Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

At the very beginning of the filter design, an appropriate filter transfer function and the order of the filter have to be selected. In radio receivers, the bandwidth and, particularly, the selectivity requirement for channel-select and anti-aliasing filtering are determined by the wireless application being targeted, the specified or expected interferers scenario, and the performance of the ADC, as discussed in Chap. 2. The bandwidth and selectivity requirements of the analog baseband filter further depend on the receiver architecture adopted and the preceding filter stages. The filter transfer function and the order of the filter are then chosen according to the given selectivity requirement. In addition, for example, the passband flatness and phase response characteristics that are required have to be taken into account. In active filter implementations, the minimization of filter stages (i.e. the order of the filter) is typically beneficial in terms of noise, power consumption, and complexity. Therefore, it is important also to consider the feasibility of the active filter realization, as well as the performance requirements set for the filter block, before finally deciding on the filter prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Portions of this section are taken from [18] (Copyright © 2007 IEEE. All rights reserved. Reprinted with permission), [19] (Copyright © 2007 IEEE. All rights reserved. Reprinted with permission) and [20] (Copyright © 2009 IEEE. All rights reserved. Reprinted with permission).

References

  1. Schaumann R, Ghausi MS, Laker KR (1990) Design of analog filters; passive, active RC, and switched capacitor. Prentice-Hall, Republic of Singapore, p 608

    Google Scholar 

  2. Tsividis YP (1994) Integrated continuous-time filter design – an overview. IEEE J Solid-State Circ 29(3):166–176

    Article  Google Scholar 

  3. Schaumann R, Van Valkenburg ME (2001) Design of analog filters. Oxford University Press, New York

    Google Scholar 

  4. Orchard HJ (1966) Inductorless filters. Electron Lett 2(6):224–225

    Article  Google Scholar 

  5. Girling FEJ, Good EF (1970) Active filters–12. The leapfrog or active-ladder synthesis. Wirel World 76:341–345

    Google Scholar 

  6. Rollett JM (1973) Economical RC active lossy ladder filters. Electron Lett 9(3):70–72

    Article  Google Scholar 

  7. Temes GC, Orchard HJ (1973) First-order sensitivity and worst case analysis of doubly terminated reactance two-ports. IEEE Trans Circ Theory 20(5):567–571

    Google Scholar 

  8. Brackett PO, Sedra AS (1976) Direct SFG simulation of LC ladder networks with applications to active filter design. IEEE J Solid-State Circ 23(2):61–67

    Google Scholar 

  9. Voorman JO, Brüls WHA, Barth PJ (1982) Integration of analog filters in a bipolar process. IEEE J Solid-State Circ 17(4):713–722

    Article  Google Scholar 

  10. Tan MA, Schaumann R (1989) Simulating general-parameter LC-ladder filters for monolithic realizations with only transconductance elements and grounded capacitors. IEEE Trans Circ Syst 36(2):299–307

    Article  MathSciNet  Google Scholar 

  11. Wang Y-T, Abidi AA (1990) CMOS active filter design at very high frequencies. IEEE J Solid-State Circ 25(6):1562–1574

    Article  Google Scholar 

  12. Geiger RL, Bailey GR (1982) Integrator design for high-frequency active filter applications. IEEE Trans Circ Syst 29(9):595–603

    Article  Google Scholar 

  13. Laker KR, Sansen WMC (1994) Design of analog integrated circuits and systems. McGraw-Hill, Singapore, p 898

    Google Scholar 

  14. Wing O (1956) Ladder network analysis by signal flow graph – application to analog computer programming. IRE Trans Circ Theory 3(4):289–294

    Google Scholar 

  15. Girling FEJ, Good EF (1970) Active filters–13. Applications of the active-ladder synthesis. Wirel World 76:445–450

    Google Scholar 

  16. Tan MA, Schaumann R (1987) Generation of transconductance-grounded-capacitor filters by signal-flow-graph methods for VLSI implementation. Electron Lett 23(20):1093–1094

    Article  Google Scholar 

  17. Lindfors S (2000) CMOS baseband integrated circuit techniques for radio receivers. Doctoral thesis, Helsinki University of Technology, Espoo, p 266

    Google Scholar 

  18. Saari V, Kaltiokallio M, Lindfors S, Ryynänen J, Halonen K (2007) A 1.2-V 240-MHz CMOS continuous-time low-pass filter for a UWB radio receiver. In: IEEE international solid-state circuits conference (ISSCC) digest of technical papers, San Francisco, Feb 2007, pp 122–123

    Google Scholar 

  19. Kaltiokallio M, Lindfors S, Saari V, Ryynänen J (2007) Design of precise gain GmC-leapfrog filters. In: Proceedings of IEEE international symposium on circuits and systems (ISCAS), New Orleans, May 2007, pp 3534–3537

    Google Scholar 

  20. Saari V, Kaltiokallio M, Lindfors S, Ryynänen J, Halonen KAI (2009) A 240-MHz low-pass filter with variable gain in 65-nm CMOS for a UWB radio receiver. IEEE Trans Circ Syst I Reg Pap 56(7):1488–1499

    Article  Google Scholar 

  21. Dubak A (1974) Passive and active network analysis and synthesis. Houghton Mifflin, Boston, p 733

    Google Scholar 

  22. Chen W-K (editor-in-chief) (1995) The circuits and filters handbook. CRC Press (in cooperation with IEEE Press), Boca Raton, p 2861

    Google Scholar 

  23. Sedra AS, Smith KC (1998) Microelectronic circuits. Oxford University Press, New York, p 1237

    Google Scholar 

  24. Ryynänen J, Hotti M, Saari V, Jussila J, Malinen A, Sumanen L, Tikka T, Halonen K (2006) WCDMA multicarrier receiver for base-station applications. IEEE J Solid-State Circ 41(7):1542–1550

    Article  Google Scholar 

  25. Saari V, Mustola J, Jussila J, Ryynänen J, Lindfors S, Halonen K (2008) Programmable SiGe BiCMOS low-pass filter for a multicarrier WCDMA base-station receiver. Analog Integr Circ Signal Process 54(2):77–84

    Article  Google Scholar 

  26. Hollman T, Lindfors S, Salo T, Länsirinne M, Halonen K (2001) A 2.7 V CMOS dual-mode baseband filter for GSM and WCDMA. In: Proceedings of IEEE international symposium on circuits and systems (ISCAS), Sydney, May 2001, pp 316–319

    Google Scholar 

  27. Kaltiokallio M, Saari V, Rapinoja T, Stadius K, Ryynänen J, Lindfors S, Halonen K (2008) A WiMedia UWB receiver with a synthesizer. In: Proceedings of European solid-state circuits conference (ESSCIRC), Edinburgh, Sept 2008, pp 330–333

    Google Scholar 

  28. T. Hanusch, F. Jehring, H.-J. Jentschel, and W. Kluge, “Analog baseband-IC for dual mode direct conversion receiver,” in Proc. European Solid-State Circuits Conference (ESSCIRC), Neuchâtel, Switzerland, Sep. 1996, pp. 244–246.

    Google Scholar 

  29. Razavi B (1999) A 2.4-GHz CMOS receiver for IEEE 802.11 wireless LAN’s. IEEE J Solid-State Circ 34(10):1382–1385

    Article  Google Scholar 

  30. Jussila J, Ryynänen J, Kivekäs K, Sumanen L, Pärssinen A, Halonen KAI (2001) A 22-mA 3.0-dB NF direct conversion receiver for 3 G WCDMA. IEEE J Solid-State Circ 36(12):2025–2029

    Article  Google Scholar 

  31. Srinivasagopalan R, Martens GO (1972) Formulas for the elements of lossy low-pass ladder networks. IEEE Trans Circ Theory 19(4):360–365

    Article  MathSciNet  Google Scholar 

  32. Carlin HJ (1999) Darlington synthesis revisited. IEEE Trans Circ Syst I Fundam Theory Appl 46(1):14–21

    Article  Google Scholar 

  33. Matthaei GL (1954) Some techniques for network synthesis. Proc IRE 42(7):1126–1137

    Article  Google Scholar 

  34. Baschirotto A, Alini R, Castello R (1991) BiCMOS operational amplifier with precise and stable DC gain for high-frequency switched capacitor circuits. Electron Lett 27(15):1338–1340

    Article  Google Scholar 

  35. Toyota K, Matsuura T, Hase K (1997) A gain-controlled integrator technique for a 50 MHz, 100 mW, 0.4 μm CMOS, 7th-order equiripple Gm-C filter. In: IEEE international solid-state circuits conference (ISSCC) digest of technical papers, San Francisco, Feb 1997, pp 50–51

    Google Scholar 

  36. Desoer CA (1959) Notes commenting on Darlington’s design procedure for networks made uniform dissipative coils (d 0  + δ) and uniformly dissipative capacitors (d 0 −δ). IRE Trans Circ Theory 6(4):397–398

    Article  Google Scholar 

  37. Desoer CA, Mitra SK (1961) Design of lossy ladder filters by digital computer. IRE Trans Circ Theory 8(3):192–201

    Google Scholar 

  38. Nightingale C, Rollett JM (1972) Method for designing doubly terminated all-pole ladder filters with reactive components having freely assignable losses. Electron Lett 8(18):461–463

    Article  Google Scholar 

  39. Rakovich BD, Paviovic VD (1987) Method of designing doubly terminated lossy ladder filters with increased element tolerances. IEE Proc G Electron Circ Syst 134(6):285–291

    Article  Google Scholar 

  40. Spencer RR, Ghausi MS (2003) Introduction to electronic circuit design. Prentice Hall, Upper Saddle River, p 1132

    Google Scholar 

  41. Niknejad AM (2007) Electromagnetics for high-speed analog and digital communication circuits. Cambridge University Press, Cambridge, p 452

    Book  Google Scholar 

  42. Desoer CA (1957) Network design by first-order predistortion technique. IRE Trans Circ Theory 4(3):167–170

    Google Scholar 

  43. Temes GC (1962) First-order estimation and precorrection of parasitic loss effects in ladder filters. IRE Trans Circ Theory 9(4):385–399

    Google Scholar 

  44. Nightingale C (1981) Synthesis of a class of lossy ladder networks. IEE Proc G Electron Circ Syst 128(4):230–234

    Article  Google Scholar 

  45. Baschirotto A, Montecchi F, Castello R (1995) A 15 MHz 20 mW BiCMOS switched-capacitor biquad operating with 150 Ms/s sampling frequency. IEEE J Solid-State Circ 30(12):1357–1366

    Article  Google Scholar 

  46. Baschirotto A (1996) Considerations for the design of switched-capacitor circuits using precise-gain operational amplifiers. IEEE Trans Circ Syst II Analog Digit Signal Process 43(12):827–832

    Article  Google Scholar 

  47. Baschirotto A, Rezzi F, Alini R, Castello R (1994) Design of high-frequency BiCMOS continuous-time filters with low-output impedance transconductor. In: Proceedings of IEEE international symposium on circuits and systems (ISCAS), London, May–June 1994, pp 665–668

    Google Scholar 

  48. Zverev AI (1967) Handbook of filter synthesis. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saari, V., Ryynänen, J., Lindfors, S. (2012). Prototype and Synthesis of Active Filters. In: Continuous-Time Low-Pass Filters for Integrated Wideband Radio Receivers. Analog Circuits and Signal Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3366-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3366-8_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3365-1

  • Online ISBN: 978-1-4614-3366-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics