The Hypertonic and Hypotonic Syndromes

  • R. Michael Culpepper
  • Steven C. Hebert
  • Thomas E. Andreoli


Extracellular fluid (ECF) osmotic homeostasis is regulated by a neurorenal axis involving thirst, antidiuretic hormone (ADH), and ADH-responsive renal epithelia (see Chapter 38). Osmoregulatory disorders can best be understood through consideration of two of the cardinal physiologic processes involved in osmotic homeostasis: the water repletion reaction and the cell volume regulatory response. The former provides a frame of reference for understanding the pathogenesis of these disorders, while the latter provides a means for considering the changes in brain volume which can attend osmoregulatory disorders.


Diabetes Insipidus Plasma Osmolality Nephrogenic Diabetes Insipidus Chronic Hyponatremia Membrane Transport Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vandesande, F., and K. Dierickx. 1975. Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretory system of the rat. Cell Tissue Res. 164: 153–162.PubMedGoogle Scholar
  2. 2.
    Zimmerman, E. A., and A. G. Robinson. 1976. Hypothalamic neurons secreting vasopressin and neurophysin. Kidney Int. 10: 12–24.PubMedGoogle Scholar
  3. 3.
    Morris, J. F., H. W. Sokol, and H. Valtin. 1977. One neuron-one hormone? In: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 58–66.Google Scholar
  4. 4.
    Cross, B. A., R. E. J. Dyball, R. G. Dyer, C. W. Jones, D. W. Lincoln, J. F. Morris, and B. T. Pickering. 1975. Endocrine neurons. Recent Prog. Horm. Res. 31: 243–294.PubMedGoogle Scholar
  5. 5.
    Scharrer, E., and B. Scharrer. 1954. Hormones produced by neurosecretory cells. Recent Prog. Horm. Res. 10: 183–240.Google Scholar
  6. 6.
    Zimmerman, E. A., and R. Defendi. 1977. Hypothalamic pathways containing oxytocin, vasopressin and associated neurophysins. In: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 22–29.Google Scholar
  7. 7.
    Bargmann, W., and E. Scharrer. 1951. The site of origin of the hormones of the posterior pituitary. Am. Sci. 39: 255–259.Google Scholar
  8. 8.
    Weinstein, H. S., Malamed, and H. Sachs. 1961. Isolation of vasopressin-containing granules from the neurohypophysis of the dog. Biochim. Biophys. Acta 50: 386–389.PubMedGoogle Scholar
  9. 9.
    Russel, J. T., M. J. Brownstein, and H. Gainer. 1980. Biosynthesis of vasopressin, oxytocin and neurophysins: Isolation and characterization of two common precursors (propressophysin and prooxyphysin). Endocrinology 107: 1880–1891.Google Scholar
  10. 10.
    Pickering, B. T., and C. W. Jones. 1978. The neurophysins. In: Hormonal Proteins and Peptides, Volume 5. C. H. Li, ed. Academic Press, New York. pp. 103–158.Google Scholar
  11. 11.
    Robinson, A. G. 1975. Radioimmunoassay of neurophysin proteins: Utilization of specific neurophysin assays to demonstrate independent secretion of different neurophysins in vivo. Ann. N. Y. Acad. Sci. 248: 246–256.PubMedGoogle Scholar
  12. 12.
    Dean, C. R., D. B. Hope, and T. Kazic. 1968. The total hormone-binding capacity of the neurophysins and the oxytocin and vasopressin content of the posterior pituitary. Br. J. Pharmacol. 34: 193–194.Google Scholar
  13. 13.
    Sachs, H., P. Fawcett, Y. Takabatake, and R. Portanova. 1969. Biosynthesis and release of vasopressin and neurophysin. Recent Prog. Horm. Res. 25: 447–484.PubMedGoogle Scholar
  14. 14.
    Sachs, H., and Y. Takabatake. 1964. Evidence for a precursor in vasopressin biosynthesis. Endocrinology 75: 943–948.PubMedGoogle Scholar
  15. 15.
    Takabatake, Y., and H. Sachs. 1964. Vasopressin biosynthesis. III. In vitro studies. Endocrinology 75: 934–942.PubMedGoogle Scholar
  16. 16.
    Brownstein, M. J., J. T. Russell, and H. Gainer. 1980. Synthesis, transport and release of posterior pituitary hormones. Science 207: 373–378.PubMedGoogle Scholar
  17. 17.
    Russell, J. T., M. J. Brownstein, and H. Gainer. 1981. Time course of appearance and release of [35S] cysteine labeled neurophysins and peptides in the neurohypophysis. Brain Res. 205: 299–311.PubMedGoogle Scholar
  18. 18.
    Bauman, G., and J. F. Dingman. 1976. Distribution, blood transport, and degradation of antidiuretic hormone in man. J. Clin. Invest 57: 1109–1116.Google Scholar
  19. 19.
    Shade, R. E., and L. Share. 1977. Renal vasopressin clearance with reductions in renal blood flow in the dog. Am. J. Physiol. 232: F341–F347.PubMedGoogle Scholar
  20. 20.
    Walter, R., and W. H. Simmons. 1977. Metabolism of neurohypophyseal hormones: Considerations from a molecular view-point. In: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 167–188.Google Scholar
  21. 21.
    Nardacci, N. J., S. Mukhopadhyay, and B. J. Campbell. 1975. Partial purification and characterization of the antidiuretic hormone-activating enzyme from renal plasma membranes. Biochim. Biophys. Acta 377: 146–157.PubMedGoogle Scholar
  22. 22.
    du Vigneaud, V. 1969. Hormones of the mammalian posterior pituitary gland and their naturally occurring analogues. Johns Hopkins Med. J. 124: 53–65.PubMedGoogle Scholar
  23. 23.
    Sawyer, W. H., M. Acosta, L. Balaspiri, J. Judd, and M. Manning. 1974. Structural changes in the arginine vasopressin molecule that enhance antidiuretic activity and specificity. Endocrinology 94: 1106–1115.PubMedGoogle Scholar
  24. 24.
    Manning, M., and W. H. Sawyer. 1977. Structure-activity studies on oxytocin and vasopressin 1954–1976. in: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 9–21.Google Scholar
  25. 25.
    Smith, C. W. 1981. Conformation-activity studies on oxytocin and vasopressin: Exploring the roles of the moieties within the hydrophilic cluster. In: Neurohypophyseal Peptide Hormones and Other Biologically Active Peptides. Elsevier, Amsterdam, pp. 23–35.Google Scholar
  26. 26.
    Manning, M., L. Balaspiri, J. Moehring, J. Haldar, and W. H. Sawyer. 1976. Synthesis and some pharmacological properties of deamino [4-threonine, 8-D-arginine] vasopressin and deamino [8-D-arginine] vasopressin, highly potent and specific antidiuretic peptides, and [8-D-arginine] vasopressin and deamino-arginine- vasopressin. J. Med. Chem. 19: 842–845.PubMedGoogle Scholar
  27. 27.
    Sawyer, W. H., and M. Manning. 1982. Effective antagonists of the antidiuretic action of vasopressin in rats. Ann. N.Y. Acad. Sci. 394: 464–472.PubMedGoogle Scholar
  28. 28.
    Sawyer, W. H., P. K. T. Pang, J. Seto, M. McEnroe, B. Lammek, and M. Manning. 1981. Vasopressin analogs that antagonize antidiuretic responses by rats to the antidiuretic hormone. Science 212: 49–51.PubMedGoogle Scholar
  29. 29.
    Stassen, F. L., R. W. Erickson, W. F. Huffman, J. Stefankiewicz, L. Sulat, and V. D. Wiebelhaus. 1982. Molecular mechanisms of novel antidiuretic antagonists: Analysis of the effects on vasopressin binding and adenylate cyclase activation in animal and human kidney. J. Pharmacol Exp. Ther. 223:50– 54.PubMedGoogle Scholar
  30. 30.
    Urry, D. W., and R. Walter. 1971. Proposed conformation of oxytocin in solution. Proc. Natl. Acad. Sci. USA 68: 956–958.PubMedGoogle Scholar
  31. 31.
    Walter, R., J. D. Glickson, I. L. Schwartz, R. T. Havran, J. Meienhoffer, and D. W. Urry. 1972. Conformation of lysine vasopressin: A comparison with oxytocin. Proc. Natl. Acad. Sci. USA 69: 1920–1924.PubMedGoogle Scholar
  32. 32.
    Walter, R., G. L. Stahl, T. Caplaneris, P. Cordopatis, and D. Theodoropoulos. 1979. Active site studies of neurohypophyseal hormones: Synthesis and pharmacological properties of [5- (N4,N4-dimethyl/asparagine)] oxytocin. J. Med. Chem. 22: 890–893.PubMedGoogle Scholar
  33. 33.
    Verney, E. B. 1947. The antidiuretic hormone and the factors which determine its release. Proc. R. Soc. London Ser. B 135: 25–105.Google Scholar
  34. 34.
    Thrasher, T. N. 1982. Osmoreceptor mediation of thirst and vasopressin secretion in the dog. Fed. Proc. 41: 2528–2532.PubMedGoogle Scholar
  35. 35.
    Thrasher, T. N., L. C. Keil, and D. J. Ramsay. 1982. Lesions of the organum vasculosum of the lamina terminalis (OVLT) attenuate osmotically-induced drinking and vasopressin secretion in the dog. Endocrinology 110: 1837–1839.PubMedGoogle Scholar
  36. 36.
    Andersson, B., and K. Olsson. 1977. Evidence for periventricular sodium-sensitive receptors of importance in the regulation of ADH secretion. In: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 118–127.Google Scholar
  37. 37.
    Robertson, G. L., E. A. Mahr, S. Athar, and T. Sinha. 1973. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Invest. 52: 2340–2352.PubMedGoogle Scholar
  38. 38.
    Dunn, F. L., J. T. Brennan, A. E. Nelson, and G. L. Robertson. 1973. The role of blood osmolality and volume in regulating vaso-pressin secretion in the rat. J. Clin. Invest. 52: 3212–3219.PubMedGoogle Scholar
  39. 39.
    Robertson, G. L. 1974. Vasopressin in osmotic regulation in man. Annu. Rev. Med. 25: 315–322.PubMedGoogle Scholar
  40. 40.
    Robertson, G. L., R. L. Shelton, and S. Athar. 1976. The os-moregulation of vasopressin. Kidney Int. 10: 25–37.PubMedGoogle Scholar
  41. 41.
    Gauer, O. H., and J. P. Henry. 1963. Circulatory basis of fluid volume control. Physiol. Rev. 43: 423–481.PubMedGoogle Scholar
  42. 42.
    Murdaugh, H. V., H. O. Sieker, and F. Manfredi. 1959. Effect of altered intrathoracic pressure on renal hemodynamics, electrolyte excretion and water clearance. J. Clin. Invest. 38: 834–842.PubMedGoogle Scholar
  43. 43.
    Poulain, D. A., and J. B. Wakerley. 1982. Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 7: 773–808.PubMedGoogle Scholar
  44. 44.
    Weinstein, H., R. M. Berne, and H. Sachs. 1960. Vasopressin in blood: Effect of hemorrhage. Endocrinology 66: 712–718.PubMedGoogle Scholar
  45. 45.
    Share, L. 1967. Vasopressin, its bioassay and the physiological control of its release. Am. J. Med. 42: 701–712.PubMedGoogle Scholar
  46. 46.
    Gupta, P. D., J. P. Henry, R. Sinclair, and R. von Baumgarten. 1966. Responses of atrial and aortic baroreceptors to nonhypoten- sive hemorrhage and to transfusion. Am. J. Physiol. 211: 1429–1437.PubMedGoogle Scholar
  47. 47.
    Caillens, H., W. Pruszczynski, A. Meyrier, K.-S. Ang, F. Rousselet, and R. Ardaillou. 1980. Relationship between change in volemia at constant osmolality and plasma antidiuretic hormone. Miner. Electrolyte Metab. 4: 161–171.Google Scholar
  48. 48.
    Quillen, E. W., and A. W. Cowley. 1983. Influence of volume changes on osmolality-vasopressin relationships in conscious dogs. Am. J. Physiol. 244: H73–H79.PubMedGoogle Scholar
  49. 49.
    Schrier, R. W., T. Berl, R. J. Anderson, and K. M. McDonald 1976. Non-osmotic regulation of renal water excretion. Trans. Am. Clin. Climatol. Assoc. 87: 161–169.PubMedGoogle Scholar
  50. 50.
    Sklar, A. H., and R. W. Schrier. 1983. Central nervous system mediators of vasopressin release. Physiol. Rev. 63: 1243–1280.PubMedGoogle Scholar
  51. 51.
    Brennan, L. A., J. P. Bonjour, and R. L. Malvin. 1971. ADH levels during salt depletion in dogs. Eur. J. Clin. Invest. 2: 43–46.PubMedGoogle Scholar
  52. 52.
    Uhlich, E., P. Weber, and U. Gröschel-Stewart. 1974. Angiotensin-stimulated vasopressin release in man; radioimmunologically determined plasma levels of vasopressin. Acta Endocrinol. (Copenhagen) Suppl. 184: 52.Google Scholar
  53. 53.
    Miller, M., and A. M. Moses. 1977. Clinical states due to alteration of ADH release and action. In: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 153–166.Google Scholar
  54. 54.
    Martin, R., and K. H. Voigt. 1981. Enkephalins co-exist with oxytocin and vasopressin in nerve terminals of rat neurohypophysis. Nature (London) 289: 502–504.Google Scholar
  55. 55.
    Wakerly, J. B., D. A. Poulain, and D. Brown. 1978. Comparison of firing patterns in oxytocin- and vasopressin-releasing neurones during progressive dehydration. Brain Res. 148: 425 - 440.Google Scholar
  56. 56.
    Hatton, G. I., W. E. Armstrong, and W. A. Gregory. 1978. Spontaneous and osmotically-stimulated activity in slices of rat hypothalamus. Brain Res. Bull. 3: 497–508.PubMedGoogle Scholar
  57. 57.
    Theodosis, D. T., and J. J. Dreifuss. 1977. Ultrastructural evidence for exo-endocytosis in the neurohypophysis. In: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 88–94.Google Scholar
  58. 58.
    Dreifuss, J. J. 1975. A review on neurosecretory granules: Their contents and mechanisms of release. Ann. N.Y. Acad. Sci. 248: 184 - 201.PubMedGoogle Scholar
  59. 59.
    Wood, R. J., E. T. Rolls, and B. J. Rolls. 1982. Physiological mechanisms for thirst in the nonhuman primate. Am. J. Physiol. 242: R423–R428.PubMedGoogle Scholar
  60. 60.
    Andersson, B., and M. Rundgren. 1982. Thirst and its disorders. Annu. Rev. Med. 33: 231–239.PubMedGoogle Scholar
  61. 61.
    McKinley, M. J., D. A. Denton, L. G. Leksell, D. R. Mouw, B. A. Scoggins, M. H. Smith, R. S. Weisinger, and R. D. Wright. 1982. Osmoregulatory thirst in sheep is disrupted by ablation of the anterior wall of the optic recess. Brain Res. 236: 210–215.PubMedGoogle Scholar
  62. 62.
    Phillips, M. I., W. E. Hoffman, and S. L. Bealer. 1982. Dehydration and fluid balance: Central effects of angiotensin. Fed. Proc. 41: 2520–2527.PubMedGoogle Scholar
  63. 63.
    Zimmerman, M. B., E. H. Blaine, and E. M. Strieker. 1981. Water intake in hypovolemic sheep: Effects of crushing the left atrial appendage. Science 211: 489–491.PubMedGoogle Scholar
  64. 64.
    Mahoney, J. H., and A. D. Goodman. 1968. Hypernatremia due to hypodipsia and elevated threshold for vasopressin release. N. Engl. J. Med. 279: 1191–1196.PubMedGoogle Scholar
  65. 65.
    DeRubertis, F. R., M. F. Michelis, N. Beck, J. B. Field, and B. B. Davis. 1971. “Essential” hypernatremia due to ineffective osmotic and intact volume regulation of vasopressin secretion. J.Clin. Invest. 50:97–111.PubMedGoogle Scholar
  66. 66.
    Halter, J. B., A. P. Goldbert, G. L. Robertson, and D. Porte. 1977. Selective osmoreceptor dysfunction in the syndrome of chronic hypernatremia. J. Clin. Endocrinol. Metab. 44: 609–616.PubMedGoogle Scholar
  67. 67.
    Fink, E. B. 1928. Diabetes insipidus. Arch. Pathol. Lab. Med. 6: 102–120.Google Scholar
  68. 68.
    Moses, A. M., and D. D. Notman. 1982. Diabetes insipidus and syndrome of inappropriate antidiuretic hormone secretion (SI- ADH). Adv. Intern. Med. 27: 73–100.PubMedGoogle Scholar
  69. 69.
    Fisher, C., W. R. Ingram, and S. W. Ranson. 1935. Relation of hypothalamico-hypophyseal system to diabetes insipidus. Arch. Neurol. Psychiatry 34: 124–163.Google Scholar
  70. 70.
    Heinbecker, P., and H. L. White. 1944. Hypothalamico-hypophysial system and its relation to water balance in the dog. Am. J. Physiol. 133: 582–593.Google Scholar
  71. 71.
    Rasmussen, A. T., and W. J. Gardner. 1940. Effects of hypophysial stalk resection on the hypophysis and hypothalamus of man. Endocrinology 27: 219–226.Google Scholar
  72. 72.
    Lipsett, M. B., J. P. MacLean, C. D. West, M. C. Li, and O. H. Pearson. 1956. An analysis of the polyuria induced by hypo- physectomy in man. J. Clin. Endocrinol. Metab. 16: 183–195.PubMedGoogle Scholar
  73. 73.
    Weitzman, R. E., and C. R. Kleeman. 1979. The clinical physiology of water metabolism. Part II. Renal mechanisms for urinary concentration; diabetes insipidus. West. J. Med. 131: 486–515.PubMedGoogle Scholar
  74. 74.
    Mudd, R. H., H. W. Dodge, E. C. Clark, and R. V. Randall. 1957. Experimental diabetes insipidus: A study of the normal interphase. Proc. Staff Meet. Mayo Clin. 32: 94–108.Google Scholar
  75. 75.
    Williams, R. H., and C. Henry. 1945. Nephrogenic diabetes insipidus: Transmitted by females and appearing during infancy in males. Ann. Intern. Med. 27: 84–95.Google Scholar
  76. 76.
    Waring, A. J., L. Kajdi, and V. Tappan. 1945. A congenital defect of water metabolism. Am. J. Dis. Child. 69: 323–324.Google Scholar
  77. 77.
    Naik, D. V., and H. Valtin. 1969. Hereditary vasopressin-resistant urinary concentrating defects in mice. Am. J. Physiol. 217: 1183–1190.PubMedGoogle Scholar
  78. 78.
    Dousa, T. P., and H. Valtin. 1974. Cellular action of antidiuretic hormone in mice with inherited vasopressin-resistant urinary concentrating defects. J. Clin. Invest. 54: 753–762.PubMedGoogle Scholar
  79. 79.
    Jackson, B. A., R. M. Edwards, H. Valtin, and T. P. Dousa. 1980. Cellular action of vasopressin in medullary tubules of mice with hereditary nephrogenic diabetes insipidus. J. Clin. Invest. 66: 110–122.PubMedGoogle Scholar
  80. 80.
    Strewler, G. J., B. G. Fallon, and J. Orloff. 1981. Defective protein phosphorylation in renal medulla of vasopressin-resistant mice. Biochem. Biophys. Res. Commun. 103: 713–720.PubMedGoogle Scholar
  81. 81.
    Fichman, M. P., and G. Brooker. 1972. Deficient renal cyclic adenosine 3′–5′ monophosphate production in nephrogenic diabetes insipidus. J. Clin. Endocrinol. Metab. 35: 35–47.PubMedGoogle Scholar
  82. 82.
    Bell, N. H., C. M. Clark, S. Avery, T. Sinha, C. W. Trygstad, and D. O. Allen. 1974. Demonstration of a defect in the formation of adenosine 3′,5′-monophosphate in vasopressin-resistant diabetes insipidus. Pediatr. Res. 8: 223–230.PubMedGoogle Scholar
  83. 83.
    Uttley, W. S., B. Atkinson, A. Adams, and D. Shirling. 1978. Cyclic adenosine monophosphate excretion in urine of patients and carriers of congenital nephrogenic diabetes insipidus. J. In- her. Metab. Dis. 1: 75–77.Google Scholar
  84. 84.
    Singer, I., and J. N. Forrest. 1976. Drug-induced states of nephrogenic diabetes insipidus. Kidney Int. 10: 82–95.PubMedGoogle Scholar
  85. 85.
    Dousa, T. P., and D. M. Wilson. 1974. Effects of demethylchlor- tetracycline on cellular action of antidiuretic hormone in vitro. Kidney Int. 5: 279–284.PubMedGoogle Scholar
  86. 86.
    Frascino, J. D., J. O’Flaherty, C. Olmo, and S. Rivera. 1972. Effect of inorganic fluoride on the renal concentrating mechanism: Possible nephrotoxicity in man. J. Lab. Clin. Med. 79: 192–203.PubMedGoogle Scholar
  87. 87.
    Wallin, J. D., and R. A. Kaplan. 1977. Effect of sodium fluoride on concentrating and diluting ability in the rat. Am. J. Physiol. 232: F335–F340.PubMedGoogle Scholar
  88. 88.
    Dousa, T. P. 1974. Interaction of lithium with vasopressin-sensitive cyclic AMP system of human renal medulla. Endocrinology 95: 1359–1366.PubMedGoogle Scholar
  89. 89.
    Jackson, B. A., R. M. Edwards, and T. P. Dousa. 1980. Lithium- induced polyuria: Effect of lithium on adenylate cyclase and adenosine 3′-5′-monophosphate phosphodiesterase in medullary ascending limb of Henle’s loop and in medullary collecting tubules. Endocrinology 107: 1693–1698.PubMedGoogle Scholar
  90. 90.
    Gennari, F. J., and J. P. Kassirer. 1974. Osmotic diuresis. N. Engl. J. Med. 291: 714–720.PubMedGoogle Scholar
  91. 91.
    Holliday, M. A., T. J. Egan, and C. R. Morris. 1967. Pitressin- resistant hyposthenuria in chronic renal disease. Am. J. Med. 42: 378–387.PubMedGoogle Scholar
  92. 92.
    Tannen, R. L., E. M. Regal, M. J. Dunn, and R. W. Schrier. 1969. Vasopressin-resistant hyposthenuria in advanced chronic renal disease. N. Engl. J. Med. 280: 1135–1141.PubMedGoogle Scholar
  93. 93.
    Bricker, N. S., R. R. Dewey, H. Lubowitz, J. Stokes, and T. Kirkensgaard. 1959. Observations on the concentrating and diluting mechanisms of the diseased kidney. J. Clin. Invest. 38: 516–523.PubMedGoogle Scholar
  94. 94.
    Bricker, N. S., S. Klahr, H. Lubowitz, and R. E. Rieselbach. 1965. Renal function in chronic renal disease. Medicine (Baltimore) 44: 263–288.Google Scholar
  95. 95.
    Lubowitz, H., M. L. Purkerson, and N. S. Bricker. 1966. Investigation of single nephrons in the chronically diseased (pyelonephritic) kidney of the rat using micropuncture techniques. Nephron 3: 73–83.PubMedGoogle Scholar
  96. 96.
    Bank, N., and H. S. Aynedjian. 1966. Individual nephron function in experimental bilateral pyelonephritis. II. Distal tubular sodium and water reabsorption and the concentrating defect. J. Lab. Clin. Med. 68: 728–739.PubMedGoogle Scholar
  97. 97.
    Mees, E. J. D. 1959. Role of osmotic diuresis in impairment of concentrating ability in renal disease. Br. Med. J. 1: 1156–1158.Google Scholar
  98. 98.
    Kleeman, C. R., D. A. Adams, and M. H. Maxwell. 1961. An evaluation of maximal water diuresis in chronic renal disease. 1. Normal solute intake. J. Lab. Clin. Med. 58: 169–184.PubMedGoogle Scholar
  99. 99.
    Gonick, H. C., G. Goldberg, M. E. Rubini, and L. B. Guze. 1965. Functional abnormalities in experimental pyelonephritis. 1. Studies of concentrating ability. Nephron 2: 193–206.PubMedGoogle Scholar
  100. 100.
    Gilbert, R. M., H. Weber, L. Turchin, L. G. Fine, J. J. Bourgoignie, and N. S. Bricker. 1976. A study of the intrarenal recycling of urea in the rat with chronic experimental pyelonephritis. J.Clin. Invest. 58: 1348–1357.PubMedGoogle Scholar
  101. 101.
    Perillie, P. E., and F. H. Epstein. 1963. Sickling phenomenon produced by hypertonic solutions: A possible explanation for the hyposthenuria of sicklemia. J. Clin. Invest. 42: 570–580.PubMedGoogle Scholar
  102. 102.
    van Eps, L. W. S., C. Pinedo-Veels, C. H. deVries, and J. de Koning. 1970. Nature of concentrating defect in sickle-cell nephropathy. Lancet 1: 450–452.Google Scholar
  103. 103.
    Bricker, N. S., E. I. Shwayri, J. B. Reardan, D. Kellog, J. P. Merrill, and J. H. Holmes. 1957. An abnormality in renal function resulting from urinary tract obstruction. Am. J. Med. 23: 554–564.PubMedGoogle Scholar
  104. 104.
    Manitius, A., H. Levitin, D. Beck, and F. H. Epstein. 1960. On the mechanisms of impairment of renal concentrating ability in potassium deficiency. J. Clin. Invest. 39: 684–692.PubMedGoogle Scholar
  105. 105.
    Galvez, O. G., B. W. Roberts, W. H. Bay, and T. F. Ferris. 1976. Studies on the mechanism of polyuria with hypokalemia. Kidney Int. 10: 583a.Google Scholar
  106. 106.
    Torikai, S., and K. Kurokawa. 1983. Effects of PGE2 on vasopressin-dependent cell cAMP in isolated single segments. Am. J. Physiol. 245: F58–F66.PubMedGoogle Scholar
  107. 107.
    Berl, T., S. L. Linas, G. A. Aisenbery, and R. J. Anderson. 1977. On the mechanism of polyuria in potassium depletion. J. Clin. Invest. 60: 620–625.PubMedGoogle Scholar
  108. 108.
    Manitius, A., H. Levitin, D. Beck, and F. H. Epstein. 1960. On the mechanism of impariment of renal concentrating ability in hypercalcemia. J. Clin. Invest. 39: 693–697.PubMedGoogle Scholar
  109. 109.
    Campbell, B. J., G. Woodward, and V. Broberg. 1972. Calcium- mediated interactions between the antidiuretic hormone and renal plasma membranes. J. Biol. Chem. 247: 6167–6175.PubMedGoogle Scholar
  110. 110.
    Arieff, A. I., R. Guisado, and V. C. Lazarowitz. 1977. The pathophysiology of hyperosmolar states. In: Disturbances in Body Fluid Osmolality. T. E. Andreoli, J. J. Grantham, and F. C. Rector, eds. American Physiological Society, Washington, D.C. pp. 227–250.Google Scholar
  111. 111.
    Dodge, P. R., J. F. Sotos, I. Gamstorp, D. DeVivo, M. Levy, and T. Rabe. 1962. Neurophysiologic disturbances in hypertonic dehydration. Trans. Am. Neurol. Assoc. 87: 33–36.PubMedGoogle Scholar
  112. 112.
    Sotos, J. F., P. R. Dodge, P. Meara, and N. B. Talbot. 1960. Studies in experimental hypertonicity: Pathogenesis of the clinical syndrome, biochemical abnormalities and cause of death. Pediatrics 26: 925–937.Google Scholar
  113. 113.
    Holliday, M. A., M. N. Kalayci, and J. Harrah. 1968. Factors that limit brain volume changes in response to acute and sustained hyper- and hyponatremia. J. Clin. Invest. 47: 1916–1928.PubMedGoogle Scholar
  114. 114.
    Arieff, A. I., and R. Guisado. 1976. Effects on the central nervous systems of hypernatremic and hyponatremic states. Kidney Int. 10: 104–116.PubMedGoogle Scholar
  115. 115.
    Chan, P. H., and R. A. Fishman. 1979. Elevation of rat brain amino acids and idiogenic osmoles induced by hyperosmolality. Brain Res. 161: 293–301.PubMedGoogle Scholar
  116. 116.
    Cala, P. M. 1983. Volume regulation by red blood cells: Mechanism of ion transport. Mol. Physiol. 4: 33–52.Google Scholar
  117. 117.
    Gottschalk, C. W., and M. Mylle. 1959. Micropuncture study of the mammalian urinary concentrating mechanism: Evidence for the countercurrent hypothesis. Am. J. Physiol. 196: 927–936.PubMedGoogle Scholar
  118. 118.
    Langgård, H., and W. O. Smith. 1962. Self-induced water intoxication without predisposing illness. N. Engl. J. Med. 266: 378–381.PubMedGoogle Scholar
  119. 119.
    Rendell, M., D. McGrane, and M. Cuesta. 1978. Fatal compulsive water drinking. J. Am. Med. Assoc. 240: 2557–2559.Google Scholar
  120. 120.
    Hariprasad, M. K., R. P. Eisinger, I. M. Nadler, C. S. Padmanabhan, and B. D. Nidus. 1980. Hyponatremia in psychogenic polydipsia. Arch. Intern. Med. 140: 1639–1642.PubMedGoogle Scholar
  121. 121.
    Hilden, T., and T. L. Svendsen. 1975. Electrolyte disturbances in beer drinkers: A specific “hypo-osmolality syndrome.” Lancet 2: 245–246.PubMedGoogle Scholar
  122. 122.
    McCance, R. A. 1936. Experimental sodium chloride deficiency in man. Proc. R. Soc. London Ser. B 119: 245–268.Google Scholar
  123. 123.
    Harrington, A. R. 1972. Hyponatremia due to sodium depletion in the absence of vasopressin. Am. J. Physiol. 222: 768–774.PubMedGoogle Scholar
  124. 124.
    Berliner, R. W., and D. G. Davidson. 1957. Production of hypertonic urine in the absence of pituitary antidiuretic hormone. J. Clin. Invest. 36: 1416–1427.PubMedGoogle Scholar
  125. 125.
    Edwards, B. R., M. Gallai, and H. Valtin. 1980. Concentration of urine in the absence of ADH with minimal or no decrease in GFR. Am. J. Physiol. 239: F84–F91.PubMedGoogle Scholar
  126. 126.
    Fanestil, D. D. 1977. Hyposmolar syndromes. In: Disturbances in Body Fluid Osmolality. American Physiological Society, Washington, D.C. pp. 267–284.Google Scholar
  127. 127.
    Szatalowicz, V. L., P. E. Arnold, C. Chaimovitz, D. Bichet, T. Bert, and R. W. Schrier. 1981. Radioimmunoassay of plasma arginine vasopressin in hyponatremic patients with congestive heart failure. N. Engl. J. Med. 305: 263–266.PubMedGoogle Scholar
  128. 128.
    Weitzman, R. E., and C. R. Kleeman. 1980. The clinical physiology of water metabolism. III. The water depletion (hyperosmolar) and water excess (hyposmolar) syndromes. West. J. Med. 132: 16–38.PubMedGoogle Scholar
  129. 129.
    Burg, M. B., and N. Green. 1973. Function of the thick ascending limb of Henle’s loop. Am. J. Physiol. 224: 659–668.PubMedGoogle Scholar
  130. 130.
    Seldin, D. W., G. Eknoyan, W. N. Suki, and F. C. Rector. 1966. Localization of diuretic action from the pattern of water and electrolyte excretion. Ann. N.Y. Acad. Sci. 139: 328–343.PubMedGoogle Scholar
  131. 131.
    Fichman, M. P., H. Vorherr, C. R. Kleeman, and N. Telfer. 1971. Diuretic-induced hyponatremia. Ann. Intern. Med. 75: 853–863.PubMedGoogle Scholar
  132. 132.
    Schrier, R. W., and S. L. Linas. 1980. Mechanisms of the defect in water excretion in adrenal insufficiency. Miner. Electrolyte Metab. 4: 1–7.Google Scholar
  133. 133.
    Chinitz, A., and F. L. Turner. 1965. The association of primary hypothyroidism and inappropriate secretion of the antidiuretic hormone. Arch. Intern. Med. 116: 871–874.PubMedGoogle Scholar
  134. 134.
    DeRubertis, F. R., M. F. Michelis, M. E. Bloom, D. H. Mintz, J. B. Field, and B. B. Davis. 1971. Impaired water excretion in myxedema. Am. J. Med. 51: 41–53.PubMedGoogle Scholar
  135. 135.
    DiScala, V. A., and M. J. Kinney. 1971. Effects of myxedema on the renal diluting and concentrating mechanism. Am. J. Med. 50: 325–335.PubMedGoogle Scholar
  136. 136.
    Schwartz, W. B., W. Bennett, S. Curelop, and F. C. Bartter. 1957. A syndrome of renal sodium loss and hyponatremia probably resulting from inappropriate secretion of antidiuretic hormone. Am. J. Med. 23: 529–542.PubMedGoogle Scholar
  137. 137.
    Zerbe, R. L., Stropes, and G. Robertson. 1980. Vasopressin function in the syndrome of inappropriate diuresis. Annu. Rev. Med. 31: 315–327.PubMedGoogle Scholar
  138. 138.
    Leaf, A., F. C. Bartter, R. F. Santos, and O. Wrong. 1953. Evidence in man that urinary electrolyte loss induced by polydipsia is a function of water retention. J. Clin. Invest. 32: 868–871.PubMedGoogle Scholar
  139. 139.
    Pokracki, F. J., A. G. Robinson, and S. M. Seif. 1981. Chlorpropamide effect: Measurement of neurophysin and vasopressin in humans and rats. Metabolism 30: 72–78.PubMedGoogle Scholar
  140. 140.
    Kusano,E.,J.L.Braun-Werness,D. J. Vick, M.J. Keller, and T. P. Dousa. 1983. Chlorpropamide action on renal concentrating mechanism in rats with hypothalamic diabetes insipidus. J. Clin. Invest. 72: 1298–1313.PubMedGoogle Scholar
  141. 141.
    Culpepper, R. M., and T. E. Andreoli. 1983. Interactions among prostaglandin E2, antidiuretic hormone, and cyclic adenosine monophosphate in modulating CI absorption in single mouse medullary thick ascending limbs of Henle. J. Clin. Invest. 71: 1588–1601.PubMedGoogle Scholar
  142. 142.
    Grantham, J. J., and J. Orloff. 1968. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′-5′-monophosphate and theophylline. J. Clin. Invest. 47: 1154–1161.PubMedGoogle Scholar
  143. 143.
    Clive, D. M., and J. S. Stoff. 1984. Renal syndromes associated with nonsteroidal antiinflammatory drugs. N. Engl. J. Med. 310: 563–572.PubMedGoogle Scholar
  144. 144.
    Blum, M., and A. Aviram. 1980. Ibuprofen induced hyponatremia. Rheumatol. Rehabil. 19: 258–259.PubMedGoogle Scholar
  145. 145.
    Arieff, A. I., F. Llach, and S. G. Massry. 1976. Neurological manifestations and morbidity of hyponatremia: Correlation with brain water and electrolytes. Medicine (Baltimore) 55: 121–129.Google Scholar
  146. 146.
    Pollock, A. S., and A. I. Arieff. 1980. Abnormalities of cell volume regulation and the functional consequences. Am. J. Physiol. 239: F195–F205.PubMedGoogle Scholar
  147. 147.
    Grantham, J., and M. Linshaw. 1984. The metabolic response to hyponatremia. Circ. Res. in press.Google Scholar
  148. 148.
    Kleinschmidt-DeMasters, B. K., and M. D. Norenberg. 1981. Rapid correction of hyponatremia causes demyelination: Relation to central pontine myelinolysis. Science 211: 1068–1070.PubMedGoogle Scholar
  149. 149.
    Norenberg, M. D., and K. O. Leslie. 1982. Correction of hyponatremia and central pontine myelinolysis. Am. J. Med. 73: 882.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • R. Michael Culpepper
    • 1
  • Steven C. Hebert
    • 1
  • Thomas E. Andreoli
    • 2
  1. 1.Division of NephrologyUniversity of Texas Health Science CenterHoustonUSA
  2. 2.Department of Internal MedicineUniversity of Texas Health Science CenterHoustonUSA

Personalised recommendations