer, The recently reported NIbeta domain is already known as the Calx-beta motif. Trends Biochem. Sci. 24, 260 (1999)PubMedCrossRefGoogle Scholar
  18. M. Shigekawa, T. Iwamoto, A. Uehara, S. Kita, Probing ion binding sites in the Na+/Ca2+ exchanger. Ann. N. Y. Acad. Sci. 976, 19–30 (2002)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Physiology and the Cardiovascular Research LaboratoryDavid Geffen School of Medicine at UCLA, Cardiovascular Research Laboratory MRL 3-645Los AngelesUSA

Personalised recommendations