Skip to main content

Structure-Guided Discovery of New Antimicrobial Agents

  • Chapter
  • First Online:
Antibiotic Discovery and Development

Abstract

This review provides the current status of structure-guided drug discovery, with examples from antibiotic drug discovery. The article aims to show where and when structural biology has been used “early and often” during the process of antibiotic drug discovery, primarily against novel antibacterial targets. The vast majority of examples are derived from the use of protein crystallization and diffraction information and the high-resolution protein structures that those tools provide. The review provides key examples and a range of methods that have effectively used structural information in various stages of the antibacterial drug discovery process. The starting point for structure-guided drug discovery is most often a high-resolution structure of the target protein. Over the past decade, the publicly funded Protein Structure Initiatives have solved a large number of bacterial protein structures, often from clinically important bacterial species. The public release of these high-resolution structures has enabled structure-guided efforts for antibacterial drug discovery. Many structure-guided methods overcome challenges raised by the limited chemical diversity found in existing chemical diversity libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal A, Louise-May S, Thanassi JA et al (2007) Small molecule inhibitors of E. coli primase, a novel bacterial target. Bioorg Med Chem Lett 17(10):2807–2810

    Article  PubMed  CAS  Google Scholar 

  2. Agrawal H, Kumar A, Bal NC et al (2007) Ligand based virtual screening and biological evaluation of inhibitors of chorismate mutase (Rv1885c) from Mycobacterium tuberculosis H37Rv. Bioorg Med Chem Lett 17(11):3053–3058

    Article  PubMed  CAS  Google Scholar 

  3. Babaoglu K, Shoichet BK (2006) Deconstructing fragment-based inhibitor discovery. Nat Chem Biol 2(12):720–723

    Article  PubMed  CAS  Google Scholar 

  4. Belogurov GA, Vassylyeva MN, Sevostyanova A et al (2009) Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457(7227):332–335

    Article  PubMed  CAS  Google Scholar 

  5. Bembenek SD, Tounge BA, Reynolds CH (2009) Ligand efficiency and fragment-based drug discovery. Drug Discov Today 14(5–6):278–283

    Article  PubMed  CAS  Google Scholar 

  6. Berman J, Burks C, Hui R et al (2004) Structural proteomics – a new driving force in drug discovery. Innovations in Pharmaceutical Technology. http://www.iptonline.com/articles/public/AffiniumPharmaceuticals1.pdf. Accessed on July 12, 2011

  7. Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16(1):3–50

    Article  PubMed  CAS  Google Scholar 

  8. Brown SP, Hajduk PJ (2006) Effects of conformational dynamics on predicted protein ­druggability. ChemMedChem 1(1):70–72

    Article  PubMed  CAS  Google Scholar 

  9. Charifson PS, Grillot AL, Grossman TH et al (2008) Novel dual-targeting benzimidazole urea inhibitors of DNA gyrase and topoisomerase IV possessing potent antibacterial activity: intelligent design and evolution through the judicious use of structure-guided design and structure-activity relationships. J Med Chem 51(17):5243–5263

    Article  PubMed  CAS  Google Scholar 

  10. Comess KM, Schurdak ME, Voorbach MJ et al (2006) An ultraefficient affinity-based high-throughout screening process: application to bacterial cell wall biosynthesis enzyme MurF. J Biomol Screen 11(7):743–754

    Article  PubMed  CAS  Google Scholar 

  11. Dundas J, Ouyang Z, Tseng J et al (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34(Web Server issue):W116–118

    Article  PubMed  CAS  Google Scholar 

  12. Fink T, Bruggesser H, Reymond JL (2005) Virtual exploration of the small-molecule chemical universe below 160 Daltons. Angew Chem Int Ed Engl 44(10):1504–1508

    Article  PubMed  CAS  Google Scholar 

  13. Finn J, Stidham M, Hilgers M, Kedar GC (2008) Identification of novel inhibitors of methionyl-tRNA synthetase (MetRS) by virtual screening. Bioorg Med Chem Lett 18(14):3932–3937

    Article  PubMed  CAS  Google Scholar 

  14. Foloppe N, Chen IJ, Davis B et al (2004) A structure-based strategy to identify new molecular scaffolds targeting the bacterial ribosomal A-site. Bioorg Med Chem 12(5):935–947

    Article  PubMed  CAS  Google Scholar 

  15. Franceschi F, Duffy EM (2006) Structure-based drug design meets the ribosome. Biochem Pharmacol 71(7):1016–1025

    Article  PubMed  CAS  Google Scholar 

  16. Gennadios HA, Whittington DA, Li X et al (2006) Mechanistic inferences from the binding of ligands to LpxC, a metal-dependent deacetylase. Biochemistry 45(26):7940–7948

    Article  PubMed  CAS  Google Scholar 

  17. Gong X, Fan S, Bilderbeck A, Li M et al (2008) Comparative analysis of essential genes and nonessential genes in Escherichia coli K12. Mol Genet Genomics 279(1):87–94

    Article  PubMed  CAS  Google Scholar 

  18. Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28(7):849–857

    Article  PubMed  CAS  Google Scholar 

  19. Graslund S, Nordlund P, Weigelt J et al (2008) Protein production and purification. Nat Methods 5(2):135–146

    Article  PubMed  Google Scholar 

  20. Gruswitz F, Frishman M, Goldstein BM et al (2005) Coupling of MBP fusion protein cleavage with sparse matrix crystallization screens to overcome problematic protein solubility. Biotechniques 39(4):476, 478, 480

    Article  PubMed  CAS  Google Scholar 

  21. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6(3):211–219

    Article  PubMed  CAS  Google Scholar 

  22. Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 48(7):2518–2525

    Article  PubMed  CAS  Google Scholar 

  23. Ioerger TR, Sacchettini JC (2009) Structural genomics approach to drug discovery for Mycobacterium tuberculosis. Curr Opin Microbiol 12(3):318–325

    Article  PubMed  CAS  Google Scholar 

  24. Ippolito JA, Kanyo ZF, Wang D et al (2008) Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J Med Chem 51(12):3353–3356

    Article  PubMed  CAS  Google Scholar 

  25. Kim SY, Lee YS, Kang T et al (2006) Pharmacophore-based virtual screening: the discovery of novel methionyl-tRNA synthetase inhibitors. Bioorg Med Chem Lett 16(18):4898–4907

    Article  PubMed  CAS  Google Scholar 

  26. Kryshtafovych A, Fidelis K, Moult J (2009) CASP8 results in context of previous experiments. Proteins 77(Suppl 9):217–228

    Article  PubMed  CAS  Google Scholar 

  27. Lerner CG, Hajduk PJ, Wagner R et al (2007) From bacterial genomes to novel antibacterial agents: discovery, characterization, and antibacterial activity of compounds that bind to HI0065 (YjeE) from Haemophilus influenzae. Chem Biol Drug Des 69(6):395–404

    Article  PubMed  CAS  Google Scholar 

  28. Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7(9): 1884–1897

    Article  PubMed  CAS  Google Scholar 

  29. Liu JS, Cheng WC, Wang HJ et al (2008) Structure-based inhibitor discovery of Helicobacter pylori dehydroquinate synthase. Biochem Biophys Res Commun 373(1):1–7

    Article  PubMed  CAS  Google Scholar 

  30. Longenecker KL, Stamper GF, Hajduk PJ et al (2005) Structure of MurF from Streptococcus pneumoniae co-crystallized with a small molecule inhibitor exhibits interdomain closure. Protein Sci 14(12):3039–3047

    Article  PubMed  CAS  Google Scholar 

  31. Maxwell KL, Bona D, Liu C et al (2003) Refolding out of guanidine hydrochloride is an effective approach for high-throughput structural studies of small proteins. Protein Sci 12(9):2073–2080

    Article  PubMed  CAS  Google Scholar 

  32. Mochalkin I, Lightle S, Zhu Y et al (2007) Characterization of substrate binding and catalysis in the potential antibacterial target N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). Protein Sci 16(12):2657–2666

    Article  PubMed  CAS  Google Scholar 

  33. Mochalkin I, Knafels JD, Lightle S (2008) Crystal structure of LpxC from Pseudomonas aeruginosa complexed with the potent BB-78485 inhibitor. Protein Sci 17(3):450–457

    Article  PubMed  CAS  Google Scholar 

  34. Mochalkin I, Lightle S, Narasimhan L et al (2008) Structure of a small-molecule inhibitor complexed with GlmU from Haemophilus influenzae reveals an allosteric binding site. Protein Sci 17(3):577–582

    Article  PubMed  CAS  Google Scholar 

  35. Mochalkin I, Miller JR, Narasimhan L et al (2009) Discovery of antibacterial biotin carboxylase inhibitors by virtual screening and fragment-based approaches. ACS Chem Biol 4(6):473–483

    Article  PubMed  CAS  Google Scholar 

  36. Murakami KS, Masuda S, Campbell EA et al (2002) Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296(5571):1285–1290

    Article  PubMed  CAS  Google Scholar 

  37. Murillo AC, Li HY, Alber T et al (2007) High throughput crystallography of TB drug targets. Infect Disord Drug Targets 7(2):127–139

    Article  PubMed  CAS  Google Scholar 

  38. Nienaber VL, Richardson PL, Klighofer V et al (2000) Discovering novel ligands for macromolecules using X-ray crystallographic screening. Nat Biotechnol 18(10):1105–1108

    Article  PubMed  CAS  Google Scholar 

  39. Norvell JC, Berg JM (2007) Update on the protein structure initiative. Structure 15(12): 1519–1522

    Article  PubMed  CAS  Google Scholar 

  40. O’Shea R, Moser HE (2008) Physicochemical properties of antibacterial compounds: implications for drug discovery. J Med Chem 51(10):2871–2878

    Article  PubMed  Google Scholar 

  41. Page R, Stevens RC (2004) Crystallization data mining in structural genomics: using positive and negative results to optimize protein crystallization screens. Methods 34(3):373–389

    Article  PubMed  CAS  Google Scholar 

  42. Pappenberger G, Schulz-Gasch T, Kusznir E et al (2007) Structure-assisted discovery of an aminothiazole derivative as a lead molecule for inhibition of bacterial fatty-acid synthesis. Acta Crystallogr D Biol Crystallogr 63(Pt 12):1208–1216

    Article  PubMed  Google Scholar 

  43. Payne DJ, Gwynn MN, Holmes DJ et al (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6(1):29–40

    Article  PubMed  CAS  Google Scholar 

  44. Perdih A, Kovac A, Wolber G et al (2009) Discovery of novel benzene 1,3-dicarboxylic acid inhibitors of bacterial MurD and MurE ligases by structure-based virtual screening approach. Bioorg Med Chem Lett 19(10):2668–2673

    Article  PubMed  CAS  Google Scholar 

  45. Raman K, Yeturu K, Chandra N (2008) targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol 2:109

    PubMed  Google Scholar 

  46. Repasky MP, Shelley M, Friesner RA (2007) Flexible ligand docking with Glide. Curr Protoc Bioinformatics Chapter 8: Unit 8 12

    Google Scholar 

  47. Sanders WJ, Nienaber VL, Lerner CG et al (2004) Discovery of potent inhibitors of dihydroneopterin aldolase using CrystaLEAD high-throughput X-ray crystallographic screening and structure-directed lead optimization. J Med Chem 47(7):1709–1718

    Article  PubMed  CAS  Google Scholar 

  48. Schmid MB (2004) Seeing is believing: the impact of structural genomics on antimicrobial drug discovery. Nat Rev Microbiol 2(9):739–746

    Article  PubMed  CAS  Google Scholar 

  49. Schmid MB (2006) Crystallizing new approaches for antimicrobial drug discovery. Biochem Pharmacol 71(7):1048–1056

    Article  PubMed  CAS  Google Scholar 

  50. Schuffenhauer A, Ruedisser S, Marzinzik AL et al (2005) Library design for fragment based screening. Curr Top Med Chem 5(8):751–76

    Article  PubMed  CAS  Google Scholar 

  51. Shuker SB, Hajduk PJ, Meadows RP et al (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534

    Article  PubMed  CAS  Google Scholar 

  52. Skripkin E, McConnell TS, DeVito J et al (2008) R chi-01, a new family of oxazolidinones that overcome ribosome-based linezolid resistance. Antimicrob Agents Chemother 52(10): 3550–3557

    Article  PubMed  CAS  Google Scholar 

  53. Stamper GF, Longenecker KL, Fry EH et al (2006) Structure-based optimization of MurF inhibitors. Chem Biol Drug Des 67(1):58–65

    Article  PubMed  CAS  Google Scholar 

  54. Steitz TA (2008) A structural understanding of the dynamic ribosome machine. Nat Rev Mol Cell Biol 9(3):242–253

    Article  PubMed  CAS  Google Scholar 

  55. Teotico DG, Babaoglu K, Rocklin GJ et al (2009) Docking for fragment inhibitors of AmpC beta-lactamase. Proc Natl Acad Sci USA 106(18):7455–7460

    Article  PubMed  CAS  Google Scholar 

  56. Turk S, Kovac A, Boniface A et al (2009) Discovery of new inhibitors of the bacterial peptidoglycan biosynthesis enzymes MurD and MurF by structure-based virtual screening. Bioorg Med Chem 17(5):1884–1889

    Article  PubMed  CAS  Google Scholar 

  57. Vassylyev DG, Vassylyeva MN, Perederina A et al (2007) Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448(7150):157–162

    Article  PubMed  CAS  Google Scholar 

  58. Vedadi M, Niesen FH, Allali-Hassani A et al (2006) Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc Natl Acad Sci USA 103(43):15835–15840

    Article  PubMed  CAS  Google Scholar 

  59. Zhou J, Bhattacharjee A, Chen S et al (2008) Design at the atomic level: design of biaryloxazolidinones as potent orally active antibiotics. Bioorg Med Chem Lett 18(23):6175–6178

    Article  PubMed  CAS  Google Scholar 

  60. Zhou J, Bhattacharjee A, Chen S et al (2008) Design at the atomic level: generation of novel hybrid biaryloxazolidinones as promising new antibiotics. Bioorg Med Chem Lett 18(23): 6179–6183

    Article  PubMed  CAS  Google Scholar 

  61. Zsoldos Z, Reid D, Simon A et al (2007) eHiTS: a new fast, exhaustive flexible ligand docking system. J Mol Graph Model 26(1):198–212

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molly B. Schmid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmid, M.B. (2012). Structure-Guided Discovery of New Antimicrobial Agents. In: Dougherty, T., Pucci, M. (eds) Antibiotic Discovery and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1400-1_31

Download citation

Publish with us

Policies and ethics