Skip to main content

The Organization of the Gut and the Oral Absorption of Drugs: Anatomical, Biological and Physiological Considerations in Oral Formulation Development

  • Chapter
  • First Online:
Controlled Release in Oral Drug Delivery

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Oral drug delivery remains the mainstay of patient treatment although the candidate drugs of the new millennium are becoming increasingly difficult to formulate for good systemic absorption. The area of oral delivery therefore represents an important area of innovation for pharmaceutical formulation including modulating solubility, exploiting windows of absorption and increasing bioavailability in a robust manner to attempt a more predictable outcome. In order to deliver an active pharmaceutical ingredient to facilitate systemic exposure, the drug must be presented in a dosage unit that contains an accurate dose of a specified active pharmaceutical ingredient which remains intact to the point of administration. On dosing, the pharmaceutical phase must be undone appropriately: the drug must be liberated at the correct rate, escaping degradation and metabolism and reach sufficient concentrations in the target tissue. The exposition of the pharmacist’s art is then completed in the lumen of the gut and therefore an understanding the organization of the organ system, at a macroscopic level, is of great relevance. In this chapter, the general integration of anatomy and motility with regard to the interaction of the dosage form will be considered. The biochemical and biophysical elements of absorption of the drug substance will not dealt with in detail in this chapter but by other books in this series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weaver LT, Austin S, Cole TJ (1991) Small intestinal length: a factor essential for gut adaptation. Gut 32(11):1321–1323

    Article  PubMed  CAS  Google Scholar 

  2. Holloway RH, Tippett MD, Horowitz M et al (1999) Relationship between esophageal motility and transit in patients with type 1 diabetes mellitus. Am J Gastroenterol 94:3150–3157

    Article  PubMed  CAS  Google Scholar 

  3. Channer KS, Virjee JP (1985) The effect of surface coating of tablets on oesophageal transit. Br J Pharm Pract 1985:9–14

    Google Scholar 

  4. Channer KS, Virjee JP (1984) The effect of formulation on oesophageal transit. J Pharm Pharmacol 37:126–129

    Article  Google Scholar 

  5. Bar-Shalom D (2010) Seeds of change: thoughts on making solid dosage forms easier to swallow in “Tablets and Capsules” in Tablets & Capsules 8:29–31

    Google Scholar 

  6. Feldman M, Barnett C (1991) Fasting gastric pH and its relationship to true hypochlorhydria in humans. Dig Dis Sci 36:866–869

    Article  PubMed  CAS  Google Scholar 

  7. Davis SS, Hardy JG, Taylor MJ, Whalley DR, Wilson CG (1984) A comparative study of gastrointestinal transit of a pellet and tablet formulation. Int J Pharm 21:167–173

    Article  CAS  Google Scholar 

  8. Reilly S, Wilson CG, Hardy JG (1987) The influence of food on gastric emptying of multiparticulate dosage forms. Int J Pharm 34:213–216

    Article  Google Scholar 

  9. Wilson CG, Washington N, Greaves JL, Kamali F, Rees JA, Sempik AK, Lampard JF (1989) Bimodal release of drug in a sustained release Ibuprofen formulation: A scintigraphic and pharmacokinetic open study in healthy volunteers under different conditions of food intake. Int J Pharm 50:155–161

    Article  CAS  Google Scholar 

  10. Code CF, Marlett JA (1975) The interdigestive myo-electric complex of the stomach and small bowel of dogs. J Physiol 246(2):289–30

    PubMed  CAS  Google Scholar 

  11. Bull JS, Grundy D, Scatcherd T (1987) Disruption of the jejunal migrating motor complex by gastric distension and feeding in the dog. J Physiol 394:381–392

    PubMed  CAS  Google Scholar 

  12. Lacombe O, Woodley J, Solleux C, Delbos JM, Boursier-Neyret C, Houin G (2004) Localisation of drug permeability along the rat small intestine, using markers of the paracellular, transcellular and some transporter routes. Eur J Pharm Sci 23:385–391

    Article  PubMed  CAS  Google Scholar 

  13. Burke MD, Wilson CG (2006) Clinical protocol design: gastroretentive dosage forms. Drug Deliv 6(8):26–31

    CAS  Google Scholar 

  14. Lewis LD, Fowle AS, Bittiner SB, Bye A, Isaacs PE (1986) Human gastrointestinal absorption of acyclovir from tablet duodenal infusion and sipped solution. Br J Clin Pharmacol 21(4):459–462

    PubMed  CAS  Google Scholar 

  15. Jenkins JRF, Hardy JG, Wilson CG (1983) Monitoring antacid preparations in the stomach using gamma scintigraphy. Int J Pharm 14:143–148

    Article  CAS  Google Scholar 

  16. Kaus LC, Fell JT, Sharma H, Taylor DC (1984) The intestinal transit of a single non-disintegrating unit. Int J Pharm 20:315–323

    Article  CAS  Google Scholar 

  17. Indrio F, Riezzo G, Raimondi F, Francavilla R, Montagna O, Valenzano ML, Cavallo L, Boehm G (2009) Prebiotics improve gastric motility and gastric electrical activity in preterm newborns. J Ped Gastroenterol Nutr 49:258–261

    Google Scholar 

  18. Hammer J, Talley NJ (2006) Disturbed bowel habits in patients with non-ulcer dyspepsia. Aliment Pharm Ther 24:405–410

    Article  CAS  Google Scholar 

  19. Wilson CG, Washington N, Greaves JL, Washington C, Wilding IR, Hoadley T, Sims EE (1991) Predictive modelling of the behaviour of a controlled release Buflomedil HCl formulation using scintigraphic and pharmacokinetic data. Int J Pharm 72:79–86

