Skip to main content

Geometric Release Systems: Principles, Release Mechanisms, Kinetics, Polymer Science, and Release-Modifying Material

  • Chapter
  • First Online:
Controlled Release in Oral Drug Delivery

Abstract

Geometrical features such as shape and surface area of a drug-releasing matrix affect drug release kinetics by changing diffusion rates across the matrix, lengthening the diffusion pathway through drug–matrix composition or simply presenting a different surface area to the dissolution medium. Such variables can change during the dissolution process, due to drug depletion or erosion or dissolution of release-modifying components. Such phenomena can help the development of novel dosage units since they present opportunities to capitalize on shape and surface effects designing a matrix that optimally delivers drug at the required rate. The historical development and state-of-the-art of geometrically designed dosage forms are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hsieh DS, Rhine WD, Langer R (1983) Zero-order controlled-release polymer matrices for micro- and macromolecules. J Pharm Sci 72(1):17–22

    Article  PubMed  CAS  Google Scholar 

  2. Lee PI (1984) Effect of non-uniform initial drug concentration distribution on the kinetics of drug release from glassy hydrogel matrices. Polymer 25(7):973–978

    Article  CAS  Google Scholar 

  3. Feely LC, Davis SS (1988) The influence of polymeric excipients on drug release from hydroxypropyl methylcellulose matrices. Int J Pharm 44(1–3):131–139

    Article  CAS  Google Scholar 

  4. Swan EA, Peppas NA (1981) Drug release kinetics from hydrophobic porous monolithic devices. Proc Symp Control Release Bioact Mater 8:18–23

    Google Scholar 

  5. Korsmeyer RW, Gurny R, Doelker R, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15(1):25–35

    Article  CAS  Google Scholar 

  6. Colombo P, Conte U, Caramella C, Gazzaniga A, La Manna A (1985) Compressed polymeric mini-matrices for drug release control. J Control Release 1(4):283–289

    Article  CAS  Google Scholar 

  7. Colombo P, Gazzaniga A, Caramella C, Conte U, La Manna A (1987) In vitro programmable zero-order release drug delivery system. Acta Pharm Technol 33(1):15–20

    CAS  Google Scholar 

  8. Conte U, Colombo P, Gazzaniga A, Sangalli ME, La Manna A (1988) Swelling-activated drug delivery systems. Biomaterials 9(6):489–93

    Article  PubMed  CAS  Google Scholar 

  9. Colombo P (1993) Swelling-controlled release in hydrogel matrices for oral route. Adv Drug Deliv Rev 11(1–2):37–57

    Article  CAS  Google Scholar 

  10. Colombo P, Conte U, Gazzaniga A, Maggi L, Sangalli ME, Peppas NA, La Manna A (1990) Drug release modulation by physical restrictions of matrix swelling. Int J Pharm 63(1):43–48

    Article  CAS  Google Scholar 

  11. Colombo P, Catellani PL, Peppas NA, Maggi L, Conte U (1992) Swelling characteristics of hydrophilic matrices for controlled release. New dimensionless number to describe the swelling and release behavior. Int J Pharm 88(1–3):99–109

    Article  CAS  Google Scholar 

  12. Conte U, Maggi L, Colombo P, La Manna A (1993) Multi-layered hydrophilic matrices as constant release devices (GeomatrixTM Systems). J Control Release 26(1):39–47

    Article  CAS  Google Scholar 

  13. Catellani PL, Colombo P, Peppas NA, Santi P, Bettini R (1998) Partial permselective coating adds an osmotic contribution to drug release from swellable matrixes. J Pharm Sci 87(6):726–731

    Article  PubMed  CAS  Google Scholar 

  14. Conte U, Maggi L (1996) Modulation of the dissolution profiles from Geomatrix multi-layer matrix tablets containing drugs of different solubility. Biomaterials 17(9):889–96

    Article  PubMed  CAS  Google Scholar 

  15. Losi E, Bettini R, Santi P, Sonvico F, Colombo G, Lofthus K, Colombo P, Peppas NA (2006) Assemblage of novel release modules for the development of adaptable drug delivery systems. J Control Release 111(1–2):212–8

    Article  PubMed  CAS  Google Scholar 

  16. Strusi OL, Sonvico F, Bettini R, Santi P, Colombo G, Barata P, Oliveira A, Santos D, Colombo P (2008) Module assemblage technology for floating systems: in vitro flotation and in vivo gastro-retention. J Control Release 129(2):88–92

    Article  PubMed  CAS  Google Scholar 

  17. Strusi OL, Barata P, Traini D, Young PM, Mercuri S, Colombo G, Sonvico F, Bettini R, Colombo P (2010) Artesunate-clindamycin multi-kinetics and site-specific oral delivery system for antimalaric combination products. J Control Release 146(1):54–60

    Article  PubMed  CAS  Google Scholar 

  18. Korsmeyer RW, Peppas NA (1984) Solute and penetrant diffusion in swellable polymers. 3. Drug release from glassy poly(HEMA-co-NVP) copolymers. J Control Release 1(2):89–98

    Article  CAS  Google Scholar 

  19. Korsmeyer RW, Von Meerwall E, Peppas NA (1986) Solute and penetrant diffusion in swellable polymers. II. Verification of theoretical models. J Polym Sci Polym Phys 24(2):409–434

    Article  CAS  Google Scholar 

  20. Lustig SR, Peppas NA (1987) Solute and penetrant diffusion in swellable polymers. VII. A free volume-based model with mechanical relaxation. J Appl Polym Sci 33(2):533–549

    Article  CAS  Google Scholar 

  21. Malamataris S, Hatjichristos T, Rees JE (1996) Apparent compressive elastic modulus and strength isotropy of compacts formed from binary powder mixes. Int J Pharm 141(1–2):101–108

    Article  CAS  Google Scholar 

  22. Mullarney MP, Hancock BC (2006) Mechanical property anisotropy of pharmaceutical excipient compacts. Int J Pharm 314(1):9–14

    Article  PubMed  CAS  Google Scholar 

  23. Moe DV, Rippie EG (1997) Nondestructive viscoelastic analysis of anisotropy in compressed tablets. J Pharm Sci 86(1):26–32

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Colombo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Controlled Release Society

About this chapter

Cite this chapter

Colombo, P., Colombo, G., Cahyadi, C. (2011). Geometric Release Systems: Principles, Release Mechanisms, Kinetics, Polymer Science, and Release-Modifying Material. In: Wilson, C., Crowley, P. (eds) Controlled Release in Oral Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1004-1_11

Download citation

Publish with us

Policies and ethics