Skip to main content

Aptamer-Mediated siRNA Targeting

  • Chapter
  • First Online:
RNA Interference from Biology to Therapeutics

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

RNA interference (RNAi) is a sequence-specific mechanism for posttranscriptional inhibition of gene expression. As such, it is an attractive approach for the therapeutic treatment of a wide variety of human maladies. Although conceptually elegant, there are key barriers to the widespread clinical application of this process. One of the most formidable impediments to clinical translation of RNAi is safe and effective delivery of the siRNAs to the desired target tissue at therapeutic doses. In this regard, the advent of versatile aptamer technology has prompted the development of aptamer-mediated cell-type-specific delivery for targeted RNAi triggers. In this chapter, we explore the developments of cell-type-specific aptamer applications. We also highlight recent advances of aptamers as functionalized nanocarriers for targeted siRNA delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  2. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  PubMed  CAS  Google Scholar 

  3. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  4. Davidson BL, McCray PB Jr (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12:329–340

    Article  PubMed  CAS  Google Scholar 

  5. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–433

    Article  PubMed  CAS  Google Scholar 

  6. Lares MR, Rossi JJ, Ouellet DL (2010) RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol 28:570–579

    Article  PubMed  CAS  Google Scholar 

  7. Singerman L (2009) Combination therapy using the small interfering RNA bevasiranib. Retina 29:S49–S50

    Article  PubMed  Google Scholar 

  8. DeVincenzo J et al (2008) Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV). Antiviral Res 77:225–231

    Article  PubMed  CAS  Google Scholar 

  9. DeVincenzo J et al (2010) A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci USA 107:8800–8805

    Article  PubMed  CAS  Google Scholar 

  10. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    Article  PubMed  CAS  Google Scholar 

  11. Zamora MR et al (2011) RNA interference therapy in lung transplant patients infected with respiratory syncytial virus. Am J Respir Crit Care Med 183:531–538

    Article  PubMed  CAS  Google Scholar 

  12. Davis ME et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    Article  PubMed  CAS  Google Scholar 

  13. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138

    Article  PubMed  CAS  Google Scholar 

  14. Juliano R, Alam MR, Dixit V, Kang H (2008) Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res 36:4158–4171

    Article  PubMed  CAS  Google Scholar 

  15. Perez-Martinez FC, Guerra J, Posadas I, Cena V (2011) Barriers to non-viral vector-mediated gene delivery in the nervous system. Pharm Res 28:1843–1858

    Article  PubMed  CAS  Google Scholar 

  16. Wang J, Lu Z, Wientjes MG, Au JL (2010) Delivery of siRNA therapeutics: barriers and carriers. AAPS J 12:492–503

    Article  PubMed  CAS  Google Scholar 

  17. Kaiser PK et al (2010) RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am J Ophthalmol 150(33–39):e32

    Google Scholar 

  18. Kleinman ME et al (2008) Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452:591–597

    Article  PubMed  CAS  Google Scholar 

  19. Shim MS, Kwon YJ (2010) Efficient and targeted delivery of siRNA in vivo. FEBS J 277:4814–4827

    Article  PubMed  CAS  Google Scholar 

  20. Zhou J, Rossi JJ (2009) The therapeutic potential of cell-internalizing aptamers. Curr Top Med Chem 9:1144–1157

    Article  PubMed  CAS  Google Scholar 

  21. Zhou J, Rossi JJ (2011) Cell-specific aptamer-mediated targeted drug delivery. Oligonucleotides 21:1–10

    Article  PubMed  Google Scholar 

  22. Syed MA, Pervaiz S (2010) Advances in aptamers. Oligonucleotides 20:215–224

    Article  PubMed  CAS  Google Scholar 

  23. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  PubMed  CAS  Google Scholar 

  24. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468

    Article  PubMed  CAS  Google Scholar 

  25. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  PubMed  CAS  Google Scholar 

  26. Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed Engl 48:2672–2689

    Article  PubMed  CAS  Google Scholar 

  27. Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743

    Article  PubMed  CAS  Google Scholar 

  28. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550

    Article  PubMed  CAS  Google Scholar 

  29. Bunka DH, Platonova O, Stockley PG (2010) Development of aptamer therapeutics. Curr Opin Pharmacol 10:557–562

    Article  PubMed  CAS  Google Scholar 

  30. Phillips JA, Lopez-Colon D, Zhu Z, Xu Y, Tan W (2008) Applications of aptamers in cancer cell biology. Anal Chim Acta 621:101–108

    Article  PubMed  CAS  Google Scholar 

  31. Guo KT, Paul A, Schichor C, Ziemer G, Wendel HP (2008) CELL-SELEX: novel perspectives of aptamer-based therapeutics. Int J Mol Sci 9:668–678

    Article  PubMed  CAS  Google Scholar 

  32. Cerchia L, Giangrande PH, McNamara JO, de Franciscis V (2009) Cell-specific aptamers for targeted therapies. Methods Mol Biol 535:59–78

    Article  PubMed  CAS  Google Scholar 

  33. Hicke BJ et al (2001) Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem 276:48644–48654

    Article  PubMed  CAS  Google Scholar 

  34. Kulbachinskiy AV (2007) Methods for selection of aptamers to protein targets. Biochemistry (Mosc) 72:1505–1518

    Article  CAS  Google Scholar 

  35. Berezovski M et al (2005) Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J Am Chem Soc 127:3165–3171

    Article  PubMed  CAS  Google Scholar 

  36. Berezovski M, Musheev M, Drabovich A, Krylov SN (2006) Non-SELEX selection of aptamers. J Am Chem Soc 128:1410–1411

    Article  PubMed  CAS  Google Scholar 

  37. Mallikaratchy P, Stahelin RV, Cao Z, Cho W, Tan W (2006) Selection of DNA ligands for protein kinase C-delta. Chem Commun (Camb)30: 3229–3231

    Google Scholar 

  38. Farokhzad OC et al (2005) Microfluidic system for studying the interaction of nanoparticles and microparticles with cells. Anal Chem 77:5453–5459

    Article  PubMed  CAS  Google Scholar 

  39. Xu Y, Phillips JA, Yan J, Li Q, Fan ZH, Tan W (2009) Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal Chem 81:7436–7442

    Article  PubMed  CAS  Google Scholar 

  40. Zhou J et al (2009) Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 37(9):3094–3109

    Article  PubMed  CAS  Google Scholar 

  41. Li N, Larson T, Nguyen HH, Sokolov KV, Ellington AD (2010) Directed evolution of gold nanoparticle delivery to cells. Chem Commun (Camb) 46:392–394

    Article  Google Scholar 

  42. Chen CH et al (2008) Aptamer-based endocytosis of a lysosomal enzyme. Proc Natl Acad Sci U S A 105:15908–15913

    Article  PubMed  CAS  Google Scholar 

  43. Kraus E, James W, Barclay AN (1998) Cutting edge: novel RNA ligands able to bind CD4 antigen and inhibit CD4+ T lymphocyte function. J Immunol 160:5209–5212

    PubMed  CAS  Google Scholar 

  44. Lupold SE, Hicke BJ, Lin Y, Coffey DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033

    PubMed  CAS  Google Scholar 

  45. Cerchia L, de Franciscis V (2010) Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol 28:517–525

    Article  PubMed  CAS  Google Scholar 

  46. Cerchia L et al (2005) Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol 3:e123

    Article  PubMed  Google Scholar 

  47. Pestourie C et al (2006) Comparison of different strategies to select aptamers against a transmembrane protein target. Oligonucleotides 16:323–335

    Article  PubMed  CAS  Google Scholar 

  48. Liu Y et al (2009) Aptamers selected against the unglycosylated EGFRvIII ectodomain and delivered intracellularly reduce membrane-bound EGFRvIII and induce apoptosis. Biol Chem 390:137–144

    PubMed  CAS  Google Scholar 

  49. Fang X, Tan W (2009) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43(1):48–57

    Article  Google Scholar 

  50. Shangguan D et al (2008) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7:2133–2139

    Article  PubMed  CAS  Google Scholar 

  51. Shangguan D, Cao ZC, Li Y, Tan W (2007) Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin Chem 53:1153–1155

    Article  PubMed  CAS  Google Scholar 

  52. Blank M, Weinschenk T, Priemer M, Schluesener H (2001) Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. Selective targeting of endothelial regulatory protein pigpen. J Biol Chem 276:16464–16468

    Article  PubMed  CAS  Google Scholar 

  53. Shangguan D et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103:11838–11843

    Article  PubMed  CAS  Google Scholar 

  54. Avci-Adali M, Metzger M, Perle N, Ziemer G, Wendel HP (2010) Pitfalls of cell-systematic evolution of ligands by exponential enrichment (SELEX): existing dead cells during in vitro selection anticipate the enrichment of specific aptamers. Oligonucleotides 20:317–323

    Article  PubMed  CAS  Google Scholar 

  55. Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC (2008) Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol 26:442–449

    Article  PubMed  CAS  Google Scholar 

  56. Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed Engl 45:8149–8152

    Article  PubMed  CAS  Google Scholar 

  57. Cheng J et al (2007) Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28:869–876

    Article  PubMed  CAS  Google Scholar 

  58. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA 105:17356–17361

    Article  PubMed  CAS  Google Scholar 

  59. Farokhzad OC et al (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 103:6315–6320

    Article  PubMed  CAS  Google Scholar 

  60. Gu F et al (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA 105:2586–2591

    Article  PubMed  CAS  Google Scholar 

  61. Zhang L et al (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2:1268–1271

    Article  PubMed  CAS  Google Scholar 

  62. Engels FK, Mathot RA, Verweij J (2007) Alternative drug formulations of docetaxel: a review. Anticancer Drugs 18:95–103

    Article  PubMed  CAS  Google Scholar 

  63. Cao Z et al (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed Engl 48:6494–6498

    Article  PubMed  CAS  Google Scholar 

  64. Ferreira CS, Cheung MC, Missailidis S, Bisland S, Gariepy J (2009) Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res 37:866–876

    Article  PubMed  CAS  Google Scholar 

  65. Chu TC et al (2006) Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res 66:5989–5992

    Article  PubMed  CAS  Google Scholar 

  66. Hicke BJ et al (2006) Tumor targeting by an aptamer. J Nucl Med 47:668–678

    PubMed  CAS  Google Scholar 

  67. Tong GJ, Hsiao SC, Carrico ZM, Francis MB (2009) Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J Am Chem Soc 131:11174–11178

    Article  PubMed  CAS  Google Scholar 

  68. Zhou J, Rossi JJ (2010) Aptamer-targeted cell-specific RNA interference. Silence 1:4

    Article  PubMed  Google Scholar 

  69. Chu TC, Twu KY, Ellington AD, Levy M (2006) Aptamer mediated siRNA delivery. Nucleic Acids Res 34:e73

    Article  PubMed  Google Scholar 

  70. McNamara JO 2nd et al (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24:1005–1015

    Article  PubMed  CAS  Google Scholar 

  71. Dassie JP et al (2009) Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 27:839–849

    Article  PubMed  CAS  Google Scholar 

  72. Pastor F, Kolonias D, Giangrande PH, Gilboa E (2010) Induction of tumour immunity by targeted inhibition of nonsense-mediated mRNA decay. Nature 465:227–230

    Article  PubMed  CAS  Google Scholar 

  73. Zhou J, Li H, Li S, Zaia J, Rossi JJ (2008) Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 16:1481–1489

    Article  PubMed  CAS  Google Scholar 

  74. Neff CP et al (2011) An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci Transl Med 3:66ra66

    Article  Google Scholar 

  75. Wheeler LA et al (2011) Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J Clin Invest 121:2401–2412

    Article  PubMed  CAS  Google Scholar 

  76. Shi H, Hoffman BE, Lis JT (1999) RNA aptamers as effective protein antagonists in a multicellular organism. Proc Natl Acad Sci USA 96:10033–10038

    Article  PubMed  CAS  Google Scholar 

  77. Santulli-Marotto S, Nair SK, Rusconi C, Sullenger B, Gilboa E (2003) Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res 63:7483–7489

    PubMed  CAS  Google Scholar 

  78. McNamara JO et al (2008) Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest 118:376–386

    Article  PubMed  CAS  Google Scholar 

  79. Dollins CM et al (2008) Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem Biol 15:675–682

    Article  PubMed  CAS  Google Scholar 

  80. Wullner U, Neef I, Eller A, Kleines M, Tur MK, Barth S (2008) Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2. Curr Cancer Drug Targets 8:554–565

    Article  PubMed  CAS  Google Scholar 

  81. Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5:833–842

    Article  PubMed  CAS  Google Scholar 

  82. De Rosa G, La Rotonda MI (2009) Nano and microtechnologies for the delivery of oligonucleotides with gene silencing properties. Molecules 14:2801–2823

    Article  PubMed  Google Scholar 

  83. Kim S, Kim JH, Jeon O, Kwon IC, Park K (2009) Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm 71:420–430

    Article  PubMed  CAS  Google Scholar 

  84. Tan W et al (2011) Molecular aptamers for drug delivery. Trends Biotechnol 29:634–640

    Article  PubMed  CAS  Google Scholar 

  85. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    PubMed  CAS  Google Scholar 

  86. Greish K (2007) Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 15:457–464

    Article  PubMed  CAS  Google Scholar 

  87. Guo P (2005) RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy. J Nanosci Nanotechnol 5:1964–1982

    Article  PubMed  CAS  Google Scholar 

  88. Shu D, Huang LP, Hoeprich S, Guo P (2003) Construction of phi29 DNA-packaging RNA monomers, dimers, and trimers with variable sizes and shapes as potential parts for nanodevices. J Nanosci Nanotechnol 3:295–302

    Article  PubMed  CAS  Google Scholar 

  89. Guo P et al (2010) Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Deliv Rev 62:650–666

    Article  PubMed  CAS  Google Scholar 

  90. Shu Y, Cinier M, Shu D, Guo P (2011) Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells. Methods 54(2):204–214

    Article  PubMed  CAS  Google Scholar 

  91. Guo S, Tschammer N, Mohammed S, Guo P (2005) Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum Gene Ther 16:1097–1109

    Article  PubMed  CAS  Google Scholar 

  92. Hoeprich S, Guo P (2002) Computer modeling of three-dimensional structure of DNA-packaging RNA (pRNA) monomer, dimer, and hexamer of Phi29 DNA packaging motor. J Biol Chem 277:20794–20803

    Article  PubMed  CAS  Google Scholar 

  93. Kim E et al (2010) Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials 31:4592–4599

    Article  PubMed  CAS  Google Scholar 

  94. Zhao N, Bagaria HG, Wong MS, Zu Y (2011) A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma. J Nanobiotechnology 9:2

    Article  PubMed  CAS  Google Scholar 

  95. Zhang P et al (2009) Using an RNA aptamer probe for flow cytometry detection of CD30-expressing lymphoma cells. Lab Invest 89:1423–1432

    Article  PubMed  CAS  Google Scholar 

  96. Duyster J, Bai RY, Morris SW (2001) Translocations involving anaplastic lymphoma kinase (ALK). Oncogene 20:5623–5637

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Author Disclosure Statements

This work is supported by grants from the National Institutes of Health AI29329, AI42552, and HL07470 awarded to J.J.R.

J.Z. drafted the article. J.J.R. revised it and gave final approval of the version to be published. All authors read and approved the final article.

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Controlled Release Society

About this chapter

Cite this chapter

Zhou, J., Rossi, J.J. (2013). Aptamer-Mediated siRNA Targeting. In: Howard, K. (eds) RNA Interference from Biology to Therapeutics. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4744-3_10

Download citation

Publish with us

Policies and ethics