The Cellular Basis of Ischemic Acute Renal Failure

  • Alexander Leaf
  • Anthony D. C. Macknight
  • Joseph Y. Cheung
  • Joseph V. Bonventre


It has long been recognized that obstruction of the blood supply to the normothermic kidney for periods of greater than 1 hr will almost invariably result in tubular necrosis and the clinical picture of acute renal failure. As the duration of arterial obstruction increases from 30 to 60 min, the proportion of kidneys that suffer damage increases, as does the extensiveness of damage. In the past few years there has been heightened interest in the nature of the lesion(s) caused by ischemia which results in irreversible cell injury even if blood flow to the kidney is restored. Identifying the critical change or changes that doom the cell to certain death will not only add to our knowledge of cellular physiology but possibly provide the basis for therapeutic interventions aimed at preventing or delaying the onset of the irreversible change(s). It is this latter hope that has done much to stimulate research.


Acute Renal Failure Ischemic Injury Adenine Nucleotide Ischemic Insult Ehrlich Ascites Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonventre, J. V. 1984. Cell response to ischemia. In: Acute Renal Failure: Correlations between Morphology and Function. K. Solez and A. Whetton, eds. Dekker, New York. pp. 195–217.Google Scholar
  2. 2.
    Chaudry, I. H., M. G. Clemens, and A. E. Baue. 1981. Alterations in cell function with ischemia and shock and their correction. Arch. Surg. 116: 1309–1317.PubMedGoogle Scholar
  3. 3.
    Gaudio, K. M., M. R. Taylor, I. H. Chaudry, M. Kashgarian, and N. J. Siegel. 1982. Accelerated recovery of single nephron function by the post–ischemic infusion of ATP-MgCl2. Kidney Int. 22: 13–20.PubMedGoogle Scholar
  4. 4.
    Siegel, N. J., W. B. Glazier, I. H. Chaudry, K. M. Gaudio, B. Lytton, A. E. Baue, and M. Kashgarian. 1980. Enhanced recovery from acute renal failure by the postischemic infusion of adenine nucleotides and magnesium chloride in rats. Kidney Int. 17: 338–349.PubMedGoogle Scholar
  5. 5.
    Bore, P. J., P. Sehr, L. Chan, K. Thulborn, B. D. Ross, andG. K. Radda. 1981. The importance of pH in renal preservation. Transplant. Proc. 13: 707–708.PubMedGoogle Scholar
  6. 6.
    Patak, R. V., S. Z. Fadem, M. D. Lifschitz, and J. H. Stein. 1979. Study of factors which modify the development of norepinephrineinduced acute renal failure in the dog. Kidney Int. 15: 227–237.PubMedGoogle Scholar
  7. 7.
    Dahlager, J. I., and T. Bilde. 1979. Renographic evaluation of kidney preservation with chlorpromazine. J. Nucl. Med. 20: 18–25.PubMedGoogle Scholar
  8. 8.
    Solez, K., T. Ideura, C. B. Silvia, B. Hamilton, and H. Saito. 1980. Clonidine after renal ischemia to lessen acute renal failure and microvascular damage. Kidney Int. 18: 309–322.PubMedGoogle Scholar
  9. 9.
    DeTorrente, A., P. D. Miller, R. E. Cronin, P. E. Paulsen, A. L. Erickson, and R. W. Schrier. 1978. Effects of furosemide and acetylcholine in norepinephrine-induced acute renal failure. Am. J. Physiol. 235: F131–F136.Google Scholar
  10. 10.
    Hanley, M. J., and K. Davidson. 1981. Prior mannitol and furosemide infusion in a model of ischemic acute renal failure. Am. J. Physiol. 241. F556–F560.PubMedGoogle Scholar
  11. 11.
    Abel, R. M., C. H. Beck, W. M. Abbott, J. A. Ryan, Jr., G. O. Barnett, and J. E. Fisher. 1973. Improved survival from acute renal failure after treatment with intravenous essential l-amino acids and glucose. N. Engl. J. Med. 288: 695–699.PubMedGoogle Scholar
  12. 12.
    Fernando, A. R., D. M. G. Armstrong, J. R. Briffiths, W. F. Hendry, E. P. N. O’Donaghue, J. P. Ward, L. E. Watkinson, and J. E. A. Wickham. 1976. Enhanced preservation of the ischemic kidney with inosine. Lancet 1: 555–557.PubMedGoogle Scholar
  13. 13.
    Marberger, M., R. Gunther, P. Aiken, W. Rumpf, and M. Ranc. 1980. Inosine: Alternative of adjunct to regional hypothermia in the prevention of postischemic renal failure. Eur. Urol. 6: 95–102.PubMedGoogle Scholar
  14. 14.
    Boyer, D., R. D. Green, G. M. Collins, andN. A. Halasz. 1979. Pharmacologic protection of rabbit kidneys from normothermic ischemia. Curr. Surg. 36: 365–367.PubMedGoogle Scholar
  15. 15.
    Burke, T. J., R. E. Cronin, K. L. Bunchin, L. Peterson, andR. W. Schrier. 1980. Ischemia and tubule obstruction during acute renal failure in dogs: Mannitol in protection. Am. J. Physiol. 238. F305–F314.PubMedGoogle Scholar
  16. 16.
    Cronin, R. E., A. DeTorrente, P. D. Miller, R. E. Bulger, T. J. Burke, and R. W. Schrier. 1978. Pathogenic mechanisms in early norepinephrine-induced acute renal failure: Functional and histological correlates of protection. Kidney Int. 14: 115–125.PubMedGoogle Scholar
  17. 17.
    Flores, J., D. R. DiBona, C. H. Beck, and A. Leaf. 1972. The role of cell swelling in ischemic renal damage and the protective effect of hypertonic solute. J. Clin. Invest. 51: 118–126.PubMedGoogle Scholar
  18. 18.
    Toledo-Pereyra, L. H., V. R. Ramakrishnan, and M. Zammit. 1979. Study of the protective effect of methylprednisolone, furosemide, and mannitol on ischemically damaged kidneys. Eur. Surg. Res. 11: 179–184.PubMedGoogle Scholar
  19. 19.
    Frega, N. S., D. R. DiBona, and A. Leaf. 1979. The protection of renal function from ischemic injury in the rat. Pfluegers Arch. 381: 159–164.Google Scholar
  20. 20.
    Solez, K., R. J. D’Agostini, L. Stawowy, M. T. Freedman, W. W. Scott, Jr., S. S. Siegelman, and R. H. Heptinstall. 1977. Beneficial effect of propranolol in a histologically appropriate model of post-ischemic acute renal failure. Am. J. Pathol. 88: 163–192.PubMedGoogle Scholar
  21. 21.
