Skip to main content

The Application of MicroRNAs in Cancer Diagnostics

  • Chapter
  • First Online:
RNA Interference from Biology to Therapeutics

Abstract

MicroRNAs (miRNAs) play important biological roles in cancer development and progression. During the past decade, widespread use of novel high-throughput technologies for miRNA profiling (e.g., microarrays and next-generation sequencing) has revealed deregulation of miRNA expression as a common hallmark of human cancer. Furthermore, miRNAs have been found to be a new class of promising cancer biomarkers with potential to improve the accuracy of diagnosis and prognosis in several hematologic and solid malignancies, as well as to predict response to specific treatments. Recent studies have identified exosome-associated tumor-derived miRNAs in, e.g., blood samples from cancer patients, suggesting that miRNAs may be useful as circulation biomarkers for noninvasive diagnostic testing. In this chapter, we review the current state of development of miRNAs as cancer biomarkers with examples from common human malignancies and discuss remaining barriers to clinical translation. Finally, we describe new emerging classes of noncoding RNAs, including long noncoding RNAs (lncRNAs), with potential as cancer biomarkers. Conceivably, these could be used in combination with miRNAs in molecular diagnostic tests in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714

    PubMed  CAS  Google Scholar 

  2. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    PubMed  CAS  Google Scholar 

  3. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139

    PubMed  CAS  Google Scholar 

  4. Calin GA et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24):15524–15529

    PubMed  CAS  Google Scholar 

  5. Hu W et al (2010) Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell 38(5):689–699

    PubMed  CAS  Google Scholar 

  6. Cimmino A et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102(39):13944–13949

    PubMed  CAS  Google Scholar 

  7. Sampson VB et al (2007) MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67(20):9762–9770

    PubMed  CAS  Google Scholar 

  8. He L et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134

    PubMed  CAS  Google Scholar 

  9. Voorhoeve PM et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6):1169–1181

    PubMed  CAS  Google Scholar 

  10. Di Leva G, Croce CM (2010) Roles of small RNAs in tumor formation. Trends Mol Med 16(6):257–267

    PubMed  Google Scholar 

  11. Allis CD et al (2007) New nomenclature for chromatin-modifying enzymes. Cell 131(4): 633–636

    PubMed  CAS  Google Scholar 

  12. Fabbri M et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104(40): 15805–15810

    PubMed  CAS  Google Scholar 

  13. Garofalo M, Croce CM (2011) microRNAs: master regulators as potential therapeutics in cancer. Annu Rev Pharmacol Toxicol 51:25–43

    PubMed  CAS  Google Scholar 

  14. Iorio MV et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070

    PubMed  CAS  Google Scholar 

  15. Johnson SM et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5): 635–647

    PubMed  CAS  Google Scholar 

  16. Schetter AJ et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299(4):425–436

    PubMed  CAS  Google Scholar 

  17. Yang N et al (2008) MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res 68(24):10307–10314

    PubMed  CAS  Google Scholar 

  18. Petrocca F et al (2008) E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13(3):272–286

    PubMed  CAS  Google Scholar 

  19. Peter ME (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8(6):843–852

    PubMed  CAS  Google Scholar 

  20. Trang P et al (2010) Regression of murine lung tumors by the let-7 microRNA. Oncogene 29(11):1580–1587

    PubMed  CAS  Google Scholar 

  21. Bonci D et al (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14(11):1271–1277

    PubMed  CAS  Google Scholar 

  22. Finnerty JR et al (2010) The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol 402(3):491–509

    PubMed  CAS  Google Scholar 

  23. Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    PubMed  CAS  Google Scholar 

  24. Bottoni A et al (2005) miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204(1):280–285

    PubMed  CAS  Google Scholar 

  25. Yanaihara N et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198

    PubMed  CAS  Google Scholar 

  26. Volinia S et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261

    PubMed  CAS  Google Scholar 

  27. Pichiorri F et al (2008) MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA 105(35):12885–12890

    PubMed  CAS  Google Scholar 

  28. Poliseno L et al (2010) Identification of the miR-106b 25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3(117):ra29

    PubMed  Google Scholar 

  29. Uziel T et al (2009) The miR-17 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA 106(8):2812–2817

    PubMed  CAS  Google Scholar 

  30. Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133(2):217–222

    PubMed  CAS  Google Scholar 

  31. Xiao C et al (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9(4):405–414

    PubMed  CAS  Google Scholar 

  32. Calin GA et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353(17):1793–1801

    PubMed  CAS  Google Scholar 

  33. Garzon R et al (2008) MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111(6):3183–3189

    PubMed  CAS  Google Scholar 

  34. Garzon R et al (2008) Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA 105(10):3945–3950

    PubMed  CAS  Google Scholar 

  35. Ciafre SA et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351–1358

    PubMed  CAS  Google Scholar 

  36. Jazbutyte V, Thum T (2010) MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets 11(8):926–935

    PubMed  CAS  Google Scholar 

  37. Meng F et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658

    PubMed  CAS  Google Scholar 

  38. Frankel LB et al (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283(2):1026–1033

    PubMed  CAS  Google Scholar 

  39. Zhu S et al (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282(19):14328–14336

    PubMed  CAS  Google Scholar 

  40. Pekarsky Y et al (2006) Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66(24):11590–11593

    PubMed  CAS  Google Scholar 

  41. Zhao JJ et al (2010) microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 115(13):2630–2639

    PubMed  CAS  Google Scholar 

  42. Xiong Y et al (2010) Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 51(3):836–845

    PubMed  CAS  Google Scholar 

  43. Mott JL et al (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26(42):6133–6140

    PubMed  CAS  Google Scholar 

  44. Lujambio A et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105(36):13556–13561

    PubMed  CAS  Google Scholar 

  45. Cole KA et al (2008) A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6(5):735–742

    PubMed  CAS  Google Scholar 

  46. Li N et al (2009) miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett 275(1):44–53

    PubMed  CAS  Google Scholar 

  47. Raver-Shapira N et al (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26(5):731–743

    PubMed  CAS  Google Scholar 

  48. Chang TC et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752

    PubMed  CAS  Google Scholar 

  49. Toyota M et al (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68(11): 4123–4132

    PubMed  CAS  Google Scholar 

  50. Sun F et al (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582(10):1564–1568

    PubMed  CAS  Google Scholar 

  51. Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 105(36):13421–13426

    PubMed  CAS  Google Scholar 

  52. Pigazzi M et al (2009) miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res 69(6):2471–2478

    PubMed  CAS  Google Scholar 

  53. Ostenfeld MS et al (2010) miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene 29(7):1073–1084

    PubMed  CAS  Google Scholar 

  54. Chiyomaru T et al (2011) SWAP70, actin-binding protein, function as an oncogene targeting tumor-suppressive miR-145 in prostate cancer. Prostate doi:10.1002/pros.21372. [Epub ahead of print]

    Google Scholar 

  55. Metzler M et al (2004) High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39(2):167–169

    PubMed  CAS  Google Scholar 

  56. Kluiver J et al (2005) BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207(2):243–249

    PubMed  CAS  Google Scholar 

  57. Borchert GM, Holton NW, Larson ED (2011) Repression of human activation induced cytidine deaminase by miR-93 and miR-155. BMC Cancer 11:347

    PubMed  CAS  Google Scholar 

  58. Pedersen IM et al (2009) Onco-miR-155 targets SHIP1 to promote TNFalpha-dependent growth of B cell lymphomas. EMBO Mol Med 1(5):288–295

    PubMed  CAS  Google Scholar 

  59. le Sage C et al (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26(15):3699–3708

    PubMed  Google Scholar 

  60. Medina R et al (2008) MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res 68(8):2773–2780

    PubMed  CAS  Google Scholar 

  61. Garofalo M et al (2009) miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16(6):498–509

    PubMed  CAS  Google Scholar 

  62. Felli N et al (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102(50):18081–18086

    PubMed  CAS  Google Scholar 

  63. Schaefer A et al (2010) Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126(5):1166–1176

    PubMed  CAS  Google Scholar 

  64. Fornari F et al (2008) MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27(43):5651–5661

    PubMed  CAS  Google Scholar 

  65. Quintavalle C et al (2011) miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPmu. Oncogene 31(7):858–868

    PubMed  Google Scholar 

  66. Kim YK et al (2009) Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37(5):1672–1681

    PubMed  CAS  Google Scholar 

  67. Calin GA et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101(9):2999–3004

    PubMed  CAS  Google Scholar 

  68. Wang D et al (2010) Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets. PLoS One 5(9) pii:e13067

    Google Scholar 

  69. Mishra PJ, Banerjee D, Bertino JR (2008) MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: introducing microRNA pharmacogenomics. Cell Cycle 7(7):853–858

    PubMed  CAS  Google Scholar 

  70. Adams BD, Furneaux H, White BA (2007) The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 21(5):1132–1147

    PubMed  CAS  Google Scholar 

  71. He H et al (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102(52):19075–19080

    PubMed  CAS  Google Scholar 

  72. Gao P et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765

    PubMed  CAS  Google Scholar 

  73. Velu CS, Baktula AM, Grimes HL (2009) Gfi1 regulates miR-21 and miR-196b to control myelopoiesis. Blood 113(19):4720–4728

    PubMed  CAS  Google Scholar 

  74. Yan HL et al (2009) Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 28(18):2719–2732

    PubMed  CAS  Google Scholar 

  75. Suh SO et al (2011) MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis 32(5):772–778

    PubMed  CAS  Google Scholar 

  76. Guil S, Esteller M (2009) DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 41(1):87–95

    PubMed  CAS  Google Scholar 

  77. Weber B et al (2007) Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 6(9):1001–1005

    PubMed  CAS  Google Scholar 

  78. Lehmann U et al (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214(1):17–24

    PubMed  CAS  Google Scholar 

  79. Saito Y et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443

    PubMed  CAS  Google Scholar 

  80. Thomson JM et al (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20(16):2202–2207

    PubMed  CAS  Google Scholar 

  81. Melo SA et al (2010) A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18(4):303–315

    PubMed  CAS  Google Scholar 

  82. Yang W et al (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13(1):13–21

    PubMed  CAS  Google Scholar 

  83. Kawahara Y et al (2007) RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep 8(8):763–769

    PubMed  CAS  Google Scholar 

  84. Kawahara Y et al (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315(5815):1137–1140

    PubMed  CAS  Google Scholar 

  85. Deng S et al (2008) Mechanisms of microRNA deregulation in human cancer. Cell Cycle 7(17):2643–2646

    PubMed  CAS  Google Scholar 

  86. Fabbri M (2010) miRNAs as molecular biomarkers of cancer. Expert Rev Mol Diagn 10(4):435–444

    PubMed  CAS  Google Scholar 

  87. Ferracin M, Veronese A, Negrini M (2010) Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev Mol Diagn 10(3):297–308

    PubMed  CAS  Google Scholar 

  88. Munker R, Calin GA (2011) MicroRNA profiling in cancer. Clin Sci (Lond) 121(4):141–158

    CAS  Google Scholar 

  89. Rosenfeld N et al (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26(4):462–469

    PubMed  CAS  Google Scholar 

  90. Ferdin J, Kunej T, Calin GA (2010) Non-coding RNAs: identification of cancer-associated microRNAs by gene profiling. Technol Cancer Res Treat 9(2):123–138

    PubMed  CAS  Google Scholar 

  91. Kong W et al (2009) Strategies for profiling microRNA expression. J Cell Physiol 218(1):22–25

    PubMed  CAS  Google Scholar 

  92. Liu CG et al (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101(26):9740–9744

    PubMed  CAS  Google Scholar 

  93. Liu CG et al (2008) Expression profiling of microRNA using oligo DNA arrays. Methods 44(1):22–30

    PubMed  Google Scholar 

  94. Yin JQ, Zhao RC, Morris KV (2008) Profiling microRNA expression with microarrays. Trends Biotechnol 26(2):70–76

    PubMed  CAS  Google Scholar 

  95. Li W, Ruan K (2009) MicroRNA detection by microarray. Anal Bioanal Chem 394(4):1117–1124

    PubMed  CAS  Google Scholar 

  96. Chen J et al (2008) Highly sensitive and specific microRNA expression profiling using BeadArray technology. Nucleic Acids Res 36(14):e87

    PubMed  Google Scholar 

  97. Wang H, Ach RA, Curry B (2007) Direct and sensitive miRNA profiling from low-input total RNA. RNA 13(1):151–159

    PubMed  CAS  Google Scholar 

  98. Castoldi M et al (2006) A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12(5):913–920

    PubMed  CAS  Google Scholar 

  99. Git A et al (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16(5):991–1006

    PubMed  CAS  Google Scholar 

  100. Pradervand S et al (2010) Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. Biotechniques 48(3): 219–222

    PubMed  CAS  Google Scholar 

  101. Sato F et al (2009) Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PLoS One 4(5):e5540

    PubMed  Google Scholar 

  102. Yauk CL et al (2010) Cross-platform analysis of global microRNA expression technologies. BMC Genomics 11:330

    PubMed  Google Scholar 

  103. Castoldi M et al (2008) miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc 3(2):321–329

    PubMed  CAS  Google Scholar 

  104. Sempere LF et al (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13

    PubMed  Google Scholar 

  105. Cummins JM et al (2006) The colorectal microRNAome. Proc Natl Acad Sci USA 103(10):3687–3692

    PubMed  CAS  Google Scholar 

  106. Calin GA et al (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101(32):11755–11760

    PubMed  CAS  Google Scholar 

  107. Wach S et al (2012) MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer 130(3):611–621

    PubMed  CAS  Google Scholar 

  108. Chen C et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    PubMed  Google Scholar 

  109. Mestdagh P et al (2008) High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res 36(21):e143

    PubMed  Google Scholar 

  110. Schmittgen TD et al (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44(1):31–38

    PubMed  CAS  Google Scholar 

  111. Benes V, Castoldi M (2010) Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50(4):244–249

    PubMed  CAS  Google Scholar 

  112. Jacobsen N, Andreasen D, Mouritzen P (2011) Profiling microRNAs by real-time PCR. Methods Mol Biol 732:39–54

    PubMed  CAS  Google Scholar 

  113. Schmittgen TD, Lee EJ, Jiang J (2008) High-throughput real-time PCR. Methods Mol Biol 429:89–98

    PubMed  CAS  Google Scholar 

  114. Tombol Z et al (2010) MicroRNA expression profiling in benign (sporadic and hereditary) and recurring adrenal pheochromocytomas. Mod Pathol 23(12):1583–1595

    PubMed  Google Scholar 

  115. Landgraf P et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414

    PubMed  CAS  Google Scholar 

  116. Newman MA, Mani V, Hammond SM (2011) Deep sequencing of microRNA precursors reveals extensive 3’ end modification. RNA 17(10):1795–1803

    PubMed  CAS  Google Scholar 

  117. Jima DD et al (2010) Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs. Blood 116(23):e118–e127

    PubMed  CAS  Google Scholar 

  118. Creighton CJ, Reid JG, Gunaratne PH (2009) Expression profiling of microRNAs by deep sequencing. Brief Bioinform 10(5):490–497

    PubMed  CAS  Google Scholar 

  119. Linsen SE et al (2009) Limitations and possibilities of small RNA digital gene expression profiling. Nat Methods 6(7):474–476

    PubMed  CAS  Google Scholar 

  120. Willenbrock H et al (2009) Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing. RNA 15(11):2028–2034

    PubMed  CAS  Google Scholar 

  121. Mi S et al (2007) MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA 104(50):19971–19976

    PubMed  CAS  Google Scholar 

  122. Fulci V et al (2009) Characterization of B- and T-lineage acute lymphoblastic leukemia by integrated analysis of MicroRNA and mRNA expression profiles. Genes Chromosomes Cancer 48(12):1069–1082

    PubMed  CAS  Google Scholar 

  123. Dyrskjot L et al (2009) Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res 69(11):4851–4860

    PubMed  CAS  Google Scholar 

  124. Schepeler T et al (2008) Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res 68(15):6416–6424

    PubMed  CAS  Google Scholar 

  125. Lebanony D et al (2009) Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol 27(12): 2030–2037

    PubMed  CAS  Google Scholar 

  126. Ueda T et al (2010) Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 11(2):136–146

    PubMed  CAS  Google Scholar 

  127. Guan Y et al (2010) MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance. Clin Cancer Res 16(16):4289–4297

    PubMed  CAS  Google Scholar 

  128. Ji J et al (2009) MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 361(15):1437–1447

    PubMed  CAS  Google Scholar 

  129. Navarro A et al (2009) Regulation of JAK2 by miR-135a: prognostic impact in classic Hodgkin lymphoma. Blood 114(14):2945–2951

    PubMed  CAS  Google Scholar 

  130. Yu SL et al (2008) MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13(1):48–57

    PubMed  CAS  Google Scholar 

  131. Eitan R et al (2009) Tumor microRNA expression patterns associated with resistance to platinum based chemotherapy and survival in ovarian cancer patients. Gynecol Oncol 114(2):253–259

    PubMed  CAS  Google Scholar 

  132. Hwang JH et al (2010) Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 5(5):e10630

    PubMed  Google Scholar 

  133. Giovannetti E et al (2010) MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res 70(11):4528–4538

    PubMed  CAS  Google Scholar 

  134. Gong C et al (2011) Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem 286(21):19127–19137

    PubMed  CAS  Google Scholar 

  135. Ferracin M et al (2010) MicroRNAs involvement in fludarabine refractory chronic lymphocytic leukemia. Mol Cancer 9:123

    PubMed  Google Scholar 

  136. Chiorazzi N, Rai KR, Ferrarini M (2005) Chronic lymphocytic leukemia. N Engl J Med 352(8):804–815

    PubMed  CAS  Google Scholar 

  137. Rossi S et al (2010) microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood 116(6):945–952

    PubMed  CAS  Google Scholar 

  138. Visone R et al (2009) Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood 114(18):3872–3879

    PubMed  CAS  Google Scholar 

  139. Stamatopoulos B et al (2009) microRNA-29c and microRNA-223 down-regulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification. Blood 113(21):5237–5245

    PubMed  CAS  Google Scholar 

  140. Sørensen KD, Ørntoft TF (2010) Discovery of prostate cancer biomarkers by microarray gene expression profiling. Expert Rev Mol Diagn 10(1):49–64

    PubMed  Google Scholar 

  141. Porkka KP et al (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67(13):6130–6135

    PubMed  CAS  Google Scholar 

  142. Ozen M et al (2008) Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27(12):1788–1793

    PubMed  CAS  Google Scholar 

  143. Ambs S et al (2008) Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68(15):6162–6170

    PubMed  CAS  Google Scholar 

  144. Tong AW et al (2009) MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther 16(3):206–216

    PubMed  CAS  Google Scholar 

  145. Spahn M et al (2010) Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int J Cancer 127(2):394–403

    PubMed  CAS  Google Scholar 

  146. Szczyrba J et al (2010) The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res 8(4):529–538

    PubMed  CAS  Google Scholar 

  147. Martens-Uzunova ES et al (2012) Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 31(8):978–991

    PubMed  CAS  Google Scholar 

  148. Prueitt RL et al (2008) Expression of microRNAs and protein-coding genes associated with perineural invasion in prostate cancer. Prostate 68(11):1152–1164

    PubMed  CAS  Google Scholar 

  149. Gandellini P et al (2011) MicroRNAs as new therapeutic targets and tools in cancer. Expert Opin Ther Targets 15(3):265–279

    PubMed  CAS  Google Scholar 

  150. Zheng T et al (2010) Role of microRNA in anticancer drug resistance. Int J Cancer 126(1):2–10

    PubMed  CAS  Google Scholar 

  151. Allen KE, Weiss GJ (2010) Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther 9(12):3126–3136

    PubMed  CAS  Google Scholar 

  152. Hood JL, San Roman S, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71(11):3792–3801

    PubMed  CAS  Google Scholar 

  153. Lawrie CH et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141(5):672–675

    PubMed  Google Scholar 

  154. Parolini I et al (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284(49):34211–34222

    PubMed  CAS  Google Scholar 

  155. Mitchell PS et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518

    PubMed  CAS  Google Scholar 

  156. Chen X et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    PubMed  CAS  Google Scholar 

  157. Turchinovich A et al (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39(16):7223–7233

    PubMed  CAS  Google Scholar 

  158. Arroyo JD et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108(12):5003–5008

    PubMed  CAS  Google Scholar 

  159. Wang K et al (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38(20):7248–7259

    PubMed  CAS  Google Scholar 

  160. Vickers KC et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433

    PubMed  CAS  Google Scholar 

  161. Buschow SI et al (2005) Exosomes contain ubiquitinated proteins. Blood Cells Mol Dis 35(3):398–403

    PubMed  CAS  Google Scholar 

  162. Mathivanan S et al (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9(2):197–208

    PubMed  CAS  Google Scholar 

  163. Shen B et al (2011) Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem 286(16):14383–14395

    PubMed  CAS  Google Scholar 

  164. Fang Y et al (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5(6):e158

    PubMed  Google Scholar 

  165. Gibbings DJ et al (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11(9):1143–1149

    PubMed  CAS  Google Scholar 

  166. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21

    PubMed  CAS  Google Scholar 

  167. Subra C et al (2007) Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89(2):205–212

    PubMed  CAS  Google Scholar 

  168. Ostrowski M et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30, sup pp. 1–13

    PubMed  CAS  Google Scholar 

  169. Hsu C et al (2010) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 189(2):223–232

    PubMed  CAS  Google Scholar 

  170. Kosaka N et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285(23):17442–17452

    PubMed  CAS  Google Scholar 

  171. Savina A et al (2003) Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 278(22):20083–20090

    PubMed  CAS  Google Scholar 

  172. Lehmann BD et al (2008) Senescence-associated exosome release from human prostate cancer cells. Cancer Res 68(19):7864–7871

    PubMed  CAS  Google Scholar 

  173. Fader CM et al (2008) Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic 9(2):230–250

    PubMed  CAS  Google Scholar 

  174. Rialland P et al (2006) BCR-bound antigen is targeted to exosomes in human follicular lymphoma B-cells. Biol Cell 98(8):491–501

    PubMed  CAS  Google Scholar 

  175. Blanchard N et al (2002) TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 168(7):3235–3241

    PubMed  CAS  Google Scholar 

  176. Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    PubMed  CAS  Google Scholar 

  177. Keller S et al (2009) Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett 278(1):73–81

    PubMed  CAS  Google Scholar 

  178. Hong BS et al (2009) Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 10:556

    PubMed  Google Scholar 

  179. Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476

    PubMed  CAS  Google Scholar 

  180. Al-Nedawi K et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624

    PubMed  CAS  Google Scholar 

  181. Ristorcelli E et al (2008) Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. FASEB J 22(9):3358–3369

    PubMed  CAS  Google Scholar 

  182. Huber V et al (2005) Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128(7):1796–1804

    PubMed  CAS  Google Scholar 

  183. Taylor DD, Zacharias W, Gercel-Taylor C (2011) Exosome isolation for proteomic analyses and RNA profiling. Methods Mol Biol 728:235–246

    PubMed  CAS  Google Scholar 

  184. Gonzales PA et al (2009) Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol 20(2):363–379

    PubMed  CAS  Google Scholar 

  185. Balaj L et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180

    PubMed  Google Scholar 

  186. Escola JM et al (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273(32):20121–20127

    PubMed  CAS  Google Scholar 

  187. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579

    PubMed  CAS  Google Scholar 

  188. Lodes MJ et al (2009) Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One 4(7):e6229

    PubMed  Google Scholar 

  189. Kogure T et al (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54(4):1237–1248

    PubMed  CAS  Google Scholar 

  190. Ng EK et al (2009) Differential expression of microRNAs in plasma of colorectal cancer patients: a potential marker for colorectal cancer screening. Gut 58(10):1375–1381

    PubMed  CAS  Google Scholar 

  191. Ohshima K et al (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5(10):e13247

    PubMed  Google Scholar 

  192. Zhu HT et al (2012) Identification of suitable reference genes for qRT-PCR analysis of circulating microRNAs in hepatitis B virus-infected patients. Mol Biotechnol 50(1):49–56

    PubMed  CAS  Google Scholar 

  193. Jensen SG et al (2011) Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs. BMC Genomics 12(1):435

    PubMed  CAS  Google Scholar 

  194. Johnstone RM et al (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262(19):9412–9420

    PubMed  CAS  Google Scholar 

  195. Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51

    PubMed  CAS  Google Scholar 

  196. Logozzi M et al (2009) High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One 4(4):e5219

    PubMed  Google Scholar 

  197. Rabinowits G et al (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10(1):42–46

    PubMed  CAS  Google Scholar 

  198. Smalley DM et al (2008) Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. J Proteome Res 7(5):2088–2096

    PubMed  CAS  Google Scholar 

  199. Rupp AK et al (2011) Loss of EpCAM expression in breast cancer derived serum exosomes: role of proteolytic cleavage. Gynecol Oncol 122(2):437–446

    PubMed  CAS  Google Scholar 

  200. Shigehara K et al (2011) Real-time PCR-based analysis of the human bile microRNAome identifies miR-9 as a potential diagnostic biomarker for biliary tract cancer. PLoS One 6(8):e23584

    PubMed  CAS  Google Scholar 

  201. Hanke M et al (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28(6):655–661

    PubMed  CAS  Google Scholar 

  202. Yamada Y et al (2011) MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology. Cancer Sci 102(3):522–529

    PubMed  CAS  Google Scholar 

  203. Heneghan HM et al (2010) Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 251(3):499–505

    PubMed  Google Scholar 

  204. Wang F et al (2010) Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol 119(3):586–593

    PubMed  CAS  Google Scholar 

  205. Huang Z et al (2010) Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 127(1):118–126

    PubMed  CAS  Google Scholar 

  206. Tsujiura M et al (2010) Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer 102(7):1174–1179

    PubMed  CAS  Google Scholar 

  207. Liu R et al (2011) A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer 47(5):784–791

    PubMed  CAS  Google Scholar 

  208. Shigoka M et al (2010) Deregulation of miR-92a expression is implicated in hepatocellular carcinoma development. Pathol Int 60(5):351–357

    PubMed  CAS  Google Scholar 

  209. Yamamoto Y et al (2009) MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers 14(7):529–538

    PubMed  CAS  Google Scholar 

  210. Li LM et al (2010) Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res 70(23):9798–9807

    PubMed  CAS  Google Scholar 

  211. Tanaka M et al (2009) Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS One 4(5):e5532

    PubMed  Google Scholar 

  212. Moussay E et al (2010) Determination of genes and microRNAs involved in the resistance to fludarabine in vivo in chronic lymphocytic leukemia. Mol Cancer 9:115

    PubMed  Google Scholar 

  213. Leidinger P et al (2010) High-throughput miRNA profiling of human melanoma blood samples. BMC Cancer 10:262

    PubMed  Google Scholar 

  214. Unno K et al (2009) Identification of a novel microRNA cluster miR-193b-365 in multiple myeloma. Leuk Lymphoma 50(11):1865–1871

    PubMed  CAS  Google Scholar 

  215. Hu Z et al (2010) Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28(10):1721–1726

    PubMed  Google Scholar 

  216. Wong TS et al (2008) Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res 14(9):2588–2592

    PubMed  CAS  Google Scholar 

  217. Liu CJ et al (2010) Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis 16(4):360–364

    PubMed  Google Scholar 

  218. Resnick KE et al (2009) The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol 112(1):55–59

    PubMed  CAS  Google Scholar 

  219. Hausler SF et al (2010) Whole blood-derived miRNA profiles as potential new tools for ovarian cancer screening. Br J Cancer 103(5):693–700

    PubMed  CAS  Google Scholar 

  220. Li A et al (2010) Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res 70(13):5226–5237

    PubMed  CAS  Google Scholar 

  221. Wang J et al (2009) MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res 2(9):807–813

    CAS  Google Scholar 

  222. Ali S et al (2010) Differentially expressed miRNAs in the plasma may provide a molecular signature for aggressive pancreatic cancer. Am J Transl Res 3(1):28–47

    PubMed  Google Scholar 

  223. Ho AS et al (2010) Circulating miR-210 as a Novel Hypoxia Marker in Pancreatic Cancer. Transl Oncol 3(2):109–113

    PubMed  Google Scholar 

  224. Zhang C et al (2010) Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem 56(12):1871–1879

    PubMed  CAS  Google Scholar 

  225. Miyachi M et al (2010) Circulating muscle-specific microRNA, miR-206, as a potential diagnostic marker for rhabdomyosarcoma. Biochem Biophys Res Commun 400(1):89–93

    PubMed  CAS  Google Scholar 

  226. Yu DC et al (2011) Circulating MicroRNAs: potential biomarkers for cancer. Int J Mol Sci 12(3):2055–2063

    PubMed  CAS  Google Scholar 

  227. Gonzales JC et al (2011) Comparison of circulating MicroRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin Genitourin Cancer 9(1):39–45

    PubMed  Google Scholar 

  228. Cheng H et al (2011) Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One 6(3):e17745

    PubMed  CAS  Google Scholar 

  229. Nana-Sinkam SP, Croce CM (2011) MicroRNAs as therapeutic targets in cancer. Transl Res 157(4):216–225

    PubMed  CAS  Google Scholar 

  230. Markou A, Liang Y, Lianidou E (2011) Review: prognostic, therapeutic and diagnostic potential of microRNAs in non-small cell lung cancer. Clin Chem Lab Med 49(10):1591–1603

    PubMed  CAS  Google Scholar 

  231. Foss KM et al (2011) miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer. J Thorac Oncol 6(3):482–488

    PubMed  Google Scholar 

  232. Bianchi F et al (2011) A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. EMBO Mol Med 3(8):495–503

    PubMed  CAS  Google Scholar 

  233. Shen J et al (2011) Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer 11(1):374

    PubMed  CAS  Google Scholar 

  234. Orom UA, Shiekhattar R (2011) Noncoding RNAs and enhancers: complications of a long-distance relationship. Trends Genet 27(10):433–439

    PubMed  CAS  Google Scholar 

  235. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361

    PubMed  CAS  Google Scholar 

  236. Lee TI et al (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125(2):301–313

    PubMed  CAS  Google Scholar 

  237. Boyer LA et al (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441(7091):349–353

    PubMed  CAS  Google Scholar 

  238. Monteiro J, Fodde R (2010) Cancer stemness and metastasis: therapeutic consequences and perspectives. Eur J Cancer 46(7):1198–1203

    PubMed  CAS  Google Scholar 

  239. Gieni RS, Hendzel MJ (2009) Polycomb group protein gene silencing, non-coding RNA, stem cells, and cancer. Biochem Cell Biol 87(5):711–746

    PubMed  CAS  Google Scholar 

  240. Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076

    PubMed  CAS  Google Scholar 

  241. Kogo R et al (2011) Long non-coding RNA HOTAIR regulates Polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 71(20):6320–6326

    PubMed  CAS  Google Scholar 

  242. Yang Z et al (2011) Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol 18(5):1243–1250

    PubMed  Google Scholar 

  243. Prensner JR et al (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29(8):742–749

    PubMed  CAS  Google Scholar 

  244. Orom UA et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143(1):46–58

    PubMed  CAS  Google Scholar 

  245. Bejerano G et al (2004) Ultraconserved elements in the human genome. Science 304(5675):1321–1325

    PubMed  CAS  Google Scholar 

  246. Derti A et al (2006) Mammalian ultraconserved elements are strongly depleted among segmental duplications and copy number variants. Nat Genet 38(10):1216–1220

    PubMed  CAS  Google Scholar 

  247. Calin GA et al (2007) Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12(3):215–229

    PubMed  CAS  Google Scholar 

  248. Licastro D et al (2010) Promiscuity of enhancer, coding and non-coding transcription functions in ultraconserved elements. BMC Genomics 11:151

    PubMed  Google Scholar 

  249. Pennacchio LA et al (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444(7118):499–502

    PubMed  CAS  Google Scholar 

  250. Lujambio A et al (2010) CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene 29(48):6390–6401

    PubMed  CAS  Google Scholar 

  251. Scaruffi P et al (2009) Transcribed-Ultra Conserved Region expression is associated with outcome in high-risk neuroblastoma. BMC Cancer 9:441

    PubMed  Google Scholar 

  252. Braconi C et al (2011) Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc Natl Acad Sci USA 108(2):786–791

    PubMed  CAS  Google Scholar 

  253. Mestdagh P et al (2010) An integrative genomics screen uncovers ncRNA T-UCR functions in neuroblastoma tumours. Oncogene 29(24):3583–3592

    PubMed  CAS  Google Scholar 

  254. Roobol MJ, Haese A, Bjartell A (2011) Tumour markers in prostate cancer III: biomarkers in urine. Acta Oncol 50(Suppl 1):85–89

    PubMed  CAS  Google Scholar 

  255. Day JR et al (2011) PCA3: from basic molecular science to the clinical lab. Cancer Lett 301(1):1–6

    PubMed  CAS  Google Scholar 

  256. Bussemakers MJ et al (1999) DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 59(23):5975–5979

    PubMed  CAS  Google Scholar 

  257. de Kok JB et al (2002) DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res 62(9):2695–2698

    PubMed  Google Scholar 

  258. Hessels D et al (2003) DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol 44(1):8–15, discussion 15–16

    PubMed  CAS  Google Scholar 

  259. Gopinath SC, Wadhwa R, Kumar PK (2010) Expression of noncoding vault RNA in human malignant cells and its importance in mitoxantrone resistance. Mol Cancer Res 8(11):1536–1546

    PubMed  CAS  Google Scholar 

  260. Mourtada-Maarabouni M et al (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28(2):195–208

    PubMed  CAS  Google Scholar 

  261. Arora R et al (2004) Heterogeneity of Gleason grade in multifocal adenocarcinoma of the prostate. Cancer 100(11):2362–2366

    PubMed  Google Scholar 

  262. Navin N et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94

    PubMed  CAS  Google Scholar 

  263. Tomlins SA et al (2007) Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39(1):41–51

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina D. Sørensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Controlled Release Society

About this chapter

Cite this chapter

Sørensen, K.D., Ostenfeld, M.S., Jeppesen, D.K., Kristensen, H., Haldrup, C., Ørntoft, T.F. (2013). The Application of MicroRNAs in Cancer Diagnostics. In: Howard, K. (eds) RNA Interference from Biology to Therapeutics. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4744-3_13

Download citation

Publish with us

Policies and ethics