    Article  CAS  Google Scholar 

  20. Fu J, Sun X, Zhang ZR (2002) Study on of bioadhesive property of carbomer 934 by a gamma camera in vivo. World J Gastroenterol 8(1):176–179

    PubMed  CAS  Google Scholar 

  21. Wilson CG, Weitschies W (2009) Modern drug delivery: physiological considerations for orally administered medications. In: van de Waterbeemd (ed) Drug bioavailability, estimation of solubility, permeability, absorption and bioavailability. Wiley-VCH, Weinheim, Germany pp 571–595

    Google Scholar 

  22. Swaisland HC, Smith RP, Laight A, Kerr DJ, Ranson M, Wilder-Smith CH, Duvauchelle T (2005) Single-dose clinical pharmacokinetic studies of gefitinib. Clin Pharmacokinet 44:1165–1177

    Article  PubMed  CAS  Google Scholar 

  23. Wilson CG, Mukherji G, Shah HK (2008) Biopolymers and colonic delivery. In: Rathbone M, Hadgraft J, Roberts M (eds) Modified release drug delivery technology, 2nd edn. Swarbrick J (ed) Drugs and the pharmaceutical sciences series. Marcel Dekker, New York, pp 315–329

    Google Scholar 

  24. Von Schonfeld J, Evans DF, Renzing K, Castillo FD, Wingate DL (1998) Human small bowel motor activity in response to liquid meals of different caloric value and different chemical composition. Dig Dis Sci 43:265–269

    Article  Google Scholar 

  25. Wilson CG (2002) Colon drug delivery. In: Rathbone M, Hadgraft J, Roberts M (eds) Modified release drug delivery technology. Swarbrick J (ed) Drugs and the pharmaceutical sciences series. Marcel Dekker, New York, pp 217–222

    Google Scholar 

  26. Diakidou A, Vertzoni M, Goumas K, Abrahamsson B, Söderlind E, Dressman JB, Reppas C (2009) Characterisation of the contents of the ascending colon to which drugs are exposed after oral administration to healthy adults. Pharm Res 26:2141–2151

    Article  PubMed  CAS  Google Scholar 

  27. Sullivan SK, Smith PL (1986) Bicarbonate secretion by the rabbit proximal colon. Am J Physiol 251:G436–G445

    PubMed  CAS  Google Scholar 

  28. McDougall CL, Wong R, Scudera P, Lesser M, DeCosse JJ (1993) Colonic mucosal pH in humans. Dig Dis Sci 38:542–545

    Article  PubMed  CAS  Google Scholar 

  29. Press AG, Hauptmann IA, Hauptmann L, Fuchs B, Fuchs M, Ewe K, Ramdori G (1998) Gastrointestinal pH profiles in patients with inflammatory bowel disease. Aliment Pharmacol Ther 12:673–678

    Article  PubMed  CAS  Google Scholar 

  30. Barrow L, Spiller RC, Wilson CG (1981) Pathological influences on colonic motility: implications for drug delivery. Adv Drug Deliv Rev 7:201–218

    Article  Google Scholar 

  31. Hodges LA, Connolly SA, Band J, O’Mahony B, Ugurlu T, Turkoglu M, Wilson CG, Stevens HNE (2009) Scintigraphic evaluation of colon targeting pectin–HPMC tablets in healthy ­volunteers. Int J Pharm 370:144–150

    Article  PubMed  CAS  Google Scholar 

  32. Misiewicz JJ (1975) Colonic motility. Gut 16:311–314

    Article  PubMed  CAS  Google Scholar 

  33. Holdstock DJ, Misiewicz JJ (1970) Factors controlling colonic motility: colonic pressures and transit after meals in patients with total gastrectomy, pernicious anaemia or duodenal ulcer. Gut 11:100–110

    Article  PubMed  CAS  Google Scholar 

  34. Hebden JM, Gilchrist PJ, Perkins AC, Wilson CG, Spiller RS (1999) Stool water content and colonic drug absorption: contrasting effects of lactulose and codeine. Pharm Res 16:1254–1259

    Article  PubMed  CAS  Google Scholar 

  35. Stevens HNE, Wilson CG, Welling PG, Bakhsaheee M, Binns JS, Perkins AC, Frier M, Blackshaw EP, Frame MW, Nichols DJ, Humphrey MJ, Wicks SR (2002) Evaluation of Pulsincap to provide regional delivery of dofetilide to the human GI tract. Int J Pharm 236:27–34

    Article  PubMed  CAS  Google Scholar 

  36. Bar-Shalom D, Wilson CG, Washington N (2009) Chronotherapy using Egalet® technology. In: Bi-Botti C Youan (ed) Chronopharmaceutics: science and technology for biological rhythm-guided therapy and prevention of diseases. Wiley, Hoboken, NJ, pp 165–173

    Google Scholar 

  37. Dominguez MG, Costello E, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition of the initial microbiota across multiple body habitatas in the newborn. Proc Natl Acad Sci USA. doi:10.1073/pnas.1002601107

  38. Pearson JP, Brownlee IA (2010) The interaction of large bowel microflora with the colonic mucus barrier. Int J Inflamm 2010:321426

    Google Scholar 

  39. Sathyan G, Hwang S, Gupta SK (2000) Effect of dosing time on the total intestinal transit time of non-disintegrating systems. Int J Pharm 204:47–51

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive G. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Controlled Release Society

About this chapter

Cite this chapter

Wilson, C.G. (2011). The Organization of the Gut and the Oral Absorption of Drugs: Anatomical, Biological and Physiological Considerations in Oral Formulation Development. In: Wilson, C., Crowley, P. (eds) Controlled Release in Oral Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1004-1_2

Download citation

Publish with us

Policies and ethics