    Mauk, R. H., R. V. Patak, S. Z. Fadem, M. D. Lifschitz, and J. H. Stein. 1977. Effect of prostaglandin E administration in a nephrotoxic and a vasoconstrictor model of acute renal failure. Kidney Int. 12: 122–130.Google Scholar
  22. 22.
    Huland, H., H. J. Augustin, and T. Engels. 1981. The influence of angiotensin II antagonist postischemic acute renal failure. Urol. Int. 36: 15–22.PubMedGoogle Scholar
  23. 23.
    Bonventre, J. V., C. D. Malis, J. Y. Cheung, and A. Leaf. 1982. Mechanisms of protection of verapamil in norepinephrine-induced acute renal failure. Clin. Res. 30: 538a.Google Scholar
  24. 24.
    Burke, T. J., P. E. Arnold, and R. W. Schrier. 1981. A role for intracellular calcium in the pathogenesis of norepinephrine (NE)-induced acute renal failure (ARF). Clin. Res. 29: 457a.Google Scholar
  25. 25.
    Mudge, G. H., and G. G. Duggin. 1980. The symposium on drug effect on the kidney. Kidney Int. 18: 539–711.Google Scholar
  26. 26.
    Schrodinger, E. 1956. What Is Life? Cambridge University Press, London, 1944; Doubleday, New York.Google Scholar
  27. 27.
    Ames, A., III, and F. B. Nesbett. 1983. Pathophysiology of ischemic cell death. I. Time of onset of irreversible damage; importance of different components of the ischemic insult. Stroke 14: 219–226.PubMedGoogle Scholar
  28. 28.
    Coleman, S. E., J. Duggan, and R. L. Hackett. 1974. Freeze-fracture studies of changes in nuclei isolated from ischemic rat kidney. Tissue Cell 6: 521–534.PubMedGoogle Scholar
  29. 29.
    Cuppage, F. E., D. R. Neagoy, and A. Tate. 1967. Repair of the nephron following temporary occlusion of the renal pedicle. Lab. Invest. 17: 660–674.PubMedGoogle Scholar
  30. 30.
    Donahoe, J. F., M. A. Venkatachalam, D. B. Bernard, and N. G. Levinsky. 1978. Tubular leakage arid obstruction after renal ischemia: Structure-function correlations. Kidney Int. 13: 208–222.Google Scholar
  31. 31.
    Ginn, F. L., J. D. Shelbourne, and B. F. Trump. 1968. Disorders of cell volume regulations. I. Effects of inhibition of plasma membrane adenosine triphosphatase with ouabain. Am. J. Pathol. 53: 1041–1071.PubMedGoogle Scholar
  32. 32.
    Glaumann, B., H. Glaumann, I. K. Berezesky, andB. F. Trump. 1977. Studies on cellular recovery from injury. II. Ultrastructural studies on the recovery of the pars convoluta of the proximal tubule of the rat kidney from temporary ischemia. Virchows Arch. B 24: 1–18.Google Scholar
  33. 33.
    Kreisberg, J. I., R. E. Bulger, B. F. Trump, and R. B. Nagle. 1976. Effect of transient hypotension on the structure function of rat kidney. Virchows Arch. B 22: 121–133.Google Scholar
  34. 34.
    Mergner, W. J., S. H. Chang, and B. F. Trump. 1976. Studies on the pathogenesis of ischemic cell injury. V. Morphologic changes of the pars con voluta (P1 and P2) of the proximal tubule of rat kidney made ischemic in vitro. Virchows Arch. B 21: 211–228.Google Scholar
  35. 35.
    Reimer, K. A., C. E. Ganote, and R. B. Jennings. 1972. Alterations in renal cortex following ischemic injury. III. Ultrastructure of proximal tubules after ischemia or autolysis. Lab. Invest. 26: 347–363.PubMedGoogle Scholar
  36. 36.
    Trump, B. F., J. M. Strum, andR. E. Bulger. 1974. Studies on the pathogenesis of ischemic cell injury. I. Relation between ion and water shifts and cell ultrastructure in rat kidney slices during swelling at 0-4°C. Virchows Arch. B 16: 1–34.Google Scholar
  37. 37.
    DiBona, D. R., and W. J. Powell. 1980. Quantitative correlation between cell swelling and necrosis in myocardial ischemia in dogs. Circ. Res. 47: 653–665.PubMedGoogle Scholar
  38. 38.
    Lemasters, J. J., S. Ji, and R. G. Thurman. 1981. Centrilobular injury following low–flow hypoxia in isolated, perfused rat liver. Science 213: 661.PubMedGoogle Scholar
  39. 39.
    Laiho, K. A., J. D. Shelbourne, andB. F. Trump. 1971. Observations on cell volume, ultrastructure, mitochondrial conformation and vital dye uptake in Ehrlich ascites tumor cells. Am. J. Pathol. 65: 203–229.PubMedGoogle Scholar
  40. 40.
    Kim, S. V. 1975. Brain hypoxia studied in mouse central nervous system cultures. I. Sequential cellular changes. Lab. Invest. 33: 658–669.PubMedGoogle Scholar
  41. 41.
    Trump, B. F., K. A. Laiho, W. J. Mergner, and A. V. Arstila. 1974. Studies on the subcellular pathophysiology of acute lethal cell injury. Beitr. Pathol. 152: 243–271.PubMedGoogle Scholar
  42. 42.
    Trump, B. F., I. K. Berezesky, Y. Collan, M. W. Kahng, and W. J. Mergner. 1976. Recent studies on the pathophysiology of ischemic cell injury. Beitr. Pathol. Bd. 158: 363–388.Google Scholar
  43. 43.
    Trump, B. F., W. J. Mergner, M. W. Kahng, and A. J. Saladino. 1976. Studies on the subcellular pathophysiology of ischemia. Circulation 53 (Suppl. 1): I17–I26.PubMedGoogle Scholar
  44. 44.
    Frega, N. S., D. R. DiBona, B. Guertler, and A. Leaf. 1976. Ischemic renal injury. Kidney Int. 10: S17–S25.Google Scholar
  45. 45.
    Leaf, A. 1956. On the mechanism of fluid exchange of tissues in vitro. Biochem. J. 62: 241–248.PubMedGoogle Scholar
  46. 46.
    Leaf, A. 1959. Maintenance of concentration gradients and regulation of cell volume. Ann. N.Y. Acad. Sci. 72: 396–404.PubMedGoogle Scholar
  47. 47.
    Jewell, S. A., G. Bellomo, H. Thor, S. Orrenius, and M. T. Smith. 1982. Bleb formation in hepatocytes during drug metabolism is caused by disturbances in thiol and calcium ion homeostasis. Science 217: 1257–1258.PubMedGoogle Scholar
  48. 48.
    Dedman, J. R., B. R. Brinkley, and A. R. Means. 1979. Regulation of microfilaments and microtubules by calcium and cyclic AMP. Adv. Cyclic Nucleotide Res. 11: 131–174.PubMedGoogle Scholar
  49. 49.
    Frega, N. S., D. R. DiBona, and A. Leaf. 1980. Enhancement of recovery from experimental ischemic acute renal failure. In: Renal Pathophysiology—Recent Advances. A. Leaf, G. Giebisch, L. Bolis, and S. Gorini, eds. Raven Press, New York. pp. 203–212.Google Scholar
  50. 50.
    Zollinger, H. E. 1948. Cytologic studies with the phase microscope. I. The formation of ‘blisters’ on cell in suspension (potocytosis) with observations on the nature of the cellular membrane. Am. J. Pathol. 24: 545–567.PubMedGoogle Scholar
  51. 51.
    Kreisberg, J. I., J. W. Mills, J. A. Jarrell, C. A. Rabito, and A. Leaf. 1980. Protection of cultured renal tubular epithelial cells from anoxic cell swelling and cell death. Proc. Natl. Acad. Sci. USA 77: 5445–5447.PubMedGoogle Scholar
  52. 52.
    Horster, M. 1979. Primary culture of mammalian nephron epithelia: Requirements for cell outgrowth and proliferation from defined explanted nephron segments. Pfluegers Arch. 383: 209–215.Google Scholar
  53. 53.
    Venkatachalam, M. A., D. B. Bernard, J. F. Donahoe, andN. G. Levinsky. 1978. Ischemic damage and repair in the rat proximal tubules: Differences among the S1, S2 and S3 segments. Kidney Int. 14: 31–49.PubMedGoogle Scholar
  54. 54.
    Glaumann, B., H. Glaumann, I. K. Berezesky, and B. F. Trump. 1975. Studies on the pathogenesis of ischemic cell injury. II. Morphological changes of the pars convoluta (P1 and P2) of the proximal tubule of the rat kidney made ischemic in vivo. Virchows Arch. B 19: 281–302.Google Scholar
  55. 55.
    Glaumann, B., and B. F. Trump. 1975. Studies on the pathogenesis of ischemic cell injury. III. Morphological changes of the proximal pars recta tubules of the rat kidney made ischemic in vivo. Virchows Arch. B 19: 303–323.Google Scholar
  56. 56.
    Trump, B. F., andK. A. Laiho. 1975. Studies of cellular recovery from injury. I. Recovery from anoxia in Ehrlich ascites tumor cells. Lab. Invest. 33: 706–711.PubMedGoogle Scholar
  57. 57.
    Gravela, E., G. Poli, E. Albano, and M. V. Dianzanni. 1977. Studies on fatty liver with isolated hepatocytes. Exp. Mol. Pathol. 27: 339–352.PubMedGoogle Scholar
  58. 58.
    Hackenbrock, C. R. 1966. II. Electron transport-linked ultrastructural mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J. Cell Biol. 30: 269–297.PubMedGoogle Scholar
  59. 59.
    Hackenbrock, C. R. 1968. II. Electron transport-linked ultrastructural transformations in mitochondria. J. Cell Biol. 37: 345–369.PubMedGoogle Scholar
  60. 60.
    Hackenbrock, C. R., T. G. Rehn, E. C. Weinbach, and J. J. Lemasters. 1971. Oxidative phosphorylation and ultrastructural transformation in mitochondria in the intact ascites tumor cell. J. Cell Biol. 51: 123–137.PubMedGoogle Scholar
  61. 61.
    Lehninger, A. L. 1975. Biochemistry, 2nd ed. Worth Publishing, New York.Google Scholar
  62. 62.
    Somlyo, A. P., A. V. Somlyo, and H. Shuman. 1981. Electron probe analysis of vascular smooth muscle: Composition of mito–chondria, nuclei and cytoplasm. J. Cell Biol. 81: 316–335.Google Scholar
  63. 63.
    Sutfin, L. V., M. E. Holtrop, and R. E. Ogilvie. 1971. Microanalysis of individual mitochondrial granules with diameters less than 1000 angstroms. Science 174: 947–949.PubMedGoogle Scholar
  64. 64.
    Boine, I., E. E. Smith, and F. E. Hunter. 1970. The role of fatty acids in mitochondrial changes during liver ischemia. Arch. Biochem. Biophys. 139: 425–443.Google Scholar
  65. 65.
    Schrek, R. 1936. A method for counting the viable cells in normal and in malignant cell suspension. Am. J. Cancer 28: 389–392.Google Scholar
  66. 66.
    Hanks, J. H., and J. H. Wallace. 1958. Determination of cell viability. Proc. Soc. Exp. Biol. Med. 98: 188–192.PubMedGoogle Scholar
  67. 67.
    Philips, H. J., and J. E. Terryberry. 1957. Counting actively metabolizing tissue cultured cells. Exp. Cell Res. 13: 341–347.Google Scholar
  68. 68.
    Kaltenbach, J. P., M. H. Kaltenbach, and W. B. Lyons. 1958. Nigrosin as a dye for differentiating live and dead ascites cells. Exp. Cell Res. 15: 112–117.PubMedGoogle Scholar
  69. 69.
    Holmberg, B. 1961. On the permeability of lissamine green and other dyes in the course of cell injury and cell death. Exp. Cell Res. 22: 406–414.PubMedGoogle Scholar
  70. 70.
    Castellot, J. J., Jr., M. R. Miller, and A. B. Pardee. 1978. Animal cells reversibly permeable to small molecules. Proc. Natl. Acad. Sci. USA 75: 351–355.PubMedGoogle Scholar
  71. 71.
    Baur, H., S. Kasperek, andE. Pfaff. 1975. Criteria of viability of isolated liver cells. Hoppe-Seylers Z. Physiol. Chem. 356: 827–838.PubMedGoogle Scholar
  72. 72.
    Rotman, B., and B. W. Papermaster. 1966. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic ester. Proc. Natl. Acad. Sci. USA 55: 134–141.PubMedGoogle Scholar
  73. 73.
    Jarnagin, J. L., and D. W. Luchsinger. 1980. The use of fluorescein diacetate and ethidium bromide as a stain for evaluating viability of mycobacteria. Stain Technol. 55: 253–258.PubMedGoogle Scholar
  74. 74.
    Schanne, F. A. X., A. B. Kane, E. E. Young, and J. C. Farber. 1977. Calcium dependence of toxic cell death: A final common pathway. Science 206: 700–702.Google Scholar
  75. 75.
    Acosta, D., M. Pucketts, and R. McMillin. 1978. Ischemic myocardial injury in cultured heart cells: Leakage of cytoplasmic enzymes from injured cell. In Vitro 14: 728–732.PubMedGoogle Scholar
  76. 76.
    Conway, E. J., and H. Geoghegan. 1955. Molecular concentration of kidney cortex slices. J. Physiol. (London) 130: 438–445.Google Scholar
  77. 77.
    Conway, E. J. 1957. Nature and significance of concentration relation of potassium and sodium ions in skeletal muscle. Physiol. Rev. 37: 84–132.PubMedGoogle Scholar
  78. 78.
    Steinbach,.H. B. 1952. Sodium and potassium balance of muscle and nerve. In: Modern Trends in Physiology and Biochemistry: Woods Hole Lectures Dedicated to Memory of Leonor Michaelis. E. S. G. Barron, ed. Academic Press, New York. pp. 173–192.Google Scholar
  79. 79.
    Schatzmann, H.J. 1953. Herzglykoside als Hemmstoffe fur den aktiven kaliumund natrium transport durch die erythrocytenmembran. Helv. Physiol. Pharmacol. Acta 11: 346–354.PubMedGoogle Scholar
  80. 80.
    Pfaff, E., B. Schuler, H. Krell, and H. Hoke. 1980. Viability control and special properties of isolated rat hepatocytes. Arch. Toxicol. 44: 3–21.PubMedGoogle Scholar
  81. 81.
    Dickson, J. A. 1970. The uptake of non-metabolizable amino acids as an index of cell viability in vitro. Exp. Cell Res. 61: 235–245.PubMedGoogle Scholar
  82. 82.
    Edmondson, J. W., and N. U. Bang. 1981. Deleterious effects of calcium deprivation on freshly isolated hepatocytes. Am. J. Physiol. 241: C3–C8.PubMedGoogle Scholar
  83. 83.
    Mapes, J. P., and R. A. Harris. 1975. On the oxidation of succinate by parenchymal cells isolated from rat liver. FEBS Lett. 51: 80–83.PubMedGoogle Scholar
  84. 84.
    Vogt, M. T., and E. Farber. 1968. On the molecular pathology of ischemic cell death: Reversible and irreversible cellular and mitochondrial metabolic alterations. Am. J. Pathol. 53: 1–26.PubMedGoogle Scholar
  85. 85.
    Shelburne, J. D., A. V. Arstila, and B. F. Trump. 1973. Studies on cellular autophagocytosis: The relationship of autophagocytosis to protein synthesis and to energy metabolism in rat liver and flounder kidney tubules in vitro. Am. J. Pathol. 73: 641–670.PubMedGoogle Scholar
  86. 86.
    Verbin, R. S., P. J. Goldblatt, and E. Farber. 1969. The biochemical pathology of inhibition of protein synthesis in vivo. Lab. Invest. 20: 529–536.PubMedGoogle Scholar
  87. 87.
    Laiho, K. V., and B. F. Trump. 1974. The relationship between cell viability and changes in mitochondrial ultrastructure, cellular ATP, ion and water content following injury of Ehrlich ascites tumor cells. Virchows Arch. B 15: 267–277.Google Scholar
  88. 88.
    Jennings, R. B., H. K. Hawkins, J. E. Lowe, M. L. Hill, S. Klotman, and K. A. Reimer. 1978. Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am. J. Pathol. 92: 187–207.PubMedGoogle Scholar
  89. 89.
    Kleihues, P., K. A. Hossmann, A. E. Pegg, K. Kobayashi, and V. Zimmermann. 1975. Resuscitation of the monkey brain after one hour complete ischemia. III. Indication of metabolic recovery. Brain Res. 95: 61–73.PubMedGoogle Scholar
  90. 90.
    Kleihues, P., K. Kobayashi, and K. A. Hossmann. 1974. Purine nucleotide metabolism in the cat brain after one hour of complete ischemia. J. Neurochem. 23: 417–425.PubMedGoogle Scholar
  91. 91.
    Farber, E. 1973. ATP and cell integrity. Fed. Proc. 32: 1534–1539.PubMedGoogle Scholar
  92. 92.
    Van Lancker. 1976. Molecular and Cellular Mechanisms in Disease. Springer-Verlag, Berlin.Google Scholar
  93. 93.
    Kubler, W., and P. G. Spieckerman. 1970. Regulation of glycolysis in the ischemic and the anoxic myocardium. J. Mol. Cell. Cardiol. 1: 351–377.PubMedGoogle Scholar
  94. 94.
    Rovetto, M. J., J. T. Whitmer, and J. R. Neely. 1973. Comparison of the effects of anoxia and whole heart ischemia on carbohydrate utilization in isolated working rat heart. Circ. Res. 32: 699–711.PubMedGoogle Scholar
  95. 95.
    Wollenberger, A., and E. G. Krause. 1968. Metabolic control characteristics of the acutely ischemic myocardium. Am. J. Cardiol. 22: 349–359.PubMedGoogle Scholar
  96. 96.
    Furfine, C. S., and S. F. Velick, 1965. The acylenzyme intermediate and the kinetic mechanism of the glyceraldehyde-3-phosphate dehydrogenase reaction. J. Biol. Chem. 240: 844–855.PubMedGoogle Scholar
  97. 97.
    Trivedi, B., and W. H. Danforth. 1966. Effects of pH on the kinetics of frog muscle phosphofructokinase. J. Biol. Chem. 241: 4110–4114.PubMedGoogle Scholar
  98. 98.
    Wiedemann, M. J., and H. A. Krebs. 1969. The fuel of respiration of rat kidney cortex. Biochem. J. 112: 149–166.Google Scholar
  99. 99.
    Whitmer, J. T., J. A. Idell-Wenger, M. J. Rovetto, and J. R. Neely. 1978. Control of fatty acid metabolism in ischemic and hypoxic hearts. J. Biol. Chem. 253: 4305–4309.PubMedGoogle Scholar
  100. 100.
    Scheuer, J., and N. Brachfeld. 1966. Myocardial uptake and fractional distribution of palmitate-l-C14 by the ischemic dog heart. Metabolism 15: 945–954.PubMedGoogle Scholar
  101. 101.
    Idell-Wenger, J. A., L. W. Grotyohann, and J. R. Neely. 1978. Coenzyme A and carnitine distribution in normal and ischemic hearts. J. Biol. Chem. 253: 4310–4318.PubMedGoogle Scholar
  102. 102.
    Pande, S. V. 1973. Reversal by CoA of palmityl-CoA inhibition of long chain acyl-CoA synthetase activity. Biochim. Biophys. Acta 306: 15–20.PubMedGoogle Scholar
  103. 103.
    DeJong, W. C., and W. C. Hulsmann. 1970. A comparative study of palmityl-CoA synthetase activity in rat liver, heart, and gut mitochondrial and microsomal preparations. Biochim. Biophys. Acta 197: 127–135.Google Scholar
  104. 104.
    Smith, M. W., Y. Collan, M. W. Kahng, andB. F. Trump. 1980. Changes in mitochondrial lipids of rat kidney during ischemia. Biochim. Biophys. Acta 618: 192–201.PubMedGoogle Scholar
  105. 105.
    Farber, J. L., and E. E. Young. 1981. Accelerated phospholipid degradation in anoxic rat hepatocytes. Arch. Biochem. Biophys. 211: 312–320.PubMedGoogle Scholar
  106. 106.
    Bricknell, O. L., and L. H. Opie. 1978. Effects of substrate on tissue metabolic changes in the isolated rat heart during underper-fusion and on release of lactate dehydrogenase and arrhythmias during reperfusion. Circ. Res. 43: 102–114.PubMedGoogle Scholar
  107. 107.
    Chua, B. H., and E. Shrago. 1977. Reversible inhibition of adenine nucleotide translocation by long chain acyl-CoA esters in bovine heart mitochondria and inverted submitochondrial particles. J. Biol. Chem. 252: 6711–6714.PubMedGoogle Scholar
  108. 108.
    Neely, J. R., and D. Feuvray. 1981. Metabolic products and myocardial ischemia. Am. J. Pathol. 102: 282–291.PubMedGoogle Scholar
  109. 109.
    Lamens, J. M. J., and W. C. Hulsmann. 1977. Inhibition of (Na + -K +)-stimulated ATPase of heart by fatty acids. J. Mol. Cell. Cardiol. 9: 343–346.Google Scholar
  110. 110.
    Katz, A. M., P. Nash-Adler, J. Micele, F. Messineo, and C. F. Louis. 1979. Inhibition of Ca influx from the sarcoplasmic reticulum by free fatty acids. Circulation 60 (Suppl. II): 12.Google Scholar
  111. 111.
    Sheetz, M. P., R. G. Paitner, and S. J. Singer. 1976. Biological membranes as bilayer couples. III. Compensatory shape changes induced in membranes. J. Cell Biol. 70: 193–203.PubMedGoogle Scholar
  112. 112.
    Jennings, R. B. 1969. Early phase of myocardial ischemic injury and infarction. Am. J. Cardiol. 24: 753–765.PubMedGoogle Scholar
  113. 113.
    Pressman, B.C., and H. A. Lardy. 1956. Effect of surface active agents on the latent ATPase of mitochondria. Biochim. Biophys. Acta 21: 458–466.PubMedGoogle Scholar
  114. 114.
    Borst, D., J. A. Loos, E. J. Christ, and E. C. Slater. 1962. Uncoupling activity of long-chain fatty acids. Biochim. Biophys. Acta 62: 509–518.PubMedGoogle Scholar
  115. 115.
    Chefurka, W. 1966. Oxidative phosphorylation in in vitro aged mitochondria. I. Factors controlling the loss of the dinitrophenol-stimulated adenosine triphosphatase activity and respiratory control in mouse liver mitochondria. Biochemistry 5: 3887–3903.Google Scholar
  116. 116.
    Kao, R., D. E. Rannels, and H. E. Morgan. 1976. Effects of anoxia and ischemia on protein synthesis in perfused rat hearts. Circ. Res. 38 (Suppl. I): I124–I130.PubMedGoogle Scholar
  117. 117.
    Jefferson, L. S., E. B. Wolpert, K. E. Giger, and H. E. Morgan. 1971. Regulation of protein synthesis in heart muscle. III. Effect of anoxia on protein synthesis. J. Biol. Chem. 246: 2171–2178.PubMedGoogle Scholar
  118. 118.
    Chua, B., R. L. Kao, D. E. Rannels, and H. E. Morgan. 1979. Inhibition of protein degradation by anoxia and ischemia in perfused rat hearts. J. Biol. Chem. 254: 6617–6623.PubMedGoogle Scholar
  119. 119.
    Gerlach, E., B. Deuticke, and R. H. Driesbach. 1963. Zum verhalten von nucleotiden und ihren dephosphorylierten abbauprodukten in der niere bei ischamie und Kurzzeitiger postischamischer Wiederdurchblutung. Pfluegers Arch. 278: 296–315.Google Scholar
  120. 120.
    Garlick, P. B., G. K. Radda, and P. J. Seeley. 1979. Studies of acidosis in the ischemic heart by phosphorus nuclear magnetic resonance. Biochem. J. 184: 547–554.PubMedGoogle Scholar
  121. 121.
    Kahng, M. W., I. K. Berezesky, and B. F. Trump. 1978. Metabolic and ultrastructural response of rat kidney cortex to in vitro ischemia. Exp. Mol. Pathol. 29: 183–198.PubMedGoogle Scholar
  122. 122.
    Katori, M., and R. M. Berne. 1966. Release of adenosine from anoxic hearts: Relationship to coronary flow. Circ. Res. 19: 420–425.PubMedGoogle Scholar
  123. 123.
    Schutz, W., J. Schrader, and E. Gerlach. 1981. Different sites of adenosine formation in the heart. Am. J. Physiol. 240: 4963–4970.Google Scholar
  124. 124.
    Osswald, H., H. J. Schmitz, and R. Kemper. 1977. Tissue content of adenosine, inosine and hypoxanthine in the rat kidney after ischemia and postischemic recirculation. Pfluegers Arch. 371: 45–49.Google Scholar
  125. 125.
    Sakai, K., M. Akima, and H. Nabata. 1979. A possible purinergic mechanism for reactive ischemia in isolated, cross-circulated rat kidney. Jpn. J. Pharmacol. 29: 235–242.Google Scholar
  126. 126.
    Jennings, R. B., K. A. Reimer, M. L. Hill, and S. E. Mayer. 1981. Total ischemia in dog hearts, in vitro. I. Comparison of high energy phosphate production, utilization, and depeletion, and of adenine nucleotide catabolism in total ischemia in vitro vs. severe ischemia in vivo. Circ. Res. 49: 892–900.PubMedGoogle Scholar
  127. 127.
    Reimer, K. A., M. L. Hill, and R. B. Jennings. 1981. Prolonged depletion of ATP and of the adenosine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J. Mol. Cell. Cardiol. 13: 229–239.PubMedGoogle Scholar
  128. 128.
    Reibel, D. K., and M. J. Rovetto. 1979. Myocardial adenosine salvage rates and restoration of ATP content following ischemia. Am. J. Physiol. 237. H247–H252.PubMedGoogle Scholar
  129. 129.
    Williamson, J. R., S. W. Schaffer, C. Ford, and B. Safer. 1976. Contribution of tissue acidosis to ischemic injury in the perfused rat heart. Circ. Res. 53(Suppl. I):i3–il4.Google Scholar
  130. 130.
    Bing, O. H. L., W. W. Brooks, and J. W. Messer. 1973. Heart muscle viability following hypoxia: Protective effect of acidosis. Science 180: 1297–1298.PubMedGoogle Scholar
  131. 131.
    Nayler, W. B., R. Ferrari, P. A. Poole-Wilson, andC. E. Yepez. 1979. A protective effect of a mild acidosis on hypoxic heart muscle. J. Mol. Cell. Cardiol. 11: 1053–1071.PubMedGoogle Scholar
  132. 132.
    Vogel, S., and N. Sperelakis. 1977. Blockade of myocardial slow inward current at low pH. Am. J. Physiol. 233: C99–C103.PubMedGoogle Scholar
  133. 133.
    Altschuld, R. A., J. R. Hostetler, and G. P. Brierley. 1981. Response of isolated rat heart cells to hypoxia re-oxygenation, and acidosis. Circ. Res. 49: 307–316.PubMedGoogle Scholar
  134. 134.
    Sperelakis, N., and J. A. Schneider. 1976. A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell. Am. J. Cardiol. 37: 1079–1085.PubMedGoogle Scholar
  135. 135.
    Penttila, A., and B. F. Trump. 1974. Extracellular acidosis protects Ehrlich tumor cells and rat renal cortex against anoxic injury. Science 185: 272–278.Google Scholar
  136. 136.
    Hinnen, R., H. Miyamoto, and E. Racker. 1979. Ca2 + translocation in Ehrlich ascites tumor cells. J. Membr. Biol. 49: 309–324.PubMedGoogle Scholar
  137. 137.
    Struder, R. K., and A. B. Borle. 1979. Effect ofpH on the calcium metabolism of isolated rat kidney cells. J. Membr. Biol. 48: 325–341.Google Scholar
  138. 138.
    Van der Saag, P. T., A. Feyen, W. Miltenburg-Vonk, and S. W. DeLatt. 1981. Plasma membrane-mediated effects of extracellular pH on the growth of neuroblastoma cells. Exp. Cell Res. 136: 351–358.PubMedGoogle Scholar
  139. 139.
    Osswald, H., H.-J. Schmitz, and R. Kemper. 1977. Tissue content of adenosine, inosine and hypoxanthine in the rat kidney after ischemia and postischemic recirculation. Pfluegers Arch. 371: 45–49.Google Scholar
  140. 140.
    Parce, J. W., C. C. Cunningham, and M. Waite. 1978. Mitochondrial phospholipase A2 activity and mitochondrial aging. Biochemistry 17: 1634–1639.PubMedGoogle Scholar
  141. 141.
    Van Lancker. 1976. Molecular and Cellular Mechanisms in Disease. Springer-Verlag, Berlin.Google Scholar
  142. 142.
    Jennings, R. B., andC. E. Ganote. 1976. Mitochondrial structure and function in acute myocardial ischemic injury. Circ. Res. 38 (Suppl. 1): 180–191.Google Scholar
  143. 143.
    Mittnacht, S., Jr., S. C. Sherman, and J. L. Farber. 1979. Reversal of ischemic mitochondrial dysfunction. J. Biol. Chem. 254: 9871–9878.PubMedGoogle Scholar
  144. 144.
    Mittnacht, S., Jr., and J. L. Farber. 1981. Reversal of ischemic mitochondrial dysfunction. J. Biol. Chem. 256: 3199–3206.Google Scholar
  145. 145.
    Rouslin, W., and R. W. Millard. 1981. Mitochondrial inner membrane enzyme defects in porcine myocardial ischemia. Am. J. Physiol. 240: H308–H313.PubMedGoogle Scholar
  146. 146.
    Dhalla, N. S., P. K. Das, and G. P. Sharma. 1978. Subcellular basis of cardiac contractile failure. J. Mol. Cell. Cardiol. 10: 363–385.PubMedGoogle Scholar
  147. 147.
    Shen, A. C., and R. B. Jennings. 1972. Myocardial calcium and magnesium in acute ischemic injury. Am. J. Pathol. 67:417– 440.Google Scholar
  148. 148.
    Leaf, A. 1970. Regulation of intracellular fluid volume and disease. Am. J. Med. 49: 291–295.PubMedGoogle Scholar
  149. 149.
    Schwartz, A., G. Grupp, R. W. Millard, I. L. Grupp, D. A. Lathrop, M. A. Matlib, P. L. Vaghy, and J. R. Valle. 1981. Calcium-channel blockers: Possible mechanisms of protective effects on the ischemic myocardium. In: New Perspectives on Calcium Antagonists. G. B. Weiss, ed. American Physiological Society, Bethesda. pp. 191–210.Google Scholar
  150. 150.
    Meisner, H., and M. Klingenberg. 1968. Efflux of adenine nucleotides from rat liver mitochondria. J. Biol. Chem. 243: 3631–3639.PubMedGoogle Scholar
  151. 151.
    LaNoue, K. F., J. A. Watts, and C. D. Koch. 1981. Adenine nucleotide transport during cardiac ischemia. Am. J. Physiol. 241: H663–H671.PubMedGoogle Scholar
  152. 152.
    Doleidin, F. H., S. R. Fahrenholtz, A. A. Lamola, and A. M. Trozzolo. 1974. Reactivity of cholesterol and some fatty acids toward singlet oxygen. Photochem. Photobiol. 20: 519–521.Google Scholar
  153. 153.
    Mengel, C. E., and H. E. Kann, Jr. 1966. Effect of in vivo hyperoxia of erythrocytes. III. In vivo peroxidation of erythrocytes lipid. J. Clin. Invest. 45: 1150–1157.PubMedGoogle Scholar
  154. 154.
    Recknagel, R. O., and E. A. Glende, Jr. 1977. Lipid peroxidation: A specific form of cellular injury. Handbook of Physiology, Section 9. Waverly Press/American Physiological Society, Bethesda. pp. 591–601.Google Scholar
  155. 155.
    Tappel, A. L. 1972. Vitamin E and free radical peroxidation of lipids. In: Vitamin E and Its Role in Cellular Metabolism. P. P. Nair and H. J. Kayden, eds. New York Academy of Sciences, New York. pp. 12–28.Google Scholar
  156. 156.
    Deneke, S. M., and B. L. Fanburg. 1980. Normobaric oxygen toxicity of the lung. N. Engl. J. Med. 303: 76–86.PubMedGoogle Scholar
  157. 157.
    Kloner, R. A., C. E. Ganote, D. Whalen, and R. B. Jennings. 1974. Effect of a transient period of ischemia on myocardial cells. II. Fine structure during the first few minutes of reflow. Am. J. Pathol. 74: 399–422.PubMedGoogle Scholar
  158. 158.
    Demopoules, H. B., E. S. Flamm, D. D. Pietronigro, and M. I. Sligman. 1980. The free radical pathology and microcirculation in the major central nervous system disorders. Acta Physiol. Scand. Suppl. 492: 91–119.Google Scholar
  159. 159.
    Baker, P. F., M. P. Blaustein, A. L. Hodgkin, and R. A. Steinhardt. 1969. The influence of calcium on sodium efflux in squid axons. J. Physiol. (London) 200: 431–458.Google Scholar
  160. 160.
    Schatzman, H. J. 1966. ATP-dependent Ca+ + -extrusion from human red cells. Experientia 22: 364–365.Google Scholar
  161. 161.
    Rasmussen, H. 1981. Calcium and cAMP as Synarchic Messengers. Wiley-Interscience, New York.Google Scholar
  162. 162.
    McLean, A. E. M., E. McLean, and J. D. Judah. 1965. Cellular necrosis in the liver induced and modified by drugs. Int. Rev. Exp. Pathol. 4: 127–157.PubMedGoogle Scholar
  163. 163.
    Schanne, F. A. X., A. B. Kane, E. E. Young, and J. C. Farber. 1979. Calcium dependence of toxic cell death: A final common pathway. Science 206: 700–702PubMedGoogle Scholar
  164. 164.
    Campbell, A. K., R. A. Daw, and J. P. Luzio. 1979. Rapid increase in intracellular free Ca2 + induced by antibody plus complement. FEBS Lett. 107: 55–60.PubMedGoogle Scholar
  165. 165.
    Campbell, A. K., and J. P. Luzio. 1981. Intracellular free calcium as a pathogen in cell damage initiated by the immune system. Experientia 37: 1110–1112.PubMedGoogle Scholar
  166. 166.
    Nayler, W. G., P. A. Poole-Wilson, and A. Williams. 1979. Hypoxia and calcium. J. Mol. Cell. Cardiol. 11: 683–706.PubMedGoogle Scholar
  167. 167.
    Haworth, R. A., D. R. Hunter, and H. A. Berkoff. 1980. Na + releases Ca2+ from liver, kidney and lung mitochondria. FEBS Lett. 110: 216–218.PubMedGoogle Scholar
  168. 168.
    Roman, I., P. Gmaj, C. Nowicka, and S. Angielski. 1979. Regulation of Ca2+ efflux from kidney and liver mitochondria by unsaturated fatty acids and Na+ ions. Eur. J. Biochem. 102: 615–623.Google Scholar
  169. 169.
    Chien, K. R., J. Abrams, A. Serroni, J. T. Martin, and J. L. Farber. 1978. Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J. Biol. Chem. 253: 4809–4817.PubMedGoogle Scholar
  170. 170.
    Coleman, R. 1973. Membrane-bound enzymes and membrane ultrastructure. Biochim. Biophys. Acta 300: 1–30.PubMedGoogle Scholar
  171. 171.
    Yin, H. L., andT. P. Stossel. 1979. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium–dependent regulatory protein. Nature (London) 281: 583–586.Google Scholar
  172. 172.
    Dedman, J. R., B. R. Brinkley, and A. R. Means. 1979. Regulation of microfilaments and microtubules by calcium and cyclic AMP. Adv. Cyclic Nucleotide Res. 11: 131–174.PubMedGoogle Scholar
  173. 173.
    Smith, M. W., Y. Collan, M. W. Kahng, and B. F. Trump. 1980. Changes in mitochondrial lipids of rat kidney during ischemia. Biochim. Biophys. Acta 618: 192–201.PubMedGoogle Scholar
  174. 174.
    Quastel, M. R., G. B. Segel, and M. A. Lichtman. 1981. The effect of calcium chelation on lymphocyte monovalent cation permeability, transport, and concentration. J. Cell. Physiol. 107: 165–170.PubMedGoogle Scholar
  175. 175.
    Adelman, W. J., and J. W. Moore. 1961. Action of external divalention reduction on sodium movement in the squid giant axon. J. Gen. Physiol. 45: 93–103.PubMedGoogle Scholar
  176. 176.
    Delamere, N. A., and Paterson, C. A. 1978. The influence of calcium free EGTA solution upon membrane permeability in the crystalline lens of the frog. J. Gen. Physiol. 71: 581–593.PubMedGoogle Scholar
  177. 177.
    Schulz, I., and K. Heil. 1979. Ca2 + –control of electrolyte permeability in plasma membrane vesicles from cat pancreas. J. Membr. Biol. 46: 41–70.PubMedGoogle Scholar
  178. 178.
    Edmondson, J. W., and N. U. Bang. 1981. Deleterious effects of calcium deprivation on freshly isolated hepatocytes. Am. J. Physiol. 241: C3–C8.PubMedGoogle Scholar
  179. 179.
    Gordon, L. M., R. D. Sauerheber, and J. A. Esgate. 1978. Spin label studies on rat liver and heart plasma membranes: Effects on temperature, calcium, and lanthanum on membrane fluidity. J. Supramol. Struct. 9: 299–326.PubMedGoogle Scholar
  180. 180.
    Bourdillon, P. D., and P. A. Poole–Wilson 1982. The effects of verapamil, quiescence and cardioplegia on calcium exchange and mechanical function in ischemia rabbit myocardium. Circ. Res. 50: 360–368.Google Scholar
  181. 181.
    Cheung, J. Y., A. Leaf, and J. V. Bonventre. 1982. Mechanism of protection by verapamil and nifedipine from anoxic injury in working isolated rat cardiac myocytes. Clin. Res. 30: 480a.Google Scholar
  182. 182.
    Williamson, J. R., R. H. Cooper, and J. B. Hoek. 1981. Role of calcium in the hormonal regulation of liver metabolism. Biochim. Biophys. Acta 639: 243–295.PubMedGoogle Scholar
  183. 183.
    Gemba, M., H. Obana, and Y. Matsushima. 1980. Divalent cation transport in kidney slices. III. Inhibitory action of verapamil on magnesium gain. Jpn. J. Pharmacol. 30: 389–391.PubMedGoogle Scholar
  184. 184.
    Matsushima, Y., M. Gemba, and H. Obana. 1979. Calcium transport in kidney slices: Effects of verapamil, diltiazem, and trimetazidine. Jpn. J. Pharmacol. 29: A145.Google Scholar
  185. 185.
    Gordon, E. E., and R. K. Ferris. 1977. Stimulation of renal gluconeogenesis of verapamil and D-600. Biochem. Pharmacol. 26: 1089–1091.PubMedGoogle Scholar
  186. 186.
    Borle, A. B. 1981. Calcium transport by kidney cells. In: Calcium and Phosphate Transport across Biomembranes. F. Bronner and M. Peterlik, eds. Academic Press, New York. pp. 193–198.Google Scholar
  187. 187.
    Willerson, J. T., W. J. Powell, Jr., T. E. Guiney, J. J. Stark, C. A. Sanders, and A. Leaf. 1972. Improvement in myocardial function and coronary blood flow in ischemic myocardium after mannitol. J. Clin, invest. 51: 2989–2998.Google Scholar
  188. 188.
    Powell, W. J., Jr., D. R. DiBona, J. Flores, N. Frega, and A. Leaf. 1976. Effects of hyperosmotic mannitol in reducing ischemic cell swelling minimizing myocardial necrosis. Circulation 53 (Suppl. 1): 145–149.Google Scholar
  189. 189.
    Flores, J., D. R. DiBona, N. Frega, and A. Leaf. 1972. Cell volume regulation and ischemic tissue damage. J. Membr. Biol. 10: 331–343.PubMedGoogle Scholar
  190. 190.
    Blow, A. M. J., G. M. Botham, D. Fisher, A. H. Goodall, C. P. S. Tolcock, and J. A. Lucy. 1978. Water and calcium ions in cell fusion induced by polyethylene glycol. FEBS Lett. 94: 305–310.PubMedGoogle Scholar
  191. 191.
    Tilcock, C. P. S., and D. Fisher. 1979. Interaction of phospholipid membranes with poly(ethylene)glycols. Biochim. Biophys. Acta 577: 53–61.Google Scholar
  192. 192.
    Kuhn, W., and M. Thurkauf. 1958. Isotopentrennung beim Gefrieren von Wasser und Diffusionskonstantrem von D und 180 im Eis. Helv. Chim. Acta 41: 938–971.Google Scholar
  193. 193.
    Mason, J., F. Beck, A. Dorge, R. Rick, and K. Thurau. 1981. Intracellular electrolyte composition following renal ischemia. Kidney Int. 20: 61–70.PubMedGoogle Scholar
  194. 194.
    Chien, K. R., J. Abrams, R. G. Pfau, and J. L. Farber. 1977. Prevention by chlorpromazine of ischemic liver cell death. Am. J. Pathol. 88: 539–558.PubMedGoogle Scholar
  195. 195.
    Chien, K. R., and J. L. Farber. 1977. Microsomal membrane dysfunction in ischemic rat liver cells. Arch. Biochem. Biophys. 180: 191–198.PubMedGoogle Scholar
  196. 196.
    Farber, J. L., J. T. Martin, and K. R. Chien. 1978. Irreversible ischemic cell injury: Prevention by chloropromazine of the aggregation of the intramembranous particles of rat liver plasma membranes. Am. J. Pathol. 92: 713–732.PubMedGoogle Scholar
  197. 197.
    Hearse, D. J. 1977. Reperfusion of the ischemic myocardium. J. Mol. Cell. Cardiol. 9: 605–616.PubMedGoogle Scholar
  198. 198.
    Ganóte, C. E., R. Seabra–Gomes, W. G. Nayler, and R. B. Jennings. 1975. Irreversible myocardial injury in anoxic perfused rat hearts. Am. J. Pathol. 80: 419–450.Google Scholar
  199. 199.
    Grinwald, P. M., and W. G. Nayler. 1981. Calcium entry in the calcium paradox. J. Mol. Cell. Cardiol. 13: 867–880.PubMedGoogle Scholar
  200. 200.
    Chien, K. R., R. G. Pfau, and J. L. Farber. 1979. Ischemic myocardial cell injury: Prevention by chlorpromazine of an accelerated phospholipid degradation and associated membrane dysfunction. Am. J. Pathol. 97: 505–530.PubMedGoogle Scholar
  201. 201.
    Fridovich, I. 1978. Superoxide radicals, superoxide dismutases, and the aerobic lifestyle. Photochem. Photobiol. 28: 787–801.Google Scholar
  202. 202.
    Jennings, R. B., and H. K. Hawkins. 1980. Ultrastructural changes of acute myocardial ischemia. In: Degradative Processes in Heart and Skeletal Muscle. K. Wildenthal, ed. Elsevier/North-Holland, Amsterdam, pp. 295–346.Google Scholar
  203. 203.
    Rossi, C. S., and Lehninger, A. L. 1964. Stoichiometry of respiratory stimulation, accumulation of Ca+ + and phosphate, and oxidative phosphorylation in rat liver mitochondria. J. Biol. Chem. 239: 3971–3980.PubMedGoogle Scholar
  204. 204.
    Vasdex, S. C., G. P. Biro, N. Narbatiz, and K. J. Kako. 1980. Membrane changes induced by early myocardial ischemia in the dog. Can. J. Biochem. 58: 1112–1119.Google Scholar
  205. 205.
    Grankvist, K., S. Marklund, J. Sehlin, and I. B. Taldejal. 1979. Superoxide dismutase catalase and scavengers of hydroxyl radical protect against the toxic action of alloxan on pancreatic islet cells in vitro. Biochem. J. 182: 17–25.PubMedGoogle Scholar
  206. 206.
    Haglund, U., and O. Lundgren. 1978. Intestinal ischemia and shock factors. Fed. Proc. 37: 2729–2733.PubMedGoogle Scholar
  207. 207.
    Granger, D. N., G. Ritili, and J. M. McCord. 1981. Superoxide radicals in feline intestinal ischemia. Gastroenterology 81: 22–29.PubMedGoogle Scholar
  208. 208.
    Bailie, M. B., S. R. Jolly, and B. R. Luckhesi. 1982. Reduction of myocardial ischemic injury by superoxide dismutase plus catalase. Fed. Proc. 41: 1736.Google Scholar
  209. 209.
    Shlafer, M., P. Kane, U. Wiggins, and M. Kirsh. 1982. Cytotoxic oxygen metabolites in pathogenesis of ischemic cardiac damage: Oxygen radical-metabolizing enzymes improve hypothermic cardioplegia. Fed. Proc. 41: 1765.Google Scholar
  210. 210.
    Roy, R. S., and J. M. McCord. 1982. Ischemia-induced conversion of xanthine dehydrogenase to xanthine oxidase. Fed. Proc. 41: 767.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Alexander Leaf
    • 1
  • Anthony D. C. Macknight
    • 2
  • Joseph Y. Cheung
    • 1
  • Joseph V. Bonventre
    • 1
  1. 1.Department of MedicineHarvard Medical School and Massachusetts General HospitalBostonUSA
  2. 2.Department of PhysiologyUniversity of Otago Medical SchoolDunedinNew Zealand

Personalised recommendations