Skip to main content

Drug Resistant and Persistent Tuberculosis: Mechanisms and Drug Development

  • Chapter
  • First Online:
Antibiotic Discovery and Development

Abstract

Mycobacterium tuberculosis is a particularly successful pathogen that latently infects about one third of world population (about two billion people). Despite the availability of chemotherapy and BCG vaccine, tuberculosis (TB) remains a leading cause of infectious morbidity and mortality, causing about nine million new cases and nearly 1.5–2 million deaths annually [142]. The increasing emergence of drug-resistant TB, especially multidrug-resistant TB (MDR-TB) (resistant to at least isoniazid [INH] and rifampin [RIF]) and more recently extensively drug-resistant TB (XDR-TB), has caused a great deal of concern. XDR-TB is defined as MDR-TB plus additional resistance to two major second-line drugs fluoroquinolones and one of the three injectables (capreomycin, kanamycin, and amikacin) [141]. The recent outbreak of XDR-TB in South Africa where 52 of 53 HIV-positive individuals infected with XDR-TB died in an average of 16 days is particularly alarming [44]. There are about 500,000 new cases of MDR-TB and 40,000 XDR-TB cases a year [141]. The TB situation is further complicated by the spread of HIV pandemic worldwide, which weakens the host immune system and allows latent TB to reactivate or makes the person more susceptible to reinfection with drug susceptible and even drug-resistant strains [123]. It is estimated that of about 40 million people infected with HIV, one third are also co-infected with the tubercle bacillus. These individuals are 20–30 times more likely to develop TB and have five times higher mortality than those without HIV [95]. The current TB control regimen is seriously undermined by MDR/XDR-TB and HIV infection, which is a lethal combination and presents significant challenges for effective TB control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvirez-Freites E, Carter J, Cynamon M (2002) In vitro and in vivo activities of gatifloxacin against Mycobacterium tuberculosis. Antimicrob Agents Chemother 46:1022–1025

    PubMed  CAS  Google Scholar 

  2. Amaral L, Martins M, Viveiros M (2007) Phenothiazines as anti-multi-drug resistant tubercular agents. Infect Disord Drug Targets 7:257–265

    PubMed  CAS  Google Scholar 

  3. Andries K, Verhasselt P, Guillemont J, Gohlmann H, Neefs J, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227

    PubMed  CAS  Google Scholar 

  4. Ashtekar DR, Costa-Periera R, Shrinivasan T, Iyyer R, Vishvanathan N, Rittel W (1991) Oxazolidinones, a new class of synthetic antituberculosis agent. In vitro and in vivo activities of DuP-721 against Mycobacterium tuberculosis. Diagn Microbiol Infect Dis 14:465–471

    PubMed  CAS  Google Scholar 

  5. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    PubMed  CAS  Google Scholar 

  6. Barbachyn MR, Hutchinson DK, Brickner SJ, Cynamon MH, Kilburn JO, Klemens SP, Glickman SE, Grega KC, Hendges SK, Toops DS, Ford CW, Zurenko GE (1996) Identification of a novel oxazolidinone (U-100480) with potent antimycobacterial activity. J Med Chem 39: 680–685

    PubMed  CAS  Google Scholar 

  7. Bartz Q, Ehrlich J, Mold J, Penner M, Smith R (1951) Viomycin, a new tuberculostatic antibiotic. Am Rev Tuberc 63:4–6

    PubMed  CAS  Google Scholar 

  8. Bernstein J, Lott W, Steinberg B, Yale H (1952) Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (Nydrazid) and related compounds. Am Rev Tuberc 65:357–364

    PubMed  CAS  Google Scholar 

  9. Betts J, Lukey P, Robb L, McAdam R, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731

    PubMed  CAS  Google Scholar 

  10. Bigger JW (1944) Treatment of staphylococcal infections with penicillin. Lancet 244: 497–500

    Google Scholar 

  11. Black DS, Irwin B, Moyed HS (1994) Autoregulation of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J Bacteriol 176:4081–4091

    PubMed  CAS  Google Scholar 

  12. Blumberg HM, Burman WJ, Chaisson RE, Daley CL, Etkind SC, Friedman LN, Fujiwara P, Grzemska M, Hopewell PC, Iseman MD, Jasmer RM, Koppaka V, Menzies RI, O’Brien RJ, Reves RR, Reichman LB, Simone PM, Starke JR, Vernon AA (2003) American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med 167:603–662

    PubMed  Google Scholar 

  13. Boshoff HI, Xu X, Tahlan K, Dowd CS, Pethe K, Camacho LR, Park TH, Yun CS, Schnappinger D, Ehrt S, Williams KJ, Barry CE 3rd (2008) Biosynthesis and recycling of nicotinamide cofactors in Mycobacterium tuberculosis. An essential role for NAD in nonreplicating bacilli. J Biol Chem 283:19329–19341

