Skip to main content

Control of Receptor Function by Homologous and Heterologous Ligands

  • Chapter
Mechanisms of Receptor Regulation

Part of the book series: New Horizons in Therapeutics ((NHTH))

Abstract

It is largely to the credit of Ehrlich (1908) that early in the development of the receptor concept it was realized that agents that can cause the same biological effect (e.g., trypanocidal dyes) could bind to receptors that display a strict chemical specificity to react with one family of compounds but not another. This fundamental concept formed the basis of work that led to the clear-cut distinction among receptors for agents such as histamine, acetylcholine, and angiotensin, all of which cause contraction in smooth muscle. It was quickly appreciated, however, that a single compound, e.g., acetylcholine, could react with quite different receptors in different tissues (e.g., nicotinic receptors in striated muscle and muscarinic receptors in smooth muscle). Further, it was realized that histamine, which, at comparatively low concentrations (e.g., 10-6 M), can activate its own specific receptors, can, at comparatively high concentrations (e.g., >10-4 M), activate other receptors specific for chemically distantly related agents such as acetylcholine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlquist, R. P., 1948, A study of adrenotropic receptors, Am. J. Physiol. 153: 586–600.

    PubMed  CAS  Google Scholar 

  • Ariens, E. J., 1954, Affinity and intrinsic activity in the theory of competitive inhibition, Arch. Int. Pharmacodyn. 99: 32–49.

    PubMed  CAS  Google Scholar 

  • Armstrong, G. D., and Hollenberg, M. D., 1985, Epidermal growth factor-urogastrone and its receptor, in: Polypeptide Hormone Receptors ( B. Posner, ed.), Marcel Dekker, New York,pp. 201–226.

    Google Scholar 

  • Armstrong, G. D., Hollenberg, M. D., Bhaumick, B., Bala, R. M., and Maturo, J. M. Ill, 1983, Receptors for insulin and basic somatomedin: Immunological and affinity-chromatographic cross-reactivity, Can. J. Biochem. 61: 650–656.

    Article  CAS  Google Scholar 

  • Baker, J. B., Barsh, G. S., Carney, D. H., and Cunningham, D. D., 1978, Dexamethasone modulates binding and action of epidermal growth factor in serum-free cell culture, Proc. Natl. Acad. Sci. U.S.A. 75: 1882–1886.

    Article  PubMed  CAS  Google Scholar 

  • Baxter, R. C., and Turtle, J. R., 1978, Regulation of hepatic growth hormone receptors by insulin, Biochem. Biophys. Res. Commun. 84: 350–357.

    Article  PubMed  CAS  Google Scholar 

  • Bhaumick, B., Goren, H. J., and Bala, R. M., 1981, Further characterization of human basic-somatomedin: Comparison with insulin-like growth factors I and II, Horm. Metab. Res. 13: 515–518.

    Article  PubMed  CAS  Google Scholar 

  • Bowen-Pope, D. F., and Ross, R., 1983, Is epidermal growth factor present in human blood? Interference with the radioreceptor assay for epidermal growth factor, Biochem. Biophys. Res. Commun. 114: 1036–1041.

    Article  PubMed  CAS  Google Scholar 

  • Braestrup, C., and Nielsen, M., 1980, Searching for endogenous benzodiazepine receptor ligands, Trends Pharmacol. Sci. 2: 424–427.

    Article  Google Scholar 

  • Brown, K. D., Dicker, P., and Rozengurt, E., 1979, Inhibition of epidermal growth factor binding to surface receptors by tumor promotors, Biochem. Biophys. Res. Commun. 86: 1037–1043.

    Article  PubMed  CAS  Google Scholar 

  • Caro, J. F., and Amatruda, J. M., 1980, Insulin receptors in hepatocytes: Postreceptor events mediate down regulation, Science 210: 1029–1031.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, G., and Cohen, S., 1976, 125I-Labeled human epidermal growth factor. Binding, internalization and degradation in human fibroblasts, J. Cell Biol. 71: 159–171.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, G., King, L., Jr., and Cohen, S., 1979, Rapid enhancement of protein phos-phorylation A-431 cell membrane preparations by epidermal growth factor, J. Biol. Chem. 254: 4884–4891.

    PubMed  CAS  Google Scholar 

  • Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor- promoting phorbol esters, J. Biol.Chem. 257: 7847–7851.

    PubMed  CAS  Google Scholar 

  • Catt, K. J., Harwood, J. P., Aguilera, G., and Dufau, M. L., 1979, Hormonal regulation of peptide receptors and target cell responses, Nature 280: 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Catterall, W. A., 1982, The emerging molecular view of the sodium channel, Trends Neu- rosci. 5: 303–306.

    Article  CAS  Google Scholar 

  • Collins, M. K. L., Sinnett-Smith, J. W., and Rozengurt, E., 1983, Platelet-derived growth factor treatment decreases the affinity of the epidermal growth factor receptors of Swiss 3T3 cells, J. Biol. Chem. 258: 11689–11693.

    PubMed  CAS  Google Scholar 

  • Costa, E., 1979, The role of gamma-aminobutyric acid in the action of 1,4-benzodiazepines, Trends Pharmacol. Sci. 1: 41–44.

    Article  CAS  Google Scholar 

  • Cuatrecasas, P., 1971a, Perturbation of the insulin receptor of isolated fat cells with pro-teolytic enzymes, J. Biol. Chem. 246: 6522–6531.

    CAS  Google Scholar 

  • Cuatrecasas, P., 1971b, Unmasking of insulin receptors in fat cells and fat cell membranes, J. Biol. Chem. 246: 6532–6542.

    PubMed  CAS  Google Scholar 

  • Devreotes, P. N., and Fambrough, D. M., 1975, Acetylcholine receptor turnover in mem-branes of developing muscle fibres, J. Cell Biol. 65: 335–358.

    Article  PubMed  CAS  Google Scholar 

  • Devreotes, P. N., and Fambrough, D. M., 1976, Synthesis of the acetylcholine receptors by cultured chick myotubes and denervated mouse extensor digitorum longus muscles, Proc. Natl. Acad. Sci. U.S.A. 73: 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, P ., 1956, Nobel lecture (1908) on partial functions of the cell, in: Himmelweit, Marquardt, Dale. The Collected Papers of P. Ehrlich, Vol. Ill, Pergamon Press, Oxford, p. 183.

    Google Scholar 

  • Farfel, Z., Brickman, A. S., Kaslow, H. R., Brothers, V. M., and Bourne, H. R., 1980, Defect of receptor-cyclase coupling protein in pseudohypoparathyroidism, N. Engl. J. Med. 303: 237–242.

    Article  PubMed  CAS  Google Scholar 

  • Fillion, G., and Fillion, M. P., 1981, Modulation of affinity of postsynaptic serotonin receptors by antidepressant drugs, Nature 292: 349–351.

    Article  PubMed  CAS  Google Scholar 

  • Fillion, G., and Fillion, M. P., 1981, Modulation of affinity of postsynaptic serotonin receptors by antidepressant drugs, Nature 292: 349–351.

    Article  PubMed  CAS  Google Scholar 

  • Gavin, J. R. Ill, Roth, J., Neville, D. M., Jr., De Meyts, P., and Buell, D. N., 1974, Insulin- dependent regulation of insulin receptor concentration. A direct demonstration in cell culture, Proc. Natl. Acad. Sci. U.S.A. 71: 84–88.

    Article  PubMed  CAS  Google Scholar 

  • Gavish, M., and Synder, S. H., 1981, γ-Aminobutyric acid and benzodiazepine receptors: copurification and characterization, Proc. Natl. Acad. Sci. U.S.A. 78: 1939–1942.

    Article  PubMed  CAS  Google Scholar 

  • Gilman, A. G., 1984, Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase, J. Clin. Invest. 73: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, B., and Wiegel, F. W., 1983, The effect of receptor clustering on diffusion-limited forward rate constants, Biophys. J. 43: 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Guidotti, A., Baraldi, M., and Costa, E., 1979, 1,4-Benzodiazepines and gamma-amino- butyric acid: Pharmacological and biochemical correlates, Pharmacology 19: 267–277.

    Google Scholar 

  • Halvorsen, S. W., and Nathanson, N. M., 1981, In vivo regulation of muscarinic acetylcholine receptor number and function in embryonic chick heart, J. Biol.Chem. 256: 7941–7948.

    PubMed  CAS  Google Scholar 

  • Hauger, R. L., Aguilera, G., and Catt, K. J., 1978, Angiotensin-II regulates its receptors in the adrenal glomerulosa zone, Nature 271: 176–178.

    Article  PubMed  CAS  Google Scholar 

  • Hayden, L. J., and Severson, D. L., 1983, Correlation of membrane phosphorylation and epidermal growth factor binding to hepatic membranes isolated from triiodothyronine- treated rats, Biochim. Biophys. Acta 730: 226–230.

    Article  PubMed  CAS  Google Scholar 

  • Hirata, F., and Axelrod, J., 1980, Phospholipid methylation and biological signal transmission, Science 209: 1082–1090.

    Article  PubMed  CAS  Google Scholar 

  • Hirata, F., Strittmatter, W. J., and Axelrod, J., 1979, β-Adrenergic receptor agonists increase phosphilipid methylation, membrane fluidity, and β-adrenergic receptor-adenylate cyclase coupling, Proc. Natl. Acad. Sci. U.S.A. 76: 368–372.

    Article  PubMed  CAS  Google Scholar 

  • Hock, R. A., and Hollenberg, M. D., 1980, Characterization of the receptor for epidermal growth factor-urogastrone in human placenta membranes, J. Biol. Chem. 255:10731– 10736.

    PubMed  Google Scholar 

  • Hollenberg, M. D., 1981, Membrane receptors and hormone action I: New trends related to receptor structure and receptor regulation, Trends Pharmacol. Sci. 2: 320–323.

    Article  CAS  Google Scholar 

  • Hollenberg, M. D., 1982a, Membrane receptors and hormone action II: New perspectives for receptor-modulated cell function, Trends Pharmacol. Sci. 3: 25–28.

    Article  CAS  Google Scholar 

  • Hollenberg, M. D., 1982b, Receptor mediated phosphorylation reactions, Trends Pharmacol. Sci. 3: 271–273.

    Article  CAS  Google Scholar 

  • Hollenberg, M. D., Nexo, E., Hock, R. A., and Berhanu, P., 1979, Phorbol tumor promoter causes a selective reduction of epidermal growth factor-urogastrone receptors via a separate ligand recognition site, Clin. Res. 27: 387A.

    Google Scholar 

  • Hollenberg, M. D., Nexo, E., Berhanu, P., and Hock, R., 1981, Phorbol ester and the selective modulation of receptors for epidermal growth factor-urogastrone, in: Receptor- Mediated Binding and Internalization of Toxins and Hormones ( J. L. Middlebrook and L. D. Kohn, eds.), Academic Press, New York, pp. 181–195.

    Google Scholar 

  • Jacobs, S., and Cuatrecasas, P., 1980, Disulfide reduction converts the insulin receptor of human placenta to a low affinity form, J. Clin. Invest. 66: 1424–1427.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, S., Sahyoun, N. E., Saltiel, A. R., and Cuatrecasas, P., 1983, Phorbol esters stimulate the phosphorylation of receptors for insulin and somatomedin C, Proc. Natl. Acad. Sci. U.S.A. 80: 6211–6213.

    Article  PubMed  CAS  Google Scholar 

  • Karlin, A., Cowburn, D. A., and Reiter, M. J., 1973, Molecular properties of the acetyl-choline receptor, in: Drug Receptors ( H. P. Rang, ed.), University Park Press, Baltimore, pp. 193–209.

    Google Scholar 

  • Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S., and Nishizuka, Y., 1982, Calcium- activated, phospholipid-dependent protein kinase from rat brain, J. Biol. Chem. 257: 13341–13348.

    PubMed  CAS  Google Scholar 

  • King, G. L., Kahn, C. R., Rechler, M. M., and Nissley, S. P., 1980, Direct demonstration of separate receptors for growth and metabolic activities of insulin and multiplication- stimulating activity (an insulinlike growth factor) using antibodies to the insulin receptor, J. Clin. Invest. 66: 130–140.

    Article  PubMed  CAS  Google Scholar 

  • King, G. L., Rechler, M. M., and Kahn, C. R., 1982, Interactions between the receptors for insulin and the insulin-like growth factors on adipocytes, J. Biol. Chem. 257:10001– 10006.

    PubMed  Google Scholar 

  • Korner, M. K., Gilon, C., and Schramm, M., 1982, Locking of hormone in the β-adrenergic

    Google Scholar 

  • receptor by attack on a sulfhydryl in an associated component, J. Biol. Chem. 257:3389– 3396.

    Google Scholar 

  • Krupp, M. N., Connolly, D. T., and Lane, M. D., 1982, Synthesis, turnover, and down- regulation of epidermal growth factor receptors in human A431 epidermoid carcinoma cells skin fibroblasts, J. Biol. Chem. 257: 11489–11496.

    PubMed  CAS  Google Scholar 

  • Labrie, F., Belanger, A., Cusan, L., Seguin, C., Pelletier, G., Kelly, P. A., Reeves, J. J., Lefebvre, F. A., Lemay, A., Gordeau, Y., and Raynaud, J.-P., 1980, Antifertility effects of LHRH agonists in the male, J. Androl. 1: 209–228.

    CAS  Google Scholar 

  • Lai, E., Rosen, O. M., and Rubin, C. S., 1982, Dexamethasone regulates the β-adrenergic receptor subtype expressed by 3T3-L1 preadipocytes and adipocytes, J. Biol. Chem. 257: 6691–6696.

    PubMed  CAS  Google Scholar 

  • Lee, L.-S., and Weinstein, I. B., Tumor-promoting phorbol esters inhibit binding of epi-dermal growth factor to cellular receptors, Science 202: 313–314.

    Google Scholar 

  • Lefebvre, F. A., Reeves, J. J., Seguin, C., Massicote, J., and Labrie, F., 1980, Specific binding of a potent LHRH agonist in rat testis, Mol. Cell. Endocrinol. 20: 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz, R., 1978, Identification and regulation of alpha and beta-adrenergic receptors, Fed. Proc. 37: 123–129.

    PubMed  CAS  Google Scholar 

  • Levine, M. A., Downs, R. W., Singer, M., Marx, S. J., Aurbach, G. D., and Spiegel, A. M., 1980, Deficient activity of guanine nucleotide regulatory protein in erythrocytes from patients with pseudohypoparathyroidism, Biochem. Biophys. Res. Commun. 94: 1319–1324.

    Article  PubMed  CAS  Google Scholar 

  • Lin, M. C., and Beckner, S. K., 1983, Induction of hormone receptors and responsiveness during cellular differentiation, in: Current Topics in Membranes and Transport, Vol. IX ( A. Kleinzeller, ed.), Academic Press, New York, pp. 287–315.

    Google Scholar 

  • Livingston, J. N., Purvis, B. J., and Lockwood, D. H., 1978, Insulin-dependent regulation of the insulin-sensitivity of adipocytes, Nature 273: 394–396.

    Article  PubMed  CAS  Google Scholar 

  • Loumaye, E., and Catt, K. J., 1982, Homologous regulation of gonadotropin-releasing hor-mone receptors in cultured pituitary cells, Science 215: 983–985.

    Article  PubMed  CAS  Google Scholar 

  • Lundberg, J. M., Hedlund, B., and Bartfai, T., 1982, Vasoactive intestinal polypeptide enhances muscarinic ligand binding in cat submandibular salivary gland, Nature 295: 147–149.

    Article  PubMed  CAS  Google Scholar 

  • Massague, J., and Czech, M. P., 1982, Role of disulfides in the subunit structure of the insulin receptor, J. Biol. Chem. 257: 6729–6738.

    PubMed  CAS  Google Scholar 

  • Maturo, J. M. III, and Hollenberg, M. D., 1978, Insulin receptor: Interaction with nonreceptor glycoprotein from liver cell membranes, Proc. Natl. Acad. Sci. U.S.A. 75:3070– 3074.

    Article  PubMed  Google Scholar 

  • Maturo, J. M. III, Hollenberg, M. D., and Aglio, L. S., 1983, Insulin receptor: Insulin- modulated interconversion between distinct molecular forms involving disulfide-sulfhydryl exchange, Biochemistry 22: 2579–2586.

    Article  PubMed  CAS  Google Scholar 

  • Michel, T., Hoffman, B. B., and Lefkowitz, R. J., 1980, Differential regulation of the a2- adrenergic receptor by Na+ and guanine nucleotides, Nature 288: 709–711.

    Article  PubMed  CAS  Google Scholar 

  • Mott, D. M., Howard, B. V., and Bennett, P. H., 1979, Stoichiometric binding and regulation of insulin receptors on human diploid fibroblasts using physiologic insulin levels, J. Biol. Chem. 254: 8762–8767.

    PubMed  CAS  Google Scholar 

  • Niedel, J. E., Kuhn, L. J., and Vandenbark, G. R., 1983, Phorbol diester receptor copurified with protein kinase C, Proc. Natl. Acad. Sci. U.S.A. 80: 36–40.

    Article  PubMed  CAS  Google Scholar 

  • Nimrod, A., Tsafriri, A., and Linder, H. R., 1977, In vitro induction of binding sites for hCG in rat granulosa cells by FSH, Nature 267: 632–633.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor-McCourt, M., and Hollenberg, M. D., 1983, Receptors, acceptors, and the action of polypeptide hormones: Illustrative studies with epidermal growth factor (urogas- trone), Can. J. Biochem. Cell Biol. 61: 670–682.

    Article  PubMed  Google Scholar 

  • Oppenheimer, C. L., Pessin, J. E., Massague, J., Gitomer, W., and Czech, M. P., 1983, Insulin action rapidly modulates the apparent affinity of the insulin-like growth factor II receptor, J. Biol. Chem. 258: 4824–4830.

    PubMed  CAS  Google Scholar 

  • Pert, C. B., Pasternak, G. W., and Snyder, S. H., 1973, Opiate agonists and antagonists discriminated by receptor binding in brain, Science 182: 1359–1361.

    Article  PubMed  CAS  Google Scholar 

  • Posner, B. I. Kelly, P. A., and Friesen, H. G., 1974, Induction of a lactogenic receptor in rat liver: Influence of estrogen and the pituitary, Proc. Natl. Acad. Sci. U.S.A. 71:2407– 2410.

    Article  PubMed  Google Scholar 

  • Posner, B. I., Kelly, P. A., and Friesen, H. G., 1975, Prolactin receptors in rat liver: Possible induction by prolactin, Science 188: 57–59.

    Article  PubMed  CAS  Google Scholar 

  • Raff, M., 1976, Self regulation of membrane receptors, Nature 259: 265–266.

    Article  Google Scholar 

  • Rodbell, M., 11980, The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature 284: 17–22.

    Google Scholar 

  • Rosen, O. M., Herrera, R., Olowe, Y., Petruzzelli, L. M., and Cobb, M. H., 1983, Phosphorylation activates the insulin receptor tyrosine protein kinase, Proc. Natl. Acad. Sci. U.S.A. 80: 3237–3240.

    Article  PubMed  CAS  Google Scholar 

  • Rozengurt, E., Brown, K. D., and Pettican, P., 1981, Vasopressin inhibition of epidermal growth factor binding to cultured mouse cells, J. Biol. Chem. 256: 716–722.

    PubMed  CAS  Google Scholar 

  • Schweitzer, J. B., Smith, R. M., and Jarett, L., 1980, Differences in organizational structure of insulin receptor on rat adipocyte and liver plasma membranes: Role of disulfide bonds, Proc. Natl. Acad. Sci. U.S.A. 77: 4692–4696.

    Article  PubMed  CAS  Google Scholar 

  • Shiu, R. P. C., and Friesen, H. G., 1981, Regulation of prolactin receptors in target cells, in: Receptors and Recognition, Series B, Vol. 13 ( R. J. Lefkowitz, ed.), Chapman and Hall, London, pp. 69–81.

    Google Scholar 

  • Shoyab, M., De Larco, J. E., and Todaro, G. J., 1979, Biologically active phorbol esters specifically alter affinity of epidermal growth factor membrane receptors, Nature 279: 387–391.

    Article  PubMed  CAS  Google Scholar 

  • Sokolovsky, M., Egozi, Y., and Avissar, S., 1981, Molecular regulation of receptors: Interaction of p–estradiol and progesterone with the muscarinic system, Proc. Natl. Acad. Sci. U.S.A. 78: 5554–5558.

    Article  PubMed  CAS  Google Scholar 

  • Soloff, M., 1975, Uterine receptor for oxytocin: Effects of estrogen, Biochem. Biophys. Res. Commun. 65: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Stadel, J. M., Nambi, P., Shorr, R. G. L., Sawyer, D. F., Caron, M. G., and Lefkowitz, R. J., 1983, Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of the β-adrenergic receptor, Proc. Natl. Acad. Sci. U.S.A. 80: 3173–3177.

    Article  PubMed  CAS  Google Scholar 

  • Stephenson, R. P., and Barlow, R. B., 1970, Concepts of drug action, quantitative pharmacology and biological assay, in: A Companion to Medical Studies, Vol. 2 (R. Passmore and J. S. Robson, eds.), Blackwell, London, pp. 3.1–3.19.

    Google Scholar 

  • Stevens, R. L., Austen, K. F., and Nissley, S. P., 1983, Insulin-induced increase in insulin binding to cultured chondrosarcoma chondrocytes, J. Biol. Chem. 258: 2940–2944.

    PubMed  CAS  Google Scholar 

  • Strittmatter, W. J., Hirata, F., and Axelrod, J., 1979, Phospholipid methylation unmasks cryptic p-adrenergic receptors in rat reticulocytes, Science 204: 1205–1207.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, K., Speir, G. R., and Johnson, L. R., 1980, Mucosal gastrin receptor. III. Regulation by gastrin, Am. J. Physiol. 238: G135–G140.

    PubMed  CAS  Google Scholar 

  • Taylor, P., Brown, R. D., and Johnson, D. A., 1983, The linkage between ligand occupation and response of the nicotinic acetylcholine receptor, in: Current Topics in Membranes and Transport, Vol. 18 ( A. Kleinzeller, ed.), Academic Press, New York, pp. 407–444.

    Google Scholar 

  • Topper, Y. J., and Freeman, C. S., 1980, Multiple hormone interactions in the developmental biology of the mammary gland, Physiol. Rev. 60: 1049–1106.

    PubMed  CAS  Google Scholar 

  • Triggle, D. J., 1982, Receptor recruitment and cryptic signals, Trends Pharmacol. Sci. 3:273– 274.

    Google Scholar 

  • Umezawa, K., Weinstein, I. B., Horowitz, A., Fujiki, H., Matsushima, T., and Sugimura, T., 1981, Similarity of teleocidin B and phorbol ester tumour promoters in effects on membrane receptors, Nature 290: 411–413.

    Article  PubMed  CAS  Google Scholar 

  • Vauquelin, G., Bottari, S., and Strosberg, A. D., 1980, Inactivationof β-adrenergic receptors by N-ethylmaleimide: Permissive role of (3-adrenergic agents in relation to adenylate cyclase activation, Mol. Pharmacol. 17: 163–171.

    PubMed  CAS  Google Scholar 

  • Wharton, W. Leof, E., Pledger, W. J., and O’Keefe, E. J., 1982, Modulation of the epidermal growth factor receptor by platelet-derived growth factor and choleragen: Effects of mitogenesis, Proc. Natl. Acad. Sci. U.S.A. 79: 5567–5571.

    Article  PubMed  CAS  Google Scholar 

  • Wrann, M., Fox, C. F., and Ross, R., 1980, Modulation of epidermal growth factor receptors on 3T3 cells by platelet-derived growth factor, Science 210: 1363–1365.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, S., Yamamura, H. I., and Roeske, W. R., 1980, The regulation of cardiac ar adrenergic receptors by guanine nucleotides and by muscarinic cholinergic agonists, Eur. J. Pharmacol. 63: 239–241.

    Article  PubMed  CAS  Google Scholar 

  • Zierler, K., 1985, Membrane polarization and insulin action, in: Insulin, Its Receptor and Diabetes ( M. D. Hollenberg, ed.), Marcel Dekker, New York, pp. 141–179.

    Google Scholar 

  • Zierler, K., and Rogus, E. M., 1981, Effects of peptide hormones and adrenergic agents on membrane potentials of target cells, Fed. Proc. 40: 121–124.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Hollenberg, M.D. (1985). Control of Receptor Function by Homologous and Heterologous Ligands. In: Poste, G., Crooke, S.T. (eds) Mechanisms of Receptor Regulation. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2131-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2131-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9259-3

  • Online ISBN: 978-1-4613-2131-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics