Skip to main content

The Hypertonic and Hypotonic Syndromes

  • Chapter
Physiology of Membrane Disorders

Abstract

Extracellular fluid (ECF) osmotic homeostasis is regulated by a neurorenal axis involving thirst, antidiuretic hormone (ADH), and ADH-responsive renal epithelia (see Chapter 38). Osmoregulatory disorders can best be understood through consideration of two of the cardinal physiologic processes involved in osmotic homeostasis: the water repletion reaction and the cell volume regulatory response. The former provides a frame of reference for understanding the pathogenesis of these disorders, while the latter provides a means for considering the changes in brain volume which can attend osmoregulatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vandesande, F., and K. Dierickx. 1975. Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretory system of the rat. Cell Tissue Res. 164: 153–162.

    PubMed  CAS  Google Scholar 

  2. Zimmerman, E. A., and A. G. Robinson. 1976. Hypothalamic neurons secreting vasopressin and neurophysin. Kidney Int. 10: 12–24.

    PubMed  CAS  Google Scholar 

  3. Morris, J. F., H. W. Sokol, and H. Valtin. 1977. One neuron-one hormone? In: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 58–66.

    Google Scholar 

  4. Cross, B. A., R. E. J. Dyball, R. G. Dyer, C. W. Jones, D. W. Lincoln, J. F. Morris, and B. T. Pickering. 1975. Endocrine neurons. Recent Prog. Horm. Res. 31: 243–294.

    PubMed  CAS  Google Scholar 

  5. Scharrer, E., and B. Scharrer. 1954. Hormones produced by neurosecretory cells. Recent Prog. Horm. Res. 10: 183–240.

    CAS  Google Scholar 

  6. Zimmerman, E. A., and R. Defendi. 1977. Hypothalamic pathways containing oxytocin, vasopressin and associated neurophysins. In: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 22–29.

    Google Scholar 

  7. Bargmann, W., and E. Scharrer. 1951. The site of origin of the hormones of the posterior pituitary. Am. Sci. 39: 255–259.

    Google Scholar 

  8. Weinstein, H. S., Malamed, and H. Sachs. 1961. Isolation of vasopressin-containing granules from the neurohypophysis of the dog. Biochim. Biophys. Acta 50: 386–389.

    PubMed  CAS  Google Scholar 

  9. Russel, J. T., M. J. Brownstein, and H. Gainer. 1980. Biosynthesis of vasopressin, oxytocin and neurophysins: Isolation and characterization of two common precursors (propressophysin and prooxyphysin). Endocrinology 107: 1880–1891.

    Google Scholar 

  10. Pickering, B. T., and C. W. Jones. 1978. The neurophysins. In: Hormonal Proteins and Peptides, Volume 5. C. H. Li, ed. Academic Press, New York. pp. 103–158.

    Google Scholar 

  11. Robinson, A. G. 1975. Radioimmunoassay of neurophysin proteins: Utilization of specific neurophysin assays to demonstrate independent secretion of different neurophysins in vivo. Ann. N. Y. Acad. Sci. 248: 246–256.

    PubMed  CAS  Google Scholar 

  12. Dean, C. R., D. B. Hope, and T. Kazic. 1968. The total hormone-binding capacity of the neurophysins and the oxytocin and vasopressin content of the posterior pituitary. Br. J. Pharmacol. 34: 193–194.

    Google Scholar 

  13. Sachs, H., P. Fawcett, Y. Takabatake, and R. Portanova. 1969. Biosynthesis and release of vasopressin and neurophysin. Recent Prog. Horm. Res. 25: 447–484.

    PubMed  CAS  Google Scholar 

  14. Sachs, H., and Y. Takabatake. 1964. Evidence for a precursor in vasopressin biosynthesis. Endocrinology 75: 943–948.

    PubMed  CAS  Google Scholar 

  15. Takabatake, Y., and H. Sachs. 1964. Vasopressin biosynthesis. III. In vitro studies. Endocrinology 75: 934–942.

    PubMed  CAS  Google Scholar 

  16. Brownstein, M. J., J. T. Russell, and H. Gainer. 1980. Synthesis, transport and release of posterior pituitary hormones. Science 207: 373–378.

    PubMed  CAS  Google Scholar 

  17. Russell, J. T., M. J. Brownstein, and H. Gainer. 1981. Time course of appearance and release of [35S] cysteine labeled neurophysins and peptides in the neurohypophysis. Brain Res. 205: 299–311.

    PubMed  CAS  Google Scholar 

  18. Bauman, G., and J. F. Dingman. 1976. Distribution, blood transport, and degradation of antidiuretic hormone in man. J. Clin. Invest 57: 1109–1116.

    Google Scholar 

  19. Shade, R. E., and L. Share. 1977. Renal vasopressin clearance with reductions in renal blood flow in the dog. Am. J. Physiol. 232: F341–F347.

    PubMed  CAS  Google Scholar 

  20. Walter, R., and W. H. Simmons. 1977. Metabolism of neurohypophyseal hormones: Considerations from a molecular view-point. In: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 167–188.

    Google Scholar 

  21. Nardacci, N. J., S. Mukhopadhyay, and B. J. Campbell. 1975. Partial purification and characterization of the antidiuretic hormone-activating enzyme from renal plasma membranes. Biochim. Biophys. Acta 377: 146–157.

    PubMed  CAS  Google Scholar 

  22. du Vigneaud, V. 1969. Hormones of the mammalian posterior pituitary gland and their naturally occurring analogues. Johns Hopkins Med. J. 124: 53–65.

    PubMed  Google Scholar 

  23. Sawyer, W. H., M. Acosta, L. Balaspiri, J. Judd, and M. Manning. 1974. Structural changes in the arginine vasopressin molecule that enhance antidiuretic activity and specificity. Endocrinology 94: 1106–1115.

    PubMed  CAS  Google Scholar 

  24. Manning, M., and W. H. Sawyer. 1977. Structure-activity studies on oxytocin and vasopressin 1954–1976. in: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 9–21.

    Google Scholar 

  25. Smith, C. W. 1981. Conformation-activity studies on oxytocin and vasopressin: Exploring the roles of the moieties within the hydrophilic cluster. In: Neurohypophyseal Peptide Hormones and Other Biologically Active Peptides. Elsevier, Amsterdam, pp. 23–35.

    Google Scholar 

  26. Manning, M., L. Balaspiri, J. Moehring, J. Haldar, and W. H. Sawyer. 1976. Synthesis and some pharmacological properties of deamino [4-threonine, 8-D-arginine] vasopressin and deamino [8-D-arginine] vasopressin, highly potent and specific antidiuretic peptides, and [8-D-arginine] vasopressin and deamino-arginine- vasopressin. J. Med. Chem. 19: 842–845.

    PubMed  CAS  Google Scholar 

  27. Sawyer, W. H., and M. Manning. 1982. Effective antagonists of the antidiuretic action of vasopressin in rats. Ann. N.Y. Acad. Sci. 394: 464–472.

    PubMed  CAS  Google Scholar 

  28. Sawyer, W. H., P. K. T. Pang, J. Seto, M. McEnroe, B. Lammek, and M. Manning. 1981. Vasopressin analogs that antagonize antidiuretic responses by rats to the antidiuretic hormone. Science 212: 49–51.

    PubMed  CAS  Google Scholar 

  29. Stassen, F. L., R. W. Erickson, W. F. Huffman, J. Stefankiewicz, L. Sulat, and V. D. Wiebelhaus. 1982. Molecular mechanisms of novel antidiuretic antagonists: Analysis of the effects on vasopressin binding and adenylate cyclase activation in animal and human kidney. J. Pharmacol Exp. Ther. 223:50– 54.

    PubMed  CAS  Google Scholar 

  30. Urry, D. W., and R. Walter. 1971. Proposed conformation of oxytocin in solution. Proc. Natl. Acad. Sci. USA 68: 956–958.

    PubMed  CAS  Google Scholar 

  31. Walter, R., J. D. Glickson, I. L. Schwartz, R. T. Havran, J. Meienhoffer, and D. W. Urry. 1972. Conformation of lysine vasopressin: A comparison with oxytocin. Proc. Natl. Acad. Sci. USA 69: 1920–1924.

    PubMed  CAS  Google Scholar 

  32. Walter, R., G. L. Stahl, T. Caplaneris, P. Cordopatis, and D. Theodoropoulos. 1979. Active site studies of neurohypophyseal hormones: Synthesis and pharmacological properties of [5- (N4,N4-dimethyl/asparagine)] oxytocin. J. Med. Chem. 22: 890–893.

    PubMed  CAS  Google Scholar 

  33. Verney, E. B. 1947. The antidiuretic hormone and the factors which determine its release. Proc. R. Soc. London Ser. B 135: 25–105.

    CAS  Google Scholar 

  34. Thrasher, T. N. 1982. Osmoreceptor mediation of thirst and vasopressin secretion in the dog. Fed. Proc. 41: 2528–2532.

    PubMed  CAS  Google Scholar 

  35. Thrasher, T. N., L. C. Keil, and D. J. Ramsay. 1982. Lesions of the organum vasculosum of the lamina terminalis (OVLT) attenuate osmotically-induced drinking and vasopressin secretion in the dog. Endocrinology 110: 1837–1839.

    PubMed  CAS  Google Scholar 

  36. Andersson, B., and K. Olsson. 1977. Evidence for periventricular sodium-sensitive receptors of importance in the regulation of ADH secretion. In: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 118–127.

    Google Scholar 

  37. Robertson, G. L., E. A. Mahr, S. Athar, and T. Sinha. 1973. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Invest. 52: 2340–2352.

    PubMed  CAS  Google Scholar 

  38. Dunn, F. L., J. T. Brennan, A. E. Nelson, and G. L. Robertson. 1973. The role of blood osmolality and volume in regulating vaso-pressin secretion in the rat. J. Clin. Invest. 52: 3212–3219.

    PubMed  CAS  Google Scholar 

  39. Robertson, G. L. 1974. Vasopressin in osmotic regulation in man. Annu. Rev. Med. 25: 315–322.

    PubMed  CAS  Google Scholar 

  40. Robertson, G. L., R. L. Shelton, and S. Athar. 1976. The os-moregulation of vasopressin. Kidney Int. 10: 25–37.

    PubMed  CAS  Google Scholar 

  41. Gauer, O. H., and J. P. Henry. 1963. Circulatory basis of fluid volume control. Physiol. Rev. 43: 423–481.

    PubMed  CAS  Google Scholar 

  42. Murdaugh, H. V., H. O. Sieker, and F. Manfredi. 1959. Effect of altered intrathoracic pressure on renal hemodynamics, electrolyte excretion and water clearance. J. Clin. Invest. 38: 834–842.

    PubMed  Google Scholar 

  43. Poulain, D. A., and J. B. Wakerley. 1982. Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 7: 773–808.

    PubMed  CAS  Google Scholar 

  44. Weinstein, H., R. M. Berne, and H. Sachs. 1960. Vasopressin in blood: Effect of hemorrhage. Endocrinology 66: 712–718.

    PubMed  CAS  Google Scholar 

  45. Share, L. 1967. Vasopressin, its bioassay and the physiological control of its release. Am. J. Med. 42: 701–712.

    PubMed  CAS  Google Scholar 

  46. Gupta, P. D., J. P. Henry, R. Sinclair, and R. von Baumgarten. 1966. Responses of atrial and aortic baroreceptors to nonhypoten- sive hemorrhage and to transfusion. Am. J. Physiol. 211: 1429–1437.

    PubMed  CAS  Google Scholar 

  47. Caillens, H., W. Pruszczynski, A. Meyrier, K.-S. Ang, F. Rousselet, and R. Ardaillou. 1980. Relationship between change in volemia at constant osmolality and plasma antidiuretic hormone. Miner. Electrolyte Metab. 4: 161–171.

    CAS  Google Scholar 

  48. Quillen, E. W., and A. W. Cowley. 1983. Influence of volume changes on osmolality-vasopressin relationships in conscious dogs. Am. J. Physiol. 244: H73–H79.

    PubMed  CAS  Google Scholar 

  49. Schrier, R. W., T. Berl, R. J. Anderson, and K. M. McDonald 1976. Non-osmotic regulation of renal water excretion. Trans. Am. Clin. Climatol. Assoc. 87: 161–169.

    PubMed  CAS  Google Scholar 

  50. Sklar, A. H., and R. W. Schrier. 1983. Central nervous system mediators of vasopressin release. Physiol. Rev. 63: 1243–1280.

    PubMed  CAS  Google Scholar 

  51. Brennan, L. A., J. P. Bonjour, and R. L. Malvin. 1971. ADH levels during salt depletion in dogs. Eur. J. Clin. Invest. 2: 43–46.

    PubMed  CAS  Google Scholar 

  52. Uhlich, E., P. Weber, and U. Gröschel-Stewart. 1974. Angiotensin-stimulated vasopressin release in man; radioimmunologically determined plasma levels of vasopressin. Acta Endocrinol. (Copenhagen) Suppl. 184: 52.

    Google Scholar 

  53. Miller, M., and A. M. Moses. 1977. Clinical states due to alteration of ADH release and action. In: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 153–166.

    Google Scholar 

  54. Martin, R., and K. H. Voigt. 1981. Enkephalins co-exist with oxytocin and vasopressin in nerve terminals of rat neurohypophysis. Nature (London) 289: 502–504.

    CAS  Google Scholar 

  55. Wakerly, J. B., D. A. Poulain, and D. Brown. 1978. Comparison of firing patterns in oxytocin- and vasopressin-releasing neurones during progressive dehydration. Brain Res. 148: 425 - 440.

    Google Scholar 

  56. Hatton, G. I., W. E. Armstrong, and W. A. Gregory. 1978. Spontaneous and osmotically-stimulated activity in slices of rat hypothalamus. Brain Res. Bull. 3: 497–508.

    PubMed  CAS  Google Scholar 

  57. Theodosis, D. T., and J. J. Dreifuss. 1977. Ultrastructural evidence for exo-endocytosis in the neurohypophysis. In: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 88–94.

    Google Scholar 

  58. Dreifuss, J. J. 1975. A review on neurosecretory granules: Their contents and mechanisms of release. Ann. N.Y. Acad. Sci. 248: 184 - 201.

    PubMed  CAS  Google Scholar 

  59. Wood, R. J., E. T. Rolls, and B. J. Rolls. 1982. Physiological mechanisms for thirst in the nonhuman primate. Am. J. Physiol. 242: R423–R428.

    PubMed  CAS  Google Scholar 

  60. Andersson, B., and M. Rundgren. 1982. Thirst and its disorders. Annu. Rev. Med. 33: 231–239.

    PubMed  CAS  Google Scholar 

  61. McKinley, M. J., D. A. Denton, L. G. Leksell, D. R. Mouw, B. A. Scoggins, M. H. Smith, R. S. Weisinger, and R. D. Wright. 1982. Osmoregulatory thirst in sheep is disrupted by ablation of the anterior wall of the optic recess. Brain Res. 236: 210–215.

    PubMed  CAS  Google Scholar 

  62. Phillips, M. I., W. E. Hoffman, and S. L. Bealer. 1982. Dehydration and fluid balance: Central effects of angiotensin. Fed. Proc. 41: 2520–2527.

    PubMed  CAS  Google Scholar 

  63. Zimmerman, M. B., E. H. Blaine, and E. M. Strieker. 1981. Water intake in hypovolemic sheep: Effects of crushing the left atrial appendage. Science 211: 489–491.

    PubMed  CAS  Google Scholar 

  64. Mahoney, J. H., and A. D. Goodman. 1968. Hypernatremia due to hypodipsia and elevated threshold for vasopressin release. N. Engl. J. Med. 279: 1191–1196.

    PubMed  CAS  Google Scholar 

  65. DeRubertis, F. R., M. F. Michelis, N. Beck, J. B. Field, and B. B. Davis. 1971. “Essential” hypernatremia due to ineffective osmotic and intact volume regulation of vasopressin secretion. J.Clin. Invest. 50:97–111.

    PubMed  CAS  Google Scholar 

  66. Halter, J. B., A. P. Goldbert, G. L. Robertson, and D. Porte. 1977. Selective osmoreceptor dysfunction in the syndrome of chronic hypernatremia. J. Clin. Endocrinol. Metab. 44: 609–616.

    PubMed  CAS  Google Scholar 

  67. Fink, E. B. 1928. Diabetes insipidus. Arch. Pathol. Lab. Med. 6: 102–120.

    CAS  Google Scholar 

  68. Moses, A. M., and D. D. Notman. 1982. Diabetes insipidus and syndrome of inappropriate antidiuretic hormone secretion (SI- ADH). Adv. Intern. Med. 27: 73–100.

    PubMed  CAS  Google Scholar 

  69. Fisher, C., W. R. Ingram, and S. W. Ranson. 1935. Relation of hypothalamico-hypophyseal system to diabetes insipidus. Arch. Neurol. Psychiatry 34: 124–163.

    Google Scholar 

  70. Heinbecker, P., and H. L. White. 1944. Hypothalamico-hypophysial system and its relation to water balance in the dog. Am. J. Physiol. 133: 582–593.

    Google Scholar 

  71. Rasmussen, A. T., and W. J. Gardner. 1940. Effects of hypophysial stalk resection on the hypophysis and hypothalamus of man. Endocrinology 27: 219–226.

    Google Scholar 

  72. Lipsett, M. B., J. P. MacLean, C. D. West, M. C. Li, and O. H. Pearson. 1956. An analysis of the polyuria induced by hypo- physectomy in man. J. Clin. Endocrinol. Metab. 16: 183–195.

    PubMed  CAS  Google Scholar 

  73. Weitzman, R. E., and C. R. Kleeman. 1979. The clinical physiology of water metabolism. Part II. Renal mechanisms for urinary concentration; diabetes insipidus. West. J. Med. 131: 486–515.

    PubMed  CAS  Google Scholar 

  74. Mudd, R. H., H. W. Dodge, E. C. Clark, and R. V. Randall. 1957. Experimental diabetes insipidus: A study of the normal interphase. Proc. Staff Meet. Mayo Clin. 32: 94–108.

    Google Scholar 

  75. Williams, R. H., and C. Henry. 1945. Nephrogenic diabetes insipidus: Transmitted by females and appearing during infancy in males. Ann. Intern. Med. 27: 84–95.

    Google Scholar 

  76. Waring, A. J., L. Kajdi, and V. Tappan. 1945. A congenital defect of water metabolism. Am. J. Dis. Child. 69: 323–324.

    Google Scholar 

  77. Naik, D. V., and H. Valtin. 1969. Hereditary vasopressin-resistant urinary concentrating defects in mice. Am. J. Physiol. 217: 1183–1190.

    PubMed  CAS  Google Scholar 

  78. Dousa, T. P., and H. Valtin. 1974. Cellular action of antidiuretic hormone in mice with inherited vasopressin-resistant urinary concentrating defects. J. Clin. Invest. 54: 753–762.

    PubMed  CAS  Google Scholar 

  79. Jackson, B. A., R. M. Edwards, H. Valtin, and T. P. Dousa. 1980. Cellular action of vasopressin in medullary tubules of mice with hereditary nephrogenic diabetes insipidus. J. Clin. Invest. 66: 110–122.

    PubMed  CAS  Google Scholar 

  80. Strewler, G. J., B. G. Fallon, and J. Orloff. 1981. Defective protein phosphorylation in renal medulla of vasopressin-resistant mice. Biochem. Biophys. Res. Commun. 103: 713–720.

    PubMed  CAS  Google Scholar 

  81. Fichman, M. P., and G. Brooker. 1972. Deficient renal cyclic adenosine 3′–5′ monophosphate production in nephrogenic diabetes insipidus. J. Clin. Endocrinol. Metab. 35: 35–47.

    PubMed  CAS  Google Scholar 

  82. Bell, N. H., C. M. Clark, S. Avery, T. Sinha, C. W. Trygstad, and D. O. Allen. 1974. Demonstration of a defect in the formation of adenosine 3′,5′-monophosphate in vasopressin-resistant diabetes insipidus. Pediatr. Res. 8: 223–230.

    PubMed  CAS  Google Scholar 

  83. Uttley, W. S., B. Atkinson, A. Adams, and D. Shirling. 1978. Cyclic adenosine monophosphate excretion in urine of patients and carriers of congenital nephrogenic diabetes insipidus. J. In- her. Metab. Dis. 1: 75–77.

    CAS  Google Scholar 

  84. Singer, I., and J. N. Forrest. 1976. Drug-induced states of nephrogenic diabetes insipidus. Kidney Int. 10: 82–95.

    PubMed  CAS  Google Scholar 

  85. Dousa, T. P., and D. M. Wilson. 1974. Effects of demethylchlor- tetracycline on cellular action of antidiuretic hormone in vitro. Kidney Int. 5: 279–284.

    PubMed  CAS  Google Scholar 

  86. Frascino, J. D., J. O’Flaherty, C. Olmo, and S. Rivera. 1972. Effect of inorganic fluoride on the renal concentrating mechanism: Possible nephrotoxicity in man. J. Lab. Clin. Med. 79: 192–203.

    PubMed  CAS  Google Scholar 

  87. Wallin, J. D., and R. A. Kaplan. 1977. Effect of sodium fluoride on concentrating and diluting ability in the rat. Am. J. Physiol. 232: F335–F340.

    PubMed  CAS  Google Scholar 

  88. Dousa, T. P. 1974. Interaction of lithium with vasopressin-sensitive cyclic AMP system of human renal medulla. Endocrinology 95: 1359–1366.

    PubMed  CAS  Google Scholar 

  89. Jackson, B. A., R. M. Edwards, and T. P. Dousa. 1980. Lithium- induced polyuria: Effect of lithium on adenylate cyclase and adenosine 3′-5′-monophosphate phosphodiesterase in medullary ascending limb of Henle’s loop and in medullary collecting tubules. Endocrinology 107: 1693–1698.

    PubMed  CAS  Google Scholar 

  90. Gennari, F. J., and J. P. Kassirer. 1974. Osmotic diuresis. N. Engl. J. Med. 291: 714–720.

    PubMed  CAS  Google Scholar 

  91. Holliday, M. A., T. J. Egan, and C. R. Morris. 1967. Pitressin- resistant hyposthenuria in chronic renal disease. Am. J. Med. 42: 378–387.

    PubMed  CAS  Google Scholar 

  92. Tannen, R. L., E. M. Regal, M. J. Dunn, and R. W. Schrier. 1969. Vasopressin-resistant hyposthenuria in advanced chronic renal disease. N. Engl. J. Med. 280: 1135–1141.

    PubMed  CAS  Google Scholar 

  93. Bricker, N. S., R. R. Dewey, H. Lubowitz, J. Stokes, and T. Kirkensgaard. 1959. Observations on the concentrating and diluting mechanisms of the diseased kidney. J. Clin. Invest. 38: 516–523.

    PubMed  CAS  Google Scholar 

  94. Bricker, N. S., S. Klahr, H. Lubowitz, and R. E. Rieselbach. 1965. Renal function in chronic renal disease. Medicine (Baltimore) 44: 263–288.

    CAS  Google Scholar 

  95. Lubowitz, H., M. L. Purkerson, and N. S. Bricker. 1966. Investigation of single nephrons in the chronically diseased (pyelonephritic) kidney of the rat using micropuncture techniques. Nephron 3: 73–83.

    PubMed  CAS  Google Scholar 

  96. Bank, N., and H. S. Aynedjian. 1966. Individual nephron function in experimental bilateral pyelonephritis. II. Distal tubular sodium and water reabsorption and the concentrating defect. J. Lab. Clin. Med. 68: 728–739.

    PubMed  CAS  Google Scholar 

  97. Mees, E. J. D. 1959. Role of osmotic diuresis in impairment of concentrating ability in renal disease. Br. Med. J. 1: 1156–1158.

    Google Scholar 

  98. Kleeman, C. R., D. A. Adams, and M. H. Maxwell. 1961. An evaluation of maximal water diuresis in chronic renal disease. 1. Normal solute intake. J. Lab. Clin. Med. 58: 169–184.

    PubMed  CAS  Google Scholar 

  99. Gonick, H. C., G. Goldberg, M. E. Rubini, and L. B. Guze. 1965. Functional abnormalities in experimental pyelonephritis. 1. Studies of concentrating ability. Nephron 2: 193–206.

    PubMed  CAS  Google Scholar 

  100. Gilbert, R. M., H. Weber, L. Turchin, L. G. Fine, J. J. Bourgoignie, and N. S. Bricker. 1976. A study of the intrarenal recycling of urea in the rat with chronic experimental pyelonephritis. J.Clin. Invest. 58: 1348–1357.

    PubMed  CAS  Google Scholar 

  101. Perillie, P. E., and F. H. Epstein. 1963. Sickling phenomenon produced by hypertonic solutions: A possible explanation for the hyposthenuria of sicklemia. J. Clin. Invest. 42: 570–580.

    PubMed  CAS  Google Scholar 

  102. van Eps, L. W. S., C. Pinedo-Veels, C. H. deVries, and J. de Koning. 1970. Nature of concentrating defect in sickle-cell nephropathy. Lancet 1: 450–452.

    Google Scholar 

  103. Bricker, N. S., E. I. Shwayri, J. B. Reardan, D. Kellog, J. P. Merrill, and J. H. Holmes. 1957. An abnormality in renal function resulting from urinary tract obstruction. Am. J. Med. 23: 554–564.

    PubMed  CAS  Google Scholar 

  104. Manitius, A., H. Levitin, D. Beck, and F. H. Epstein. 1960. On the mechanisms of impairment of renal concentrating ability in potassium deficiency. J. Clin. Invest. 39: 684–692.

    PubMed  CAS  Google Scholar 

  105. Galvez, O. G., B. W. Roberts, W. H. Bay, and T. F. Ferris. 1976. Studies on the mechanism of polyuria with hypokalemia. Kidney Int. 10: 583a.

    Google Scholar 

  106. Torikai, S., and K. Kurokawa. 1983. Effects of PGE2 on vasopressin-dependent cell cAMP in isolated single segments. Am. J. Physiol. 245: F58–F66.

    PubMed  CAS  Google Scholar 

  107. Berl, T., S. L. Linas, G. A. Aisenbery, and R. J. Anderson. 1977. On the mechanism of polyuria in potassium depletion. J. Clin. Invest. 60: 620–625.

    PubMed  CAS  Google Scholar 

  108. Manitius, A., H. Levitin, D. Beck, and F. H. Epstein. 1960. On the mechanism of impariment of renal concentrating ability in hypercalcemia. J. Clin. Invest. 39: 693–697.

    PubMed  CAS  Google Scholar 

  109. Campbell, B. J., G. Woodward, and V. Broberg. 1972. Calcium- mediated interactions between the antidiuretic hormone and renal plasma membranes. J. Biol. Chem. 247: 6167–6175.

    PubMed  CAS  Google Scholar 

  110. Arieff, A. I., R. Guisado, and V. C. Lazarowitz. 1977. The pathophysiology of hyperosmolar states. In: Disturbances in Body Fluid Osmolality. T. E. Andreoli, J. J. Grantham, and F. C. Rector, eds. American Physiological Society, Washington, D.C. pp. 227–250.

    Google Scholar 

  111. Dodge, P. R., J. F. Sotos, I. Gamstorp, D. DeVivo, M. Levy, and T. Rabe. 1962. Neurophysiologic disturbances in hypertonic dehydration. Trans. Am. Neurol. Assoc. 87: 33–36.

    PubMed  CAS  Google Scholar 

  112. Sotos, J. F., P. R. Dodge, P. Meara, and N. B. Talbot. 1960. Studies in experimental hypertonicity: Pathogenesis of the clinical syndrome, biochemical abnormalities and cause of death. Pediatrics 26: 925–937.

    Google Scholar 

  113. Holliday, M. A., M. N. Kalayci, and J. Harrah. 1968. Factors that limit brain volume changes in response to acute and sustained hyper- and hyponatremia. J. Clin. Invest. 47: 1916–1928.

    PubMed  CAS  Google Scholar 

  114. Arieff, A. I., and R. Guisado. 1976. Effects on the central nervous systems of hypernatremic and hyponatremic states. Kidney Int. 10: 104–116.

    PubMed  CAS  Google Scholar 

  115. Chan, P. H., and R. A. Fishman. 1979. Elevation of rat brain amino acids and idiogenic osmoles induced by hyperosmolality. Brain Res. 161: 293–301.

    PubMed  CAS  Google Scholar 

  116. Cala, P. M. 1983. Volume regulation by red blood cells: Mechanism of ion transport. Mol. Physiol. 4: 33–52.

    CAS  Google Scholar 

  117. Gottschalk, C. W., and M. Mylle. 1959. Micropuncture study of the mammalian urinary concentrating mechanism: Evidence for the countercurrent hypothesis. Am. J. Physiol. 196: 927–936.

    PubMed  CAS  Google Scholar 

  118. Langgård, H., and W. O. Smith. 1962. Self-induced water intoxication without predisposing illness. N. Engl. J. Med. 266: 378–381.

    PubMed  Google Scholar 

  119. Rendell, M., D. McGrane, and M. Cuesta. 1978. Fatal compulsive water drinking. J. Am. Med. Assoc. 240: 2557–2559.

    CAS  Google Scholar 

  120. Hariprasad, M. K., R. P. Eisinger, I. M. Nadler, C. S. Padmanabhan, and B. D. Nidus. 1980. Hyponatremia in psychogenic polydipsia. Arch. Intern. Med. 140: 1639–1642.

    PubMed  CAS  Google Scholar 

  121. Hilden, T., and T. L. Svendsen. 1975. Electrolyte disturbances in beer drinkers: A specific “hypo-osmolality syndrome.” Lancet 2: 245–246.

    PubMed  CAS  Google Scholar 

  122. McCance, R. A. 1936. Experimental sodium chloride deficiency in man. Proc. R. Soc. London Ser. B 119: 245–268.

    CAS  Google Scholar 

  123. Harrington, A. R. 1972. Hyponatremia due to sodium depletion in the absence of vasopressin. Am. J. Physiol. 222: 768–774.

    PubMed  CAS  Google Scholar 

  124. Berliner, R. W., and D. G. Davidson. 1957. Production of hypertonic urine in the absence of pituitary antidiuretic hormone. J. Clin. Invest. 36: 1416–1427.

    PubMed  CAS  Google Scholar 

  125. Edwards, B. R., M. Gallai, and H. Valtin. 1980. Concentration of urine in the absence of ADH with minimal or no decrease in GFR. Am. J. Physiol. 239: F84–F91.

    PubMed  CAS  Google Scholar 

  126. Fanestil, D. D. 1977. Hyposmolar syndromes. In: Disturbances in Body Fluid Osmolality. American Physiological Society, Washington, D.C. pp. 267–284.

    Google Scholar 

  127. Szatalowicz, V. L., P. E. Arnold, C. Chaimovitz, D. Bichet, T. Bert, and R. W. Schrier. 1981. Radioimmunoassay of plasma arginine vasopressin in hyponatremic patients with congestive heart failure. N. Engl. J. Med. 305: 263–266.

    PubMed  CAS  Google Scholar 

  128. Weitzman, R. E., and C. R. Kleeman. 1980. The clinical physiology of water metabolism. III. The water depletion (hyperosmolar) and water excess (hyposmolar) syndromes. West. J. Med. 132: 16–38.

    PubMed  CAS  Google Scholar 

  129. Burg, M. B., and N. Green. 1973. Function of the thick ascending limb of Henle’s loop. Am. J. Physiol. 224: 659–668.

    PubMed  CAS  Google Scholar 

  130. Seldin, D. W., G. Eknoyan, W. N. Suki, and F. C. Rector. 1966. Localization of diuretic action from the pattern of water and electrolyte excretion. Ann. N.Y. Acad. Sci. 139: 328–343.

    PubMed  CAS  Google Scholar 

  131. Fichman, M. P., H. Vorherr, C. R. Kleeman, and N. Telfer. 1971. Diuretic-induced hyponatremia. Ann. Intern. Med. 75: 853–863.

    PubMed  CAS  Google Scholar 

  132. Schrier, R. W., and S. L. Linas. 1980. Mechanisms of the defect in water excretion in adrenal insufficiency. Miner. Electrolyte Metab. 4: 1–7.

    CAS  Google Scholar 

  133. Chinitz, A., and F. L. Turner. 1965. The association of primary hypothyroidism and inappropriate secretion of the antidiuretic hormone. Arch. Intern. Med. 116: 871–874.

    PubMed  CAS  Google Scholar 

  134. DeRubertis, F. R., M. F. Michelis, M. E. Bloom, D. H. Mintz, J. B. Field, and B. B. Davis. 1971. Impaired water excretion in myxedema. Am. J. Med. 51: 41–53.

    PubMed  Google Scholar 

  135. DiScala, V. A., and M. J. Kinney. 1971. Effects of myxedema on the renal diluting and concentrating mechanism. Am. J. Med. 50: 325–335.

    PubMed  CAS  Google Scholar 

  136. Schwartz, W. B., W. Bennett, S. Curelop, and F. C. Bartter. 1957. A syndrome of renal sodium loss and hyponatremia probably resulting from inappropriate secretion of antidiuretic hormone. Am. J. Med. 23: 529–542.

    PubMed  CAS  Google Scholar 

  137. Zerbe, R. L., Stropes, and G. Robertson. 1980. Vasopressin function in the syndrome of inappropriate diuresis. Annu. Rev. Med. 31: 315–327.

    PubMed  CAS  Google Scholar 

  138. Leaf, A., F. C. Bartter, R. F. Santos, and O. Wrong. 1953. Evidence in man that urinary electrolyte loss induced by polydipsia is a function of water retention. J. Clin. Invest. 32: 868–871.

    PubMed  CAS  Google Scholar 

  139. Pokracki, F. J., A. G. Robinson, and S. M. Seif. 1981. Chlorpropamide effect: Measurement of neurophysin and vasopressin in humans and rats. Metabolism 30: 72–78.

    PubMed  CAS  Google Scholar 

  140. Kusano,E.,J.L.Braun-Werness,D. J. Vick, M.J. Keller, and T. P. Dousa. 1983. Chlorpropamide action on renal concentrating mechanism in rats with hypothalamic diabetes insipidus. J. Clin. Invest. 72: 1298–1313.

    PubMed  CAS  Google Scholar 

  141. Culpepper, R. M., and T. E. Andreoli. 1983. Interactions among prostaglandin E2, antidiuretic hormone, and cyclic adenosine monophosphate in modulating CI absorption in single mouse medullary thick ascending limbs of Henle. J. Clin. Invest. 71: 1588–1601.

    PubMed  CAS  Google Scholar 

  142. Grantham, J. J., and J. Orloff. 1968. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′-5′-monophosphate and theophylline. J. Clin. Invest. 47: 1154–1161.

    PubMed  CAS  Google Scholar 

  143. Clive, D. M., and J. S. Stoff. 1984. Renal syndromes associated with nonsteroidal antiinflammatory drugs. N. Engl. J. Med. 310: 563–572.

    PubMed  CAS  Google Scholar 

  144. Blum, M., and A. Aviram. 1980. Ibuprofen induced hyponatremia. Rheumatol. Rehabil. 19: 258–259.

    PubMed  CAS  Google Scholar 

  145. Arieff, A. I., F. Llach, and S. G. Massry. 1976. Neurological manifestations and morbidity of hyponatremia: Correlation with brain water and electrolytes. Medicine (Baltimore) 55: 121–129.

    CAS  Google Scholar 

  146. Pollock, A. S., and A. I. Arieff. 1980. Abnormalities of cell volume regulation and the functional consequences. Am. J. Physiol. 239: F195–F205.

    PubMed  CAS  Google Scholar 

  147. Grantham, J., and M. Linshaw. 1984. The metabolic response to hyponatremia. Circ. Res. in press.

    Google Scholar 

  148. Kleinschmidt-DeMasters, B. K., and M. D. Norenberg. 1981. Rapid correction of hyponatremia causes demyelination: Relation to central pontine myelinolysis. Science 211: 1068–1070.

    PubMed  CAS  Google Scholar 

  149. Norenberg, M. D., and K. O. Leslie. 1982. Correction of hyponatremia and central pontine myelinolysis. Am. J. Med. 73: 882.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Culpepper, R.M., Hebert, S.C., Andreoli, T.E. (1986). The Hypertonic and Hypotonic Syndromes. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2097-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2097-5_52

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9242-5

  • Online ISBN: 978-1-4613-2097-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics