Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 961))

Abstract

Acid-sensing ion channels (ASICs), a novel family of proton-gated amiloride-sensitive cation channels, are expressed primarily in neurons of peripheral sensory and central nervous systems. Recent studies have shown that activation of ASICs, particularly the ASIC1a channels, plays a critical role in neuronal injury associated with neurological disorders such as brain ischemia, multiple sclerosis, and spinal cord injury. In normal conditions in vitro, ASIC1a channels desensitize rapidly in the presence of a continuous acidosis or following a preexposure to minor pH drop, raising doubt for their contributions to the acidosis-mediated neuronal injury. It is now known that the properties of ASICs can be dramatically modulated by signaling molecules or biochemical changes associated with pathological conditions. Modulation of ASICs by these molecules can lead to dramatically enhanced and/or prolonged activities of these channels, thus promoting their pathological functions. Understanding of how ASICs behave in pathological conditions may help define new strategies for the treatment and/or prevention of neuronal injury associated with various neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • N.J. Allen, D. Attwell, Modulation of ASIC channels in rat cerebellar Purkinje neurons by ischemia-related signals. J. Physiol. 543, 521–529 (2002)

    Article  PubMed  CAS  Google Scholar 

  • D.R. Alvarez, C.M. Canessa, G.K. Fyfe, P. Zhang, Structure and regulation of amiloride-sensitive sodium channels. Annu. Rev. Physiol. 62, 573–594 (2000)

    Article  Google Scholar 

  • P. Angelova, W. Muller, Oxidative modulation of the transient potassium current IA by intracellular arachidonic acid in rat CA1 pyramidal neurons. Eur. J. Neurosci. 23, 2375–2384 (2006)

    Article  PubMed  Google Scholar 

  • C.C. Askwith, C. Cheng, M. Ikuma, C. Benson, M.P. Price, M.J. Welsh, Neuropeptide FF and FMRFamide potentiate acid-evoked currents from sensory neurons and proton-gated DEG/ENaC channels. Neuron 26, 133–141 (2000)

    Article  PubMed  CAS  Google Scholar 

  • E. Babini, M. Paukert, H.S. Geisler, S. Grunder, Alternative splicing and interaction with di- and polyvalent cations control the dynamic range of acid-sensing ion channel 1 (ASIC1). J. Biol. Chem. 277, 41597–41603 (2002)

    Article  PubMed  CAS  Google Scholar 

  • E.L. Bassler, T.J. Ngo-Anh, H.S. Geisler, J.P. Ruppersberg, S. Grunder, Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J. Biol. Chem. 276, 33782–33787 (2001)

    Article  PubMed  CAS  Google Scholar 

  • C.J. Benson, S.P. Eckert, E.W. McCleskey, Acid-evoked currents in cardiac sensory neurons: a possible mediator of myocardial ischemic sensation. Circ. Res. 84, 921–928 (1999)

    Article  PubMed  CAS  Google Scholar 

  • M. Benveniste, R. Dingledine, Limiting stroke-induced damage by targeting an acid channel. N. Engl. J. Med. 352, 85–86 (2005)

    Article  PubMed  CAS  Google Scholar 

  • M. Benveniste, M.L. Mayer, Multiple effects of spermine on N-methyl-D-aspartic acid receptor responses of rat cultured hippocampal neurones. J. Physiol. 464, 131–163 (1993)

    PubMed  CAS  Google Scholar 

  • S. Bevan, J. Yeats, Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurones. J. Physiol. 433, 145–161 (1991)

    PubMed  CAS  Google Scholar 

  • C.J. Bohlen, A.T. Chesler, R. Sharif-Naeini, K.F. Medzihradszky, S. Zhou, D. King, E.E. Sanchez, A.L. Burlingame, A.I. Basbaum, D. Julius, A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479, 410–414 (2011)

    Article  PubMed  CAS  Google Scholar 

  • K.M. Boje, P.K. Arora, Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 587, 250–256 (1992)

    Article  PubMed  CAS  Google Scholar 

  • J.P. Bolanos, A. Almeida, Roles of nitric oxide in brain hypoxia-ischemia. Biochim. Biophys. Acta 1411, 415–436 (1999)

    Article  PubMed  CAS  Google Scholar 

  • H. Cadiou, M. Studer, N.G. Jones, E.S. Smith, A. Ballard, S.B. McMahon, P.A. McNaughton, Modulation of acid-sensing ion channel activity by nitric oxide. J. Neurosci. 27, 13251–13260 (2007)

    Article  PubMed  CAS  Google Scholar 

  • M. Casado, P. Ascher, Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: common features with mechanosensitivity [in process citation]. J. Physiol. 513, 317–330 (1998)

    Article  PubMed  CAS  Google Scholar 

  • S. Catarsi, K. Babinski, P. Seguela, Selective modulation of heteromeric ASIC proton-gated channels by neuropeptide FF. Neuropharmacology 41, 592–600 (2001)

    Article  PubMed  CAS  Google Scholar 

  • S. Chai, M. Li, D. Branigan, Z.G. Xiong, R.P. Simon, Activation of acid-sensing ion channel 1a (ASIC1a) by surface trafficking. J. Biol. Chem. 285, 13002–13011 (2010)

    Article  PubMed  CAS  Google Scholar 

  • C.C. Chen, A. Zimmer, W.H. Sun, J. Hall, M.J. Brownstein, A. Zimmer, A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc. Natl. Acad. Sci. U. S. A. 99, 8992–8997 (2002)

    PubMed  CAS  Google Scholar 

  • M. Chesler, The regulation and modulation of pH in the nervous system. Prog. Neurobiol. 34, 401–427 (1990)

    Article  PubMed  CAS  Google Scholar 

  • A. Chraibi, V. Vallet, D. Firsov, S.K. Hess, J.D. Horisberger, Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes. J. Gen. Physiol. 111, 127–138 (1998)

    Article  PubMed  CAS  Google Scholar 

  • J. de Weille, F. Bassilana, Dependence of the acid-sensitive ion channel, ASIC1a, on extracellular Ca2+ ions. Brain Res. 900, 277–281 (2001)

    Article  PubMed  Google Scholar 

  • E. Deval, J. Noel, N. Lay, A. Alloui, S. Diochot, V. Friend, M. Jodar, M. Lazdunski, E. Lingueglia, ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J. 27, 3047–3055 (2008)

    Article  PubMed  CAS  Google Scholar 

  • B. Duan, Y.Z. Wang, T. Yang, X.P. Chu, Y. Yu, Y. Huang, H. Cao, J. Hansen, R.P. Simon, M.X. Zhu, Z.G. Xiong, T.L. Xu, Extracellular spermine exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. J. Neurosci. 31, 2101–2112 (2011)

    Article  PubMed  CAS  Google Scholar 

  • A. Ekholm, T. Kristian, B.K. Siesjo, Influence of hyperglycemia and of hypercapnia on cellular calcium transients during reversible brain ischemia. Exp. Brain Res. 104, 462–466 (1995)

    Article  PubMed  CAS  Google Scholar 

  • M. Ettaiche, E. Deval, M. Cougnon, M. Lazdunski, N. Voilley, Silencing acid-sensing ion channel 1a alters cone-mediated retinal function. J. Neurosci. 26, 5800–5809 (2006)

    Article  PubMed  CAS  Google Scholar 

  • A.A. Farooqui, L.A. Horrocks, Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12, 245–260 (2006)

    Article  PubMed  CAS  Google Scholar 

  • A.A. Farooqui, W.Y. Ong, L.A. Horrocks, Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58, 591–620 (2006)

    Article  PubMed  CAS  Google Scholar 

  • D.H. Feldman, M. Horiuchi, K. Keachie, E. McCauley, P. Bannerman, A. Itoh, T. Itoh, D. Pleasure, Characterization of acid-sensing ion channel expression in oligodendrocyte-lineage cells. Glia 56, 1238–1249 (2008)

    Article  PubMed  Google Scholar 

  • M.A. Friese, M.J. Craner, R. Etzensperger, S. Vergo, J.A. Wemmie, M.J. Welsh, A. Vincent, L. Fugger, Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat. Med. 13, 1483–1489 (2007)

    Article  PubMed  CAS  Google Scholar 

  • J. Gao, L.J. Wu, L. Xu, T.L. Xu, Properties of the proton-evoked currents and their modulation by Ca2+ and Zn2+ in the acutely dissociated hippocampus CA1 neurons. Brain Res. 1017, 197–207 (2004)

    Article  PubMed  CAS  Google Scholar 

  • J. Gao, B. Duan, D.G. Wang, X.H. Deng, G.Y. Zhang, L. Xu, T.L. Xu, Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48, 635–646 (2005)

    Article  PubMed  CAS  Google Scholar 

  • M.B. Gingrich, S.F. Traynelis, Serine proteases and brain damage – is there a link? Trends Neurosci. 23, 399–407 (2000)

    Article  PubMed  CAS  Google Scholar 

  • S.C. Grifoni, N.L. Jernigan, G. Hamilton, H.A. Drummond, ASIC proteins regulate smooth muscle cell migration. Microvasc. Res. 75, 202–210 (2008)

    Article  PubMed  CAS  Google Scholar 

  • A.J. Hansen, T. Zeuthen, Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol. Scand. 113, 437–445 (1981)

    Article  PubMed  CAS  Google Scholar 

  • K.F. Hauser, J.K. Foldes, C.S. Turbek, Dynorphin A (1–13) neurotoxicity in vitro: opioid and non-opioid mechanisms in mouse spinal cord neurons. Exp. Neurol. 160, 361–375 (1999)

    Article  PubMed  CAS  Google Scholar 

  • P. Hess, J.B. Lansman, R.W. Tsien, Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J. Gen. Physiol. 88, 293–319 (1986)

    Article  PubMed  CAS  Google Scholar 

  • L. Hillered, M.L. Smith, B.K. Siesjo, Lactic acidosis and recovery of mitochondrial function following forebrain ischemia in the rat. J. Cereb. Blood Flow Metab. 5, 259–266 (1985)

    Article  PubMed  CAS  Google Scholar 

  • J.C. Holt, M. Lioudyno, G. Athas, M.M. Garcia, P. Perin, P.S. Guth, The effect of proteolytic enzymes on the alpha9-nicotinic receptor-mediated response in isolated frog vestibular hair cells. Hear. Res. 152, 25–42 (2001)

    Article  PubMed  CAS  Google Scholar 

  • H.Z. Hu, R. Xiao, C. Wang, N. Gao, C.K. Colton, J.D. Wood, M.X. Zhu, Potentiation of TRPV3 channel function by unsaturated fatty acids. J. Cell. Physiol. 208, 201–212 (2006)

    Article  PubMed  CAS  Google Scholar 

  • Y. Huang, J.O. McNamara, Ischemic stroke: “acidotoxicity” is a perpetrator. Cell 118, 665–666 (2004)

    Article  PubMed  CAS  Google Scholar 

  • C. Huang, Z.L. Hu, W.N. Wu, D.F. Yu, Q.J. Xiong, J.R. Song, Q. Shu, H. Fu, F. Wang, J.G. Chen, Existence and distinction of acid-evoked currents in rat astrocytes. Glia 58, 1415–1424 (2010)

    PubMed  Google Scholar 

  • D.C. Immke, E.W. McCleskey, Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat. Neurosci. 4, 869–870 (2001)

    Article  PubMed  CAS  Google Scholar 

  • D.C. Immke, E.W. McCleskey, Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade. Neuron 37, 75–84 (2003)

    Article  PubMed  CAS  Google Scholar 

  • S.R. Jaffrey, H. Erdjument-Bromage, C.D. Ferris, P. Tempst, S.H. Snyder, Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat. Cell Biol. 3, 193–197 (2001)

    Article  PubMed  CAS  Google Scholar 

  • H. Jahr, M. van Driel, G.J. van Osch, H. Weinans, J.P. van Leeuwen, Identification of acid-sensing ion channels in bone. Biochem. Biophys. Res. Commun. 337, 349–354 (2005)

    Article  PubMed  CAS  Google Scholar 

  • J. Jasti, H. Furukawa, E.B. Gonzales, E. Gouaux, Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449, 316–323 (2007)

    Article  PubMed  CAS  Google Scholar 

  • S.K. Jetti, S.M. Swain, S. Majumder, S. Chatterjee, V. Poornima, A.K. Bera, Evaluation of the role of nitric oxide in acid sensing ion channel mediated cell death. Nitric Oxide 22, 213–219 (2010)

    Article  PubMed  CAS  Google Scholar 

  • T.D. Johnson, Polyamines and cerebral ischemia. Prog. Drug Res. 50, 193–258 (1998)

    Article  PubMed  CAS  Google Scholar 

  • H. Kalimo, S. Rehncrona, B. Soderfeldt, Y. Olsson, B.K. Siesjo, Brain lactic acidosis and ischemic cell damage: 2. Histopathology. J. Cereb. Blood Flow Metab. 1, 313–327 (1981)

    Article  PubMed  CAS  Google Scholar 

  • S. Keros, C.J. McBain, Arachidonic acid inhibits transient potassium currents and broadens action potentials during electrographic seizures in hippocampal pyramidal and inhibitory interneurons. J. Neurosci. 17, 3476–3487 (1997)

    PubMed  CAS  Google Scholar 

  • M.S. Kindy, Y. Hu, R.J. Dempsey, Blockade of ornithine decarboxylase enzyme protects against ischemic brain damage. J. Cereb. Blood Flow Metab. 14, 1040–1045 (1994)

    Article  PubMed  CAS  Google Scholar 

  • O. Krishtal, The ASICs: signaling molecules? Modulators? Trends Neurosci. 26, 477–483 (2003)

    Article  PubMed  CAS  Google Scholar 

  • O.A. Krishtal, V.I. Pidoplichko, A receptor for protons in the membrane of sensory neurons may participate in nociception. Neuroscience 6, 2599–2601 (1981)

    Article  PubMed  CAS  Google Scholar 

  • D.R. LeMay, L. Gehua, G.B. Zelenock, L.G. D’Alecy, Insulin administration protects neurologic function in cerebral ischemia in rats. Stroke 19, 1411–1419 (1988)

    Article  PubMed  CAS  Google Scholar 

  • J. Li, K.M. Doyle, T. Tatlisumak, Polyamines in the brain: distribution, biological interactions, and their potential therapeutic role in brain ischaemia. Curr. Med. Chem. 14, 1807–1813 (2007)

    Article  PubMed  CAS  Google Scholar 

  • M.H. Li, K. Inoue, H.F. Si, Z.G. Xiong, Calcium-permeable ion channels involved in glutamate receptor-independent ischemic brain injury. Acta Pharmacol. Sin. 32, 734–740 (2011)

    Article  PubMed  CAS  Google Scholar 

  • W. Lin, T. Ogura, S.C. Kinnamon, Acid-activated cation currents in rat vallate taste receptor cells. J. Neurophysiol. 88, 133–141 (2002)

    PubMed  CAS  Google Scholar 

  • E. Lingueglia, E. Deval, M. Lazdunski, FMRFamide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRFamide and related peptides. Peptides 27, 1138–1152 (2006)

    Article  PubMed  CAS  Google Scholar 

  • B. Ljunggren, K. Norberg, B.K. Siesjo, Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res. 77, 173–186 (1974)

    Article  PubMed  CAS  Google Scholar 

  • M. Mazzuca, C. Heurteaux, A. Alloui, S. Diochot, A. Baron, N. Voilley, N. Blondeau, P. Escoubas, A. Gelot, A. Cupo, A. Zimmer, A.M. Zimmer, A. Eschalier, M. Lazdunski, A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nat. Neurosci. 10, 943–945 (2007)

    Article  PubMed  CAS  Google Scholar 

  • O. Mignen, J.L. Thompson, T.J. Shuttleworth, Arachidonate-regulated Ca2+-selective (ARC) channel activity is modulated by phosphorylation and involves an A-kinase anchoring protein. J. Physiol. 567, 787–798 (2005)

    Article  PubMed  CAS  Google Scholar 

  • B. Miller, M. Sarantis, S.F. Traynelis, D. Attwell, Potentiation of NMDA receptor currents by arachidonic acid. Nature 355, 722–725 (1992)

    Article  PubMed  CAS  Google Scholar 

  • A.R. Muralikrishna, J.F. Hatcher, Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic. Biol. Med. 40, 376–387 (2006)

    Article  CAS  Google Scholar 

  • N. Nagano, Y. Imaizumi, M. Watanabe, Modulation of calcium channel currents by arachidonic acid in single smooth muscle cells from vas deferens of the guinea-pig. Br. J. Pharmacol. 116, 1887–1893 (1995)

    Article  PubMed  CAS  Google Scholar 

  • M. Nedergaard, R.P. Kraig, J. Tanabe, W.A. Pulsinelli, Dynamics of interstitial and intracellular pH in evolving brain infarct. Am. J. Physiol. 260, R581–R588 (1991)

    PubMed  CAS  Google Scholar 

  • O. Nicole, F. Docagne, C. Ali, I. Margaill, P. Carmeliet, E.T. MacKenzie, D. Vivien, A. Buisson, The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat. Med. 7, 59–64 (2001)

    Article  PubMed  CAS  Google Scholar 

  • A.J. Page, S.M. Brierley, C.M. Martin, M.P. Price, E. Symonds, R. Butler, J.A. Wemmie, L.A. Blackshaw, Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 54, 1408–1415 (2005)

    Article  PubMed  CAS  Google Scholar 

  • P. Paoletti, P. Ascher, Mechanosensitivity of NMDA receptors in cultured mouse central neurons. Neuron 13, 645–655 (1994)

    Article  PubMed  CAS  Google Scholar 

  • M. Paukert, E. Babini, M. Pusch, S. Grunder, Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: implications for channel gating. J. Gen. Physiol. 124, 383–394 (2004)

    Article  PubMed  CAS  Google Scholar 

  • G. Pignataro, O. Cuomo, E. Esposito, R. Sirabella, G. Di Renzo, L. Annunziato, ASIC1a contributes to neuroprotection elicited by ischemic preconditioning and postconditioning. Int. J. Physiol. Pathophysiol. Pharmacol. 3, 1–8 (2011)

    PubMed  CAS  Google Scholar 

  • O. Poirot, M. Vukicevic, A. Boesch, S. Kellenberger, Selective regulation of acid-sensing ion channel 1 by serine proteases. J. Biol. Chem. 279, 38448–38457 (2004)

    Article  PubMed  CAS  Google Scholar 

  • M.P. Price, G.R. Lewin, S.L. McIlwrath, C. Cheng, J. Xie, P.A. Heppenstall, C.L. Stucky, A.G. Mannsfeldt, T.J. Brennan, H.A. Drummond, J. Qiao, C.J. Benson, D.E. Tarr, R.F. Hrstka, B. Yang, R.A. Williamson, M.J. Welsh, The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407, 1007–1011 (2000)

    Article  PubMed  CAS  Google Scholar 

  • M.P. Price, S.L. McIlwrath, J. Xie, C. Cheng, J. Qiao, D.E. Tarr, K.A. Sluka, T.J. Brennan, G.R. Lewin, M.J. Welsh, The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32, 1071–1083 (2001)

    Article  PubMed  CAS  Google Scholar 

  • S. Rehncrona, Brain acidosis. Ann. Emerg. Med. 14, 770–776 (1985)

    Article  PubMed  CAS  Google Scholar 

  • S. Rehncrona, E. Westerberg, B. Akesson, B.K. Siesjo, Brain cortical fatty acids and phospholipids during and following complete and severe incomplete ischemia. J. Neurochem. 38, 84–93 (1982)

    Article  PubMed  CAS  Google Scholar 

  • S. Rehncrona, H.N. Hauge, B.K. Siesjo, Enhancement of iron-catalyzed free radical formation by acidosis in brain homogenates: differences in effect by lactic acid and CO2. J. Cereb. Blood Flow Metab. 9, 65–70 (1989)

    Article  PubMed  CAS  Google Scholar 

  • E. Revici, E. Stoopen, E. Frenk, R.A. Ravich, The painful focus. II. The relation of pain to local physico-chemical changes. Bull. Inst. Appl. Biol. 1, 21 (1949)

    Google Scholar 

  • D.M. Rock, R.L. Macdonald, Polyamine regulation of N-methyl-D-aspartate receptor channels. Annu. Rev. Pharmacol. Toxicol. 35, 463–482 (1995)

    Article  PubMed  CAS  Google Scholar 

  • N. Sang, C. Chen, Lipid signaling and synaptic plasticity. Neuroscientist 12, 425–434 (2006)

    Article  PubMed  CAS  Google Scholar 

  • J.B. Schulz, R.T. Matthews, T. Klockgether, J. Dichgans, M.F. Beal, The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases. Mol. Cell. Biochem. 174, 193–197 (1997)

    Article  PubMed  CAS  Google Scholar 

  • A. Schurr, Lactate, glucose and energy metabolism in the ischemic brain. Int. J. Mol. Med. 10, 131–136 (2002)

    PubMed  CAS  Google Scholar 

  • A. Schurr, B.M. Rigor, Brain anaerobic lactate production: a suicide note or a survival kit? Dev. Neurosci. 20, 348–357 (1998)

    Article  PubMed  CAS  Google Scholar 

  • T.W. Sherwood, C.C. Askwith, Dynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death. J. Neurosci. 29, 14371–14380 (2009)

    Article  PubMed  CAS  Google Scholar 

  • B.K. Siesjo, Acidosis and ischemic brain damage. Neurochem. Pathol. 9, 31–88 (1988)

    PubMed  CAS  Google Scholar 

  • B.K. Siesjo, K. Katsura, Ischemic brain damage: focus on lipids and lipid mediators. Adv. Exp. Med. Biol. 318, 41–56 (1992)

    Article  PubMed  CAS  Google Scholar 

  • B.K. Siesjo, K. Katsura, T. Kristian, Acidosis-related damage. Adv. Neurol. 71, 209–233 (1996)

    PubMed  CAS  Google Scholar 

  • K.A. Sluka, M.P. Price, N.M. Breese, C.L. Stucky, J.A. Wemmie, M.J. Welsh, Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 106, 229–239 (2003)

    Article  PubMed  CAS  Google Scholar 

  • E.S. Smith, H. Cadiou, P.A. McNaughton, Arachidonic acid potentiates acid-sensing ion channels in rat sensory neurons by a direct action. Neuroscience 145, 686–698 (2007)

    Article  PubMed  CAS  Google Scholar 

  • R.A. Star, Nitric oxide. Am. J. Med. Sci. 306, 348–358 (1993)

    Article  PubMed  CAS  Google Scholar 

  • S.P. Sutherland, S.P. Cook, E.W. McCleskey, Chemical mediators of pain due to tissue damage and ischemia. Prog. Brain Res. 129, 21–38 (2000)

    Article  PubMed  CAS  Google Scholar 

  • R.A. Swanson, K. Farrell, R.P. Simon, Acidosis causes failure of astrocyte glutamate uptake during hypoxia. J. Cereb. Blood Flow Metab. 15, 417–424 (1995)

    Article  PubMed  CAS  Google Scholar 

  • G.C. Tombaugh, R.M. Sapolsky, Evolving concepts about the role of acidosis in ischemic neuropathology. J. Neurochem. 61, 793–803 (1993)

    Article  PubMed  CAS  Google Scholar 

  • A. Toninello, M. Salvi, B. Mondovi, Interaction of biologically active amines with mitochondria and their role in the mitochondrial-mediated pathway of apoptosis. Curr. Med. Chem. 11, 2349–2374 (2004)

    Article  PubMed  CAS  Google Scholar 

  • S. Ugawa, Identification of sour-taste receptor genes. Anat. Sci. Int. 78, 205–210 (2003)

    Article  PubMed  CAS  Google Scholar 

  • S. Ugawa, T. Ueda, Y. Ishida, M. Nishigaki, Y. Shibata, S. Shimada, Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J. Clin. Invest. 110, 1185–1190 (2002)

    PubMed  CAS  Google Scholar 

  • S. Ugawa, T. Yamamoto, T. Ueda, Y. Ishida, A. Inagaki, M. Nishigaki, S. Shimada, Amiloride-insensitive currents of the acid-sensing ion channel-2a (ASIC2a)/ASIC2b heteromeric sour-taste receptor channel. J. Neurosci. 23, 3616–3622 (2003)

    PubMed  CAS  Google Scholar 

  • D. Vivien, A. Buisson, Serine protease inhibitors: novel therapeutic targets for stroke? J. Cereb. Blood Flow Metab. 20, 755–764 (2000)

    Article  PubMed  CAS  Google Scholar 

  • N. Voilley, Acid-sensing ion channels (ASICs): new targets for the analgesic effects of non-steroid anti-Inflammatory drugs (NSAIDs). Curr. Drug Targets Inflamm. Allergy 3, 71–79 (2004)

    Article  PubMed  CAS  Google Scholar 

  • M. Vukicevic, G. Weder, A. Boillat, A. Boesch, S. Kellenberger, Trypsin cleaves acid-sensing ion channel 1a in a domain that is critical for channel gating. J. Biol. Chem. 281, 714–722 (2006)

    Article  PubMed  CAS  Google Scholar 

  • R. Waldmann, G. Champigny, F. Bassilana, C. Heurteaux, M. Lazdunski, A proton-gated cation channel involved in acid-sensing. Nature 386, 173–177 (1997)

    Article  PubMed  CAS  Google Scholar 

  • W. Wang, B. Duan, H. Xu, L. Xu, T.L. Xu, Calcium-permeable acid-sensing ion channel is a molecular target of the neurotoxic metal ion lead. J. Biol. Chem. 281, 2497–2505 (2006)

    Article  PubMed  CAS  Google Scholar 

  • J.A. Wemmie, J. Chen, C.C. Askwith, A.M. Hruska-Hageman, M.P. Price, B.C. Nolan, P.G. Yoder, E. Lamani, T. Hoshi, J.H. Freeman, M.J. Welsh, The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34, 463–477 (2002)

    Article  PubMed  CAS  Google Scholar 

  • J.A. Wemmie, C.C. Askwith, E. Lamani, M.D. Cassell, J.H. Freeman Jr., M.J. Welsh, Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J. Neurosci. 23, 5496–5502 (2003)

    PubMed  CAS  Google Scholar 

  • J.A. Wemmie, M.P. Price, M.J. Welsh, Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci. 29, 578–586 (2006)

    Article  PubMed  CAS  Google Scholar 

  • M. Wozniak, B. Rydzewski, S.P. Baker, M.K. Raizada, The cellular and physiological actions of insulin in the central nervous system. Neurochem. Int. 22, 1–10 (1993)

    Article  PubMed  CAS  Google Scholar 

  • L.J. Wu, B. Duan, Y.D. Mei, J. Gao, J.G. Chen, M. Zhuo, L. Xu, M. Wu, T.L. Xu, Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J. Biol. Chem. 279, 43716–43724 (2004)

    Article  PubMed  CAS  Google Scholar 

  • J. Xie, M.P. Price, J.A. Wemmie, C.C. Askwith, M.J. Welsh, ASIC3 and ASIC1 mediate FMRFamide-related peptide enhancement of H+-gated currents in cultured dorsal root ganglion neurons. J. Neurophysiol. 89, 2459–2465 (2003)

    Article  PubMed  CAS  Google Scholar 

  • Z.G. Xiong, J.F. MacDonald, Sensing of extracellular calcium by neurones. Can. J. Physiol. Pharmacol. 77, 715–721 (1999)

    Article  PubMed  CAS  Google Scholar 

  • Z.G. Xiong, X.M. Zhu, X.P. Chu, M. Minami, J. Hey, W.L. Wei, J.F. MacDonald, J.A. Wemmie, M.P. Price, M.J. Welsh, R.P. Simon, Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118, 687–698 (2004)

    Article  PubMed  CAS  Google Scholar 

  • Z.G. Xiong, X.P. Chu, R.P. Simon, Acid sensing ion channels–novel therapeutic targets for ischemic brain injury. Front. Biosci. 12, 1376–1386 (2007)

    Article  PubMed  CAS  Google Scholar 

  • Z.G. Xiong, G. Pignataro, M. Li, S.Y. Chang, R.P. Simon, Acid-sensing ion channels (ASICs) as pharmacological targets for neurodegenerative diseases. Curr. Opin. Pharmacol. 8, 25–32 (2008)

    Article  PubMed  CAS  Google Scholar 

  • O. Yermolaieva, A.S. Leonard, M.K. Schnizler, F.M. Abboud, M.J. Welsh, Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc. Natl. Acad. Sci. U. S. A. 101, 6752–6757 (2004)

    Article  PubMed  CAS  Google Scholar 

  • P. Zhang, F.J. Sigworth, C.M. Canessa, Gating of acid-sensitive ion channel-1: release of Ca2+ block vs. allosteric mechanism. J. Gen. Physiol. 127, 109–117 (2006)

    Article  PubMed  CAS  Google Scholar 

  • W. Zhou, S.W. Jones, Surface charge and calcium channel saturation in bullfrog sympathetic neurons. J. Gen. Physiol. 105, 441–462 (1995)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

XPC is supported by American Heart Association Scientist Development Grant 0735092 N, University of Missouri Research Board, and University of Missouri-Kansas City School of Medicine start-up funding. The work in ZGX’s lab is supported in part by NIH R01NS047506, R01NS066027, UL1 RR025008, U54 RR026137, AHA 0840132 N, and ALZ IIRG-10-173350.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Ping Chu or Zhi-Gang Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chu, XP., Xiong, ZG. (2013). Acid-Sensing Ion Channels in Pathological Conditions. In: Annunziato, L. (eds) Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications. Advances in Experimental Medicine and Biology, vol 961. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4756-6_36

Download citation

Publish with us

Policies and ethics