    PubMed  CAS  Google Scholar 

  14. Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64: 29–63

    PubMed  CAS  Google Scholar 

  15. Bryk R, Gold B, Venugopal A, Singh J, Samy R, Pupek K, Cao H, Popescu C, Gurney M, Hotha S, Cherian J, Rhee K, Ly L, Converse PJ, Ehrt S, Vandal O, Jiang X, Schneider J, Lin G, Nathan C (2008) Selective killing of nonreplicating mycobacteria. Cell Host Microbe 3: 137–145

    PubMed  CAS  Google Scholar 

  16. Buriankova K, Doucet-Populaire F, Dorson O, Gondran A, Ghnassia JC, Weiser J, Pernodet JL (2004) Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex. Antimicrob Agents Chemother 48:143–150

    PubMed  CAS  Google Scholar 

  17. Burman WJ, Goldberg S, Johnson JL, Muzanye G, Engle M, Mosher AW, Choudhri S, Daley CL, Munsiff SS, Zhao Z, Vernon A, Chaisson RE (2006) Moxifloxacin versus ethambutol in the first 2 months of treatment for pulmonary tuberculosis. Am J Respir Crit Care Med 174: 331–338

    PubMed  CAS  Google Scholar 

  18. Byrne ST, Denkin SM, Zhang Y (2007) Aspirin and ibuprofen enhance pyrazinamide treatment of murine tuberculosis. J Antimicrob Chemother 59:313–316

    PubMed  CAS  Google Scholar 

  19. Byrne ST, Denkin SM, Gu P, Nuermberger E, Zhang Y (2007) Activity of ketoconazole against Mycobacterium tuberculosis in vitro and in the mouse model. J Med Microbiol 56:1047–1051

    PubMed  CAS  Google Scholar 

  20. Byrne ST, Gu P, Zhou J, Denkin SM, Chong C, Sullivan D, Liu JO, Zhang Y (2007) Pyrrolidine dithiocarbamate and diethyldithiocarbamate are active against growing and nongrowing persister Mycobacterium tuberculosis. Antimicrob Agents Chemother 51:4495–4497

    PubMed  CAS  Google Scholar 

  21. Canetti G (1955) The tubercle bacillus in the pulmonary lesion of man. Springer, New York

    Google Scholar 

  22. Castro AJ, Gale GR, Means GE, Tertzakian G (1967) Antimicrobial properties of pyrrole derivatives. J Med Chem 10:29–32

    PubMed  CAS  Google Scholar 

  23. Chambers HF, Turner J, Schecter GF, Kawamura M, Hopewell PC (2005) Imipenem for treatment of tuberculosis in mice and humans. Antimicrob Agents Chemother 49:2816–2821

    PubMed  CAS  Google Scholar 

  24. Chambers HF, Moreau D, Yajko D, Miick C, Wagner C, Hackbarth C, Kocagoz S, Rosenberg E, Hadley WK, Nikaido H (1995) Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? Antimicrob Agents Chemother 39:2620–2624

    PubMed  CAS  Google Scholar 

  25. Cho SH, Warit S, Wan B, Hwang CH, Pauli GF, Franzblau SG (2007) Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 51:1380–1385

    PubMed  CAS  Google Scholar 

  26. Chorine V (1945) Action de l’amide nicotinique sur les bacilles du genre Mycobacterium. CR Acad Sci (Paris) 220:150–151

    Google Scholar 

  27. Conde MB, Efron A, Loredo C, De Souza GR, Graca NP, Cezar MC, Ram M, Chaudhary MA, Bishai WR, Kritski AL, Chaisson RE (2009) Moxifloxacin versus ethambutol in the initial treatment of tuberculosis: a double-blind, randomised, controlled phase II trial. Lancet 373:1183–1189

    PubMed  CAS  Google Scholar 

  28. Condos R, Hadgiangelis N, Leibert E, Jacquette G, Harkin T, Rom WN (2008) Case series report of a linezolid-containing regimen for extensively drug-resistant tuberculosis. Chest 134:187–192

    PubMed  CAS  Google Scholar 

  29. Correia FF, D’Onofrio A, Rejtar T, Li L, Karger BL, Makarova K, Koonin EV, Lewis K (2006) Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli. J Bacteriol 188:8360–8367

    PubMed  CAS  Google Scholar 

  30. Cynamon MH, Klemens SP, Sharpe CA, Chase S (1999) Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Antimicrob Agents Chemother 43:1189–1191

    PubMed  CAS  Google Scholar 

  31. Dahl JL, Kraus CN, Boshoff HI, Doan B, Foley K, Avarbock D, Kaplan G, Mizrahi V, Rubin H, Barry CE 3rd (2003) The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc Natl Acad Sci USA 100: 10026–10031

    PubMed  CAS  Google Scholar 

  32. Debbia EA, Roveta S, Schito AM, Gualco L, Marchese A (2001) Antibiotic persistence: the role of spontaneous DNA repair response. Microb Drug Resist 7:335–342

    PubMed  CAS  Google Scholar 

  33. Deidda D, Lampis G, Fioravanti R, Biava M, Porretta GC, Zanetti S, Pompei R (1998) Bactericidal activities of the pyrrole derivative BM212 against multidrug-resistant and ­intramacrophagic Mycobacterium tuberculosis strains. Antimicrob Agents Chemother 42: 3035–3037

    PubMed  CAS  Google Scholar 

  34. Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, Pistorius C, Krause R, Bogoshi M, Churchyard G, Venter A, Allen J, Palomino JC, De Marez T, van Heeswijk RP, Lounis N, Meyvisch P, Verbeeck J, Parys W, de Beule K, Andries K, Mc Neeley DF (2009) The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 360:2397–2405

    PubMed  CAS  Google Scholar 

  35. Dienes L, Weinberger HJ (1951) The L forms of bacteria. Bacteriol Rev 15:245–288

    PubMed  CAS  Google Scholar 

  36. Dietze RTL, Rocha LM, Palaci M, Johnson JL, Wells C, Rose L, Eisenach K, Ellner JJ (2001) Safety and bactericidal activity of rifalazil in patients with pulmonary tuberculosis. Antimicrob Agents Chemother 45:1972–1976

    PubMed  CAS  Google Scholar 

  37. Domingue GJ Sr, Woody HB (1997) Bacterial persistence and expression of disease. Clin Microbiol Rev 10:320–344

    PubMed  Google Scholar 

  38. Domka J, Lee J, Bansal T, Wood TK (2007) Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 9:332–346

    PubMed  CAS  Google Scholar 

  39. Dorman SE, Johnson JL, Goldberg S, Muzanye G, Padayatchi N, Bozeman L, Heilig CM, Bernardo J, Choudhri S, Grosset JH, Guy E, Guyadeen P, Leus MC, Maltas G, Menzies D, Nuermberger EL, Villarino M, Vernon A, Chaisson RE (2009) Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis. Am J Respir Crit Care Med 180(3):273–80

    PubMed  CAS  Google Scholar 

  40. Duncan K, Barry CE 3rd (2004) Prospects for new antitubercular drugs. Curr Opin Microbiol 7:460–465

    PubMed  CAS  Google Scholar 

  41. Falla TJ, Chopra I (1998) Joint tolerance to beta-lactam and fluoroquinolone antibiotics in Escherichia coli results from overexpression of hipA. Antimicrob Agents Chemother 42:3282–3284

    PubMed  CAS  Google Scholar 

  42. Fox H (1952) The chemical approach to the control of tuberculosis. Science 116:129–134

    PubMed  CAS  Google Scholar 

  43. Fox W, Ellard GA, Mitchison DA (1999) Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946–1986, with relevant subsequent publications. Int J Tuberc Lung Dis 3:S231–279

    PubMed  CAS  Google Scholar 

  44. Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Lalloo U, Zeller K, Andrews J, Friedland G (2006) Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 368:1575–1580

    PubMed  Google Scholar 

  45. Garg A, Barnes PF, Roy S, Quiroga MF, Wu S, Garcia VE, Krutzik SR, Weis SE, Vankayalapati R (2008) Mannose-capped lipoarabinomannan- and prostaglandin E2-dependent expansion of regulatory T cells in human Mycobacterium tuberculosis infection. Eur J Immunol 38: 459–469

    PubMed  CAS  Google Scholar 

  46. GATB (2001) Tuberculosis. Scientific blueprint for tuberculosis drug development. Tuberculosis (Edinb) 81(1):1–52

    Google Scholar 

  47. GATB (2008) LL-3858. Tuberculosis (Edinb) 88, 126

    Google Scholar 

  48. Geiman DE, Raghunand TR, Agarwal N, Bishai WR (2006) Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes. Antimicrob Agents Chemother 50:2836–2841

    PubMed  CAS  Google Scholar 

  49. Gerdes K, Christensen SK, Lobner-Olesen A (2005) Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 3:371–382

    PubMed  CAS  Google Scholar 

  50. Ginsberg AM, Spigelman M (2007) Challenges in tuberculosis drug research and development. Nat Med 13:290–294

    PubMed  CAS  Google Scholar 

  51. Ginsberg AM, Laurenzi MW, Rouse DJ, Whitney KD, Spigelman MK (2009) Safety, tolerability, and pharmacokinetics of PA-824 in Healthy subjects. Antimicrob Agents Chemother 53:3720–3725

    PubMed  CAS  Google Scholar 

  52. Goldman RC, Laughon BE, Reynolds RC, Secrist JA 3rd, Maddry JA, Guie MA, Poffenberger AC, Kwong CA, Ananthan S (2007) Programs to facilitate tuberculosis drug discovery: the tuberculosis antimicrobial acquisition and coordinating facility. Infect Disord Drug Targets 7:92–104

    PubMed  CAS  Google Scholar 

  53. Gomez J, McKinney J (2004) Persistence and drug tolerance. In: Rom W, Garay S (eds) Tuberculosis. Lippencott & Wilkinson, New York, pp 101–114

    Google Scholar 

  54. Haagsma AC, Abdillahi-Ibrahim R, Wagner MJ, Krab K, Vergauwen K, Guillemont J, Andries K, Lill H, Koul A, Bald D (2009) Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob Agents Chemother 53:1290–1292

    PubMed  CAS  Google Scholar 

  55. Herr E, Haney M, Pittenger G, Higgens C (1960) Isolation and characterization of a new peptide antibiotic. Proc Indiana Acad Sci 69:134

    Google Scholar 

  56. Heym B, Honore N, Truffot-Pernot C, Banerjee A, Schurra C, Jacobs WR Jr, van Embden JD, Grosset JH, Cole ST (1994) Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet 344:293–298

    PubMed  CAS  Google Scholar 

  57. Hobby GL, Meyer K, Chaffee E (1942) Observations on the mechanism of action of penicillin. Proc Soc Exp Biol NY 50:281–285

    CAS  Google Scholar 

  58. Hu Y, Coates AR, Mitchison DA (2003) Sterilizing activities of fluoroquinolones against rifampin-tolerant populations of Mycobacterium tuberculosis. Antimicrob Agents Chemother 47:653–657

    PubMed  CAS  Google Scholar 

  59. Hu Y, Coates AR, Mitchison DA (2008) Comparison of the sterilising activities of the nitroimidazopyran PA-824 and moxifloxacin against persisting Mycobacterium tuberculosis. Int J Tuberc Lung Dis 12:69–73

    PubMed  CAS  Google Scholar 

  60. Hugonnet JE, Tremblay LW, Boshoff HI, Barry CE 3rd, Blanchard JS (2009) Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science 323:1215–1218

    PubMed  CAS  Google Scholar 

  61. Ibrahim M, Truffot-Pernot C, Andries K, Jarlier V, Veziris N (2009) Sterilizing activity of R207910 (TMC207) containing regimens in the murine model of tuberculosis. Am J Respir Crit Care Med 180(6):553–7

    PubMed  CAS  Google Scholar 

  62. Ibrahim M, Andries K, Lounis N, Chauffour A, Truffot-Pernot C, Jarlier V, Veziris N (2007) Synergistic activity of R207910 combined with pyrazinamide against murine tuberculosis. Antimicrob Agents Chemother 51:1011–1015

    PubMed  CAS  Google Scholar 

  63. Ji B, Lounis N, Maslo C, Truffot-Pernot C, Bonnafous P, Grosset J (1998) In vitro and in vivo activities of moxifloxacin and clinafloxacin against Mycobacterium tuberculosis. Antimicrob Agents Chemother 42:2066–2069

    PubMed  CAS  Google Scholar 

  64. Jia L, Tomaszewski JE, Hanrahan C, Coward L, Noker P, Gorman G, Nikonenko B, Protopopova M (2005) Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br J Pharmacol 144:80–87

    PubMed  CAS  Google Scholar 

  65. Johnson JL, Hadad DJ, Boom WH, Daley CL, Peloquin CA, Eisenach KD, Jankus DD, Debanne SM, Charlebois ED, Maciel E, Palaci M, Dietze R (2006) Early and extended early bactericidal activity of levofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int J Tuberc Lung Dis 10:605–612

    PubMed  CAS  Google Scholar 

  66. Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172–8180

    PubMed  CAS  Google Scholar 

  67. Klieneberger E (1935) The natural occurrence of pleuropneumonia-like organism in apparent symbiosis with Streptobacillus moniliformis and other bacteria. J Pathol Bacteriol 40:93–105

    Google Scholar 

  68. Korch SB, Hill TM (2006) Ectopic overexpression of wild-type and mutant hipA genes in Escherichia coli: effects on macromolecular synthesis and persister formation. J Bacteriol 188:3826–3836

    PubMed  CAS  Google Scholar 

  69. Korch SB, Henderson TA, Hill TM (2003) Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol Microbiol 50:1199–1213

    PubMed  CAS  Google Scholar 

  70. Korch SB, Contreras H, Clark-Curtiss JE (2009) Three Mycobacterium tuberculosis Rel toxin-antitoxin modules inhibit mycobacterial growth and are expressed in infected human macrophages. J Bacteriol 191:1618–1630

    PubMed  CAS  Google Scholar 

  71. Koul A, Vranckx L, Dendouga N, Balemans W, Van den Wyngaert I, Vergauwen K, Gohlmann HW, Willebrords R, Poncelet A, Guillemont J, Bald D, Andries K (2008) Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J Biol Chem 283:25273–25280

    PubMed  CAS  Google Scholar 

  72. Kurosawa H (1952) Studies on the antibiotic substances from actinomyces. XXIII. The isolation of an antibiotic produced by a strain of streptomyces “K 30”. J Antibiot Ser B 5: 682–688

    Google Scholar 

  73. Lee RE, Protopopova M, Crooks E, Slayden RA, Terrot M, Barry CE 3rd (2003) Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates. J Comb Chem 5:172–187

    PubMed  CAS  Google Scholar 

  74. Lehmann J (1946) Determination of pathogenicity of tubercle bacilli by their intermediate metabolism. Lancet 250:14–15

    CAS  Google Scholar 

  75. Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemistry (Mosc) 70:267–274

    CAS  Google Scholar 

  76. Li Y, Zhang Y (2007) PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob Agents Chemother 51:2092–2099

    PubMed  CAS  Google Scholar 

  77. Liebermann D, Moyeux M, Rist N, Grumbach F (1956) Sur la preparation de nouveaux thioamides pyridineques acitifs dans la tubercolose experimentale. C R Acad Sci 242:2409–2412

    Google Scholar 

  78. Lounis N, Veziris N, Chauffour A, Truffot-Pernot C, Andries K, Jarlier V (2006) Combinations of R207910 with drugs used to treat multidrug-resistant tuberculosis have the potential to shorten treatment duration. Antimicrob Agents Chemother 50:3543–3547

    PubMed  CAS  Google Scholar 

  79. Lu Y, Zheng MQ, Wang B, Zhao WJ, Li P, Chu NH, Liang BW (2008) Activities of clofazimine against Mycobacterium tuberculosis in vitro and in vivo. Zhonghua Jie He He Hu Xi Za Zhi 31:752–755

    PubMed  Google Scholar 

  80. Madsen CT, Jakobsen L, Buriankova K, Doucet-Populaire F, Pernodet JL, Douthwaite S (2005) Methyltransferase Erm(37) slips on rRNA to confer atypical resistance in Mycobacterium tuberculosis. J Biol Chem 280:38942–38947

    PubMed  CAS  Google Scholar 

  81. Malone L, Schurr A, Lindh H, McKenzie D, Kiser JS, Williams JH (1952) The effect of pyrazinamide (Aldinamide) on experimental tuberculosis in mice. Am Rev Tuberc 65: 511–518

    PubMed  CAS  Google Scholar 

  82. Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, Shimokawa Y, Komatsu M (2006) OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med 3:e466

    PubMed  Google Scholar 

  83. McCune R, Tompsett R (1956) The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence of drug susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J Exp Med 104:737–762

    PubMed  CAS  Google Scholar 

  84. McDermott W (1958) Microbial persistence. Yale J Biol Med 30:257–291

    PubMed  CAS  Google Scholar 

  85. McKinney JD, zu Honer Bentrup K, Munoz-Elias EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR Jr, Russell DG (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738

    PubMed  CAS  Google Scholar 

  86. Min Zhong XZ, Wang Y, Zhang C-Z, Chen G, P-p Hu, Li M, Zhu B, Zhang W, Zhang Y (2010) An interesting case of rifampin-dependent/enhanced MDR-TB. Int J Tuberc Lung Dis 14:40–44

    Google Scholar 

  87. Mitchison DA (1985) The action of antituberculosis drugs in short course chemotherapy. Tubercle 66:219–225

    PubMed  CAS  Google Scholar 

  88. Miyazaki E, Miyazaki M, Chen J, Chaisson R, Bishai W (1999) Moxifloxacin (BAY12-8039), a new 8-methoxyquinolone, is active in a mouse model of tuberculosis. Antimicrob Agents Chemother 43:85–89

    PubMed  CAS  Google Scholar 

  89. Morris RP, Nguyen L, Gatfield J, Visconti K, Nguyen K, Schnappinger D, Ehrt S, Liu Y, Heifets L, Pieters J, Schoolnik G, Thompson CJ (2005) Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 102:12200–12205

    PubMed  CAS  Google Scholar 

  90. Moyed HS, Bertrand KP (1983) hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 155: 768–775

    PubMed  CAS  Google Scholar 

  91. Nikonenko BV, Protopopova M, Samala R, Einck L, Nacy CA (2007) Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs. Antimicrob Agents Chemother 51:1563–1565

    PubMed  CAS  Google Scholar 

  92. Nuermberger E, Tyagi S, Tasneen R, Williams KN, Almeida D, Rosenthal I, Grosset JH (2008) Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrob Agents Chemother 52:1522–1524

    PubMed  CAS  Google Scholar 

  93. Nuermberger E, Yoshimatsu T, Tyagi S, O’Brien R, Vernon A, Chaisson R, Bishai W, Grosset J (2004) Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am J Respir Crit Care Med 169:421–426

    PubMed  Google Scholar 

  94. Nuermberger E, Rosenthal I, Tyagi S, Williams KN, Almeida D, Peloquin CA, Bishai WR, Grosset JH (2006) Combination chemotherapy with the nitroimidazopyran PA-824 and first-line drugs in a murine model of tuberculosis. Antimicrob Agents Chemother 50:2621–2625

    PubMed  CAS  Google Scholar 

  95. Nunn P, Reid A, De Cock KM (2007) Tuberculosis and HIV infection: the global setting. J Infect Dis 196(Suppl 1):S5–14

    PubMed  Google Scholar 

  96. O’Brien R, Nunn P (2001) The need for new drugs against tuberculosis. Obstacles, opportunities, and next steps. Am J Respir Crit Care Med 163:1055–1058

    PubMed  Google Scholar 

  97. Offe H, Siefken W, Domagk G (1952) The tuberculostatic activity of hydrazine derivatives from pyridine carboxylic acids and carbonyl compounds. Z Naturforsch 7b:462–468

    CAS  Google Scholar 

  98. Pandey DP, Gerdes K (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33:966–976

    PubMed  CAS  Google Scholar 

  99. Park IN, Hong SB, Oh YM, Kim MN, Lim CM, Lee SD, Koh Y, Kim WS, Kim DS, Kim WD, Shim TS (2006) Efficacy and tolerability of daily-half dose linezolid in patients with intractable multidrug-resistant tuberculosis. J Antimicrob Chemother 58:701–704

    PubMed  CAS  Google Scholar 

  100. Pedersen K, Zavialov AV, Pavlov MY, Elf J, Gerdes K, Ehrenberg M (2003) The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 112: 131–140

    PubMed  CAS  Google Scholar 

  101. Perez E, Samper S, Bordas Y, Guilhot C, Gicquel B, Martin C (2001) An essential role for phoP in Mycobacterium tuberculosis virulence. Mol Microbiol 41:179–187

    PubMed  CAS  Google Scholar 

  102. Primm TP, Andersen SJ, Mizrahi V, Avarbock D, Rubin H, Barry CE 3rd (2000) The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 182:4889–4898

    PubMed  CAS  Google Scholar 

  103. Projan S (2003) Why is big Pharma getting out of antibacterial drug discovery? Curr Opin Microbiol 6:427–430

    PubMed  Google Scholar 

  104. Rao SP, Alonso S, Rand L, Dick T, Pethe K (2008) The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc Natl Acad Sci USA 105:11945–11950

    PubMed  CAS  Google Scholar 

  105. Rosenthal IM, Zhang M, Almeida D, Grosset JH, Nuermberger EL (2008) Isoniazid or moxifloxacin in rifapentine-based regimens for experimental tuberculosis? Am J Respir Crit Care Med 178:989–993

    PubMed  CAS  Google Scholar 

  106. Rosenthal IM, Williams K, Tyagi S, Vernon AA, Peloquin CA, Bishai WR, Grosset JH, Nuermberger EL (2005) Weekly moxifloxacin and rifapentine is more active than the denver regimen in murine tuberculosis. Am J Respir Crit Care Med 172:1457–1462

    PubMed  Google Scholar 

  107. Rosenthal IM, Williams K, Tyagi S, Peloquin CA, Vernon AA, Bishai WR, Grosset JH, Nuermberger EL (2006) Potent twice-weekly rifapentine-containing regimens in murine tuberculosis. Am J Respir Crit Care Med 174:94–101

    PubMed  CAS  Google Scholar 

  108. Rosenthal IM, Zhang M, Williams KN, Peloquin CA, Tyagi S, Vernon AA, Bishai WR, Chaisson RE, Grosset JH, Nuermberger EL (2007) Daily dosing of rifapentine cures tuberculosis in three months or less in the murine model. PLoS Med 4:e344

    PubMed  Google Scholar 

  109. Rothstein DM, Shalish C, Murphy CK, Sternlicht A, Campbell LA (2006) Development potential of rifalazil and other benzoxazinorifamycins. Expert Opin Investig Drugs 15:603–623

    PubMed  CAS  Google Scholar 

  110. Rustomjee R, Lienhardt C, Kanyok T, Davies GR, Levin J, Mthiyane T, Reddy C, Sturm AW, Sirgel FA, Allen J, Coleman DJ, Fourie B, Mitchison DA (2008) A Phase II study of the sterilising activities of ofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int J Tuberc Lung Dis 12:128–138

    PubMed  CAS  Google Scholar 

  111. Rustomjee R, Diacon AH, Allen J, Venter A, Reddy C, Patientia RF, Mthiyane TC, De Marez T, van Heeswijk R, Kerstens R, Koul A, De Beule K, Donald PR, McNeeley DF (2008) Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis. Antimicrob Agents Chemother 52:2831–2835

    PubMed  CAS  Google Scholar 

  112. Saliu OY, Crismale C, Schwander SK, Wallis RS (2007) Bactericidal activity of OPC-67683 against drug-tolerant Mycobacterium tuberculosis. J Antimicrob Chemother 60:994–998

    PubMed  CAS  Google Scholar 

  113. Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100:12989–12994

    PubMed  CAS  Google Scholar 

  114. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84

    PubMed  CAS  Google Scholar 

  115. Sat B, Hazan R, Fisher T, Khaner H, Glaser G, Engelberg-Kulka H (2001) Programmed cell death in Escherichia coli: some antibiotics can trigger mazEF lethality. J Bacteriol 183: 2041–2045

    PubMed  CAS  Google Scholar 

  116. Schatz A, Bugie E, Waksman S (1944) Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc Soc Exper Biol Med 55:66–69

    CAS  Google Scholar 

  117. Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K, Brennan RG (2009) Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 323:396–401

    PubMed  CAS  Google Scholar 

  118. Segura C, Salvado M, Collado I, Chaves J, Coira A (1998) Contribution of beta-lactamases to beta-lactam susceptibilities of susceptible and multidrug-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother 42:1524–1526

    PubMed  CAS  Google Scholar 

  119. Sensi P, Margalith P, Timbal M (1959) Rifomycin, a new antibiotic. Preliminary report Farmaco Sci 14:146–147

    CAS  Google Scholar 

  120. Sensi P, Maggi N, Furesz S, Maffii G (1966) Chemical modifications and biological properties of rifamycins. Antimicrobial Agents Chemother (Bethesda) 6:699–714

    CAS  Google Scholar 

  121. Shi W, Zhang Y (2010) PhoY2 but not PhoY1 is the PhoU Homolog Involved in Persisters in Mycobacterium tuberculosis. J Antimicrob Chemother 65:1237–42

    CAS  Google Scholar 

  122. Shoen CM, DeStefano MS, Cynamon MH (2000) Durable cure for tuberculosis: rifalazil in combination with isoniazid in a murine model of Mycobacterium tuberculosis infection. Clin Infect Dis 30(Suppl 3):S288–290

    PubMed  CAS  Google Scholar 

  123. Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, Ledwidge R, Dowd CS, Lee IY, Kim P, Zhang L, Kang S, Keller TH, Jiricek J, Barry CE 3rd (2008) PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322:1392–1395

    PubMed  CAS  Google Scholar 

  124. Small PM, Shafer RW, Hopewell PC, Singh SP, Murphy MJ, Desmond E, Sierra MF, Schoolnik GK (1993) Exogenous reinfection with multidrug-resistant Mycobacterium tuberculosis in patients with advanced HIV infection. N Engl J Med 328:1137–1144

    PubMed  CAS  Google Scholar 

  125. Solotorovsky M, Gregory FJ, Ironson EJ, Bugie EJ, Oneill RC, Pfister K (1952) Pyrazinoic acid amide - An agent active against experimental murine tuberculosis. Soc Exp Biol Med Proc 79:563–565

    CAS  Google Scholar 

  126. Spoering AL, Vulic M, Lewis K (2006) GlpD and PlsB participate in persister cell formation in Escherichia coli. J Bacteriol 188:5136–5144

    PubMed  CAS  Google Scholar 

  127. Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113

    PubMed  CAS  Google Scholar 

  128. Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE, Baker WR (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966

    PubMed  CAS  Google Scholar 

  129. Stumpf MP, Robertson BD, Duncan K, Young DB (2007) Systems biology and its impact on anti-infective drug development. Prog Drug Res 64(1):3–20

    Google Scholar 

  130. Sun Z, Zhang Y (1999) Antituberculosis activity of certain antifungal and antihelmintic drugs. Tuberc Lung Dis 79:319–320

    CAS  Google Scholar 

  131. Tasneen R, Tyagi S, Williams K, Grosset J, Nuermberger E (2008) Enhanced bactericidal activity of rifampin and/or pyrazinamide when combined with PA-824 in a murine model of tuberculosis. Antimicrob Agents Chemother 52:3664–3668

    PubMed  CAS  Google Scholar 

  132. Thomas J, Baughn C, Wilkinson R, Shepherd R (1961) A new synthetic compound with antituberculous activity in mice: ethambutol (dextro-2,2’-(ethylenediimino)-di-butanol). Am Rev Respir Dis 83:891–893

    PubMed  CAS  Google Scholar 

  133. Tsunekawa H, Miyachi T, Nakamura E, Tsukamura M, Amano H (1987) Therapeutic effect of ofloxacin on ‘treatment-failure’ pulmonary tuberculosis. Kekkaku 62:435–439

    PubMed  CAS  Google Scholar 

  134. Tyagi S, Nuermberger E, Yoshimatsu T, Williams K, Rosenthal I, Lounis N, Bishai W, Grosset J (2005) Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrob Agents Chemother 49:2289–2293

    PubMed  CAS  Google Scholar 

  135. Umezawa H, Ueda M, Maeda K, Yagishita K, Kondo S, Okami Y, Utahara R, Osato Y, Nitta K, Takeuchi T (1957) Production and isolation of a new antibiotic, kanamycin. J Antibiot Jpn Ser A 10:181–188

    CAS  Google Scholar 

  136. Valerio G, Bracciale P, Manisco V, Quitadamo M, Legari G, Bellanova S (2003) Long-term tolerance and effectiveness of moxifloxacin therapy for tuberculosis: preliminary results. J Chemother 15:66–70

    PubMed  CAS  Google Scholar 

  137. Vazquez-Laslop N, Lee H, Neyfakh AA (2006) Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. J Bacteriol 188: 3494–3497

    PubMed  CAS  Google Scholar 

  138. Veziris N, Ibrahim M, Lounis N, Chauffour A, Truffot-Pernot C, Andries K, Jarlier V (2009) A once-weekly R207910-containing regimen exceeds activity of the standard daily regimen in murine tuberculosis. Am J Respir Crit Care Med 179:75–79

    PubMed  CAS  Google Scholar 

  139. von der Lippe B, Sandven P, Brubakk O (2006) Efficacy and safety of linezolid in multidrug resistant tuberculosis (MDR-TB)–a report of ten cases. J Infect 52:92–96

    PubMed  Google Scholar 

  140. Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK (2003) Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198:705–713

    PubMed  CAS  Google Scholar 

  141. Weinstein EA, Yano T, Li LS, Avarbock D, Avarbock A, Helm D, McColm AA, Duncan K, Lonsdale JT, Rubin H (2005) Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs. Proc Natl Acad Sci USA 102:4548–4553

    PubMed  CAS  Google Scholar 

  142. WHO (2008) World Health Organization. Anti-tuberculosis drug resistance in the world, Report No. 4

    Google Scholar 

  143. WHO (2009) World Health Organization Tuberculosis (TB). http://www.who.int/tb/en/

  144. Wanliang Shi, Xuelian Zhang, Xin Jiang, Haiming Yuan, Jongseok Lee, Clifton E. Barry, 3rd, Honghai Wang, Wenhong Zhang, Ying Zhang. (2011). Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science, Aug 11. 2011, (DOI: 10.1126/science.1208813). 333:1630–1632

    Google Scholar 

  145. Willand N, Dirie B, Carette X, Bifani P, Singhal A, Desroses M, Leroux F, Willery E, Mathys V, Deprez-Poulain R, Delcroix G, Frenois F, Aumercier M, Locht C, Villeret V, Deprez B, Baulard AR (2009) Synthetic EthR inhibitors boost antituberculous activity of ethionamide. Nat Med 15:537–544

    PubMed  CAS  Google Scholar 

  146. William Glover, Yanqin Yang, Ying Zhang. (2009). Insights into the Molecular Basis of L-Form Formation and Survival in Escherichia coli. PLoS ONE. Oct 6;4(10):e7316

    PubMed  CAS  Google Scholar 

  147. Williams KN, Stover CK, Zhu T, Tasneen R, Tyagi S, Grosset JH, Nuermberger E (2009) Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model. Antimicrob Agents Chemother 53:1314–1319

    PubMed  CAS  Google Scholar 

  148. Winder F (1982) Mode of action of the antimycobacterial agents and associated aspects of the molecular biology of mycobacteria. In: Ratledge C, Stanford J (eds) The biology of mycobacteria. Academic, New York

    Google Scholar 

  149. Yamaguchi Y, Inouye M (2009) mRNA interferases, sequence-specific endoribonucleases from the toxin-antitoxin systems. Prog Mol Biol Transl Sci 85:467–500

    PubMed  CAS  Google Scholar 

  150. Yew WW, Kwan SY, Ma WK, Khin MA, Chau PY (1990) In-vitro activity of ofloxacin against Mycobacterium tuberculosis and its clinical efficacy in multiply resistant pulmonary tuberculosis. J Antimicrob Chemother 26:227–236

    PubMed  CAS  Google Scholar 

  151. Zhang Y (2004) Persistent and dormant tubercle bacilli and latent tuberculosis. Front Biosci 9:1136–1156

    PubMed  CAS  Google Scholar 

  152. Zhang Y (2005) The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol 45:529–564

    PubMed  CAS  Google Scholar 

  153. Zhang Y (2007) Advances in the treatment of tuberculosis. Clin Pharmacol Ther 82:595–600

    PubMed  CAS  Google Scholar 

  154. Zhang Y, Telenti A (2000) Genetics of Drug Resistance in Mycobacterium tuberculosis. In: Hatfull G, Jacobs WR (eds) Molecular genetics of mycobacteria. ASM Press, Washington, DC, pp 235–254

    Google Scholar 

  155. Zhang Y, Jacobs W Jr (2008) Molecular mechanisms of drug resistance of M. tuberculosis. In: Rubin E, Kaufman SHE (eds) Tuberculosis handbook. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 321–376

    Google Scholar 

  156. Zhang Y, Yew W (2009) Mechanisms of drug resistance in Mycobacterium tuberculosis state of the art. Int J Tuberc Lung Dis 13:1320–1330

    PubMed  CAS  Google Scholar 

  157. Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591–593

    PubMed  CAS  Google Scholar 

  158. Zhang Y, Wade MM, Scorpio A, Zhang H, Sun Z (2003) Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J Antimicrob Chemother 52:790–795

    PubMed  Google Scholar 

Download references

Acknowledgment

The author acknowledges the support by the NIH grant AI44063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhang, Y. (2012). Drug Resistant and Persistent Tuberculosis: Mechanisms and Drug Development. In: Dougherty, T., Pucci, M. (eds) Antibiotic Discovery and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1400-1_22

Download citation

Publish with us

Policies and ethics