Skip to main content

Transport Functions of the Distal Convoluted Tubule

  • Chapter
Physiology of Membrane Disorders

Abstract

The distal convoluted tubule (DCT) has traditionally been described as the nephron segment extending from the macula densa to the first confluence with another DCT to form a collecting tubule. Virtually all data on DCT function derive from in vivo studies in the rat using micropuncture or microperfusion techniques. Rat DCT are 2.4–2.5 mm in length(1,2) They can be identified on the kidney surface with light microscopy by their contrast to proximal tubules: the lumina are narrower and the contour more irregular than in proximal tubules. Distal tubular epithelium lacks a brush border and therefore fails to exhibit the light reflex seen in proximal tubules.(3) Eighty percent of the rat DCT is accessible to micropuncture, with only the initial 20% below the kidney surface. At present, the rat provides the most convenient model for studies of DCT function. While the in vitro perfused rabbit nephron technique has been applied extensively to study the function of other tubular segments, the technique is not readily applied to the DCT because of its short length in the rabbit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Woodhall, P. B., and C. C. Tisher. 1973. Response of the distal tubule and cortical collecting duct to vasopressin in the rat. J. Clin. Invest. 52: 3095–3108.

    PubMed  CAS  Google Scholar 

  2. Morgan, T., and R. W. Berliner. 1969. A study by continuous microperfusion of water and electrolyte movements in the loop of Henle and distal tubule of the rat. Nephron 6: 388–405.

    PubMed  CAS  Google Scholar 

  3. Gottschalk, C. W., and M. Mylle. 1957. Micropuncture study of pressures in proximal and distal tubules and peritubular capillaries of the rat kidney during osmotic diuresis. Am. J. Physiol. 189: 323–328.

    PubMed  CAS  Google Scholar 

  4. Malnic, G., R. M. Klose, andG. Giebisch. 1966. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am. J. Physiol. 211: 529–547.

    PubMed  CAS  Google Scholar 

  5. Kashgarian, M. H., H. Stockle, C. W. Gottschalk, and K. J. Ullrich. 1963. Transtubular electrochemical potentials of sodium and chloride in proximal and distal renal tubules of rats during antidiuresis and water diuresis (diabetes insipidus). Pfluegers Arch. 277: 89–106.

    CAS  Google Scholar 

  6. Malnic, G., R. M. Klose, andG. Giebisch. 1964. Micropuncture study of renal potassium excretion in the rat. Am. J. Physiol. 206: 674–686.

    PubMed  CAS  Google Scholar 

  7. Malnic, G., M. de Mello-Aires, and G. Giebisch. 1972. Micropuncture study of renal tubular hydrogen ion transport in the rat. Am. J. Physiol. 222: 147–158.

    CAS  Google Scholar 

  8. Costanzo, L. S., and E. E. Windhager. 1978. Calcium and sodium transport by the distal convoluted tubule. Am. J. Physiol. 235: F492–F506.

    PubMed  CAS  Google Scholar 

  9. Wright, F. S. 1971. Increasing magnitude of electrical potential along the renal distal tubule. Am. J. Physiol. 220: 624–638.

    PubMed  CAS  Google Scholar 

  10. Farquhar, M. G., and G. E. Palade. 1963. Functional complexes in various epithelia. J. Cell Biol. 17: 375–412.

    PubMed  CAS  Google Scholar 

  11. Tisher, C. C., and W. E. Yarger. 1973. Lanthanum permeability of the tight junction (zonula occludens) in the renal tubule of the rat. Kidney Int. 3: 238–250.

    PubMed  CAS  Google Scholar 

  12. Martinez-Palomo, A., and D. Erlij. 1973. The distribution of lanthanum in different tubular segments of the rat kidney. Pfluegers Arch. 343: 267–272.

    CAS  Google Scholar 

  13. Erlij, D. 1976. Solute transport across isolated epithelia. Kidney Int. 9: 76–87.

    PubMed  CAS  Google Scholar 

  14. Walker, A., P. Bott, J. Oliver, and M. MacDowell. 1941. The collection and analysis of fluid from single nephrons of the mammalian kidney. Am. J. Physiol. 134: 580–595.

    CAS  Google Scholar 

  15. Hierholzer, K., M. Wiederholt, H. Holzgreve, G. Giebisch, R. M. Klose, and E. E. Windhager. 1965. Micropuncture study of renal transtubular concentration gradients of sodium and potassium in adrenalectomized rats. Pfluegers Arch. 285: 193–210.

    Google Scholar 

  16. Hierholzer, K., M. Wiederholt, and H. Stolte. 1966. Hemmung der Natriumresorption in proximalen und distalen konvolut an- drenalektomierter Ratten. Pfluegers Arch. 291: 43–63.

    CAS  Google Scholar 

  17. Hierholzer, K., and H. Stolte. 1969. The proximal and distal tubular action of adrenal steroids on sodium reabsorption. Nephron 6: 188–204.

    PubMed  CAS  Google Scholar 

  18. Gottschalk, C. W. 1961. Micropuncture studies of tubular function in mammalian kidney. Physiologist 4: 35.

    Google Scholar 

  19. Shareghi, G. R., and L. C. Stoner. 1978. Calcium transport across segments of the rabbit distal nephron in vitro. Am. J. Physiol. 235: F367–F375.

    CAS  Google Scholar 

  20. Costanzo, L. S., and E. E. Windhager. 1980. Effects of PTH, ADH and cyclic AMP on distal tubular Ca and Na reabsorption. Am. J. Physiol. 239: F478–F485.

    PubMed  CAS  Google Scholar 

  21. Schweigger-Seidel, F. 1865. Die Nieren des Menschen und der Saugetiere in inhrem feineren Baue Halle.

    Google Scholar 

  22. Kaissling, B., and W. Kriz. 1979. Structural analysis of the rabbit kidney. Adv. Anat. Embryol. Cell. Biol. 56: 1–123.

    PubMed  CAS  Google Scholar 

  23. Kaissling, B. 1982. Structural aspects of adaptive changes in renal electrolyte excretion. Am. J. Physiol. 243: F211–F226.

    PubMed  CAS  Google Scholar 

  24. Oliver, J. 1968. Nephrons and Kidneys: A Quantitative Study of Developmental and Evolutionary Mammalian Renal Architecture. Harper and Row, New York.

    Google Scholar 

  25. Crayen, M., and W. Thoenes. 1975. Architektur und Cytologischer Aufbau des distalen Tubulus in der Rattenniere. Fortschr. Zool. 23: 279–288.

    PubMed  CAS  Google Scholar 

  26. Kriz, W., B. Kaissling, and M. Psczolla. 1978. Morphological characterization of the cells in Henle’s loop and the distal tubule. In: New Aspects of Renal Function. H. G. Vogel and K. J. Ullrich, eds. Excerpta Medica, Amsterdam, pp. 67–78.

    Google Scholar 

  27. Tisher, C. C., R. E. Bulger, andB. F. Trump. 1968. Human renal ultrastructure. III. The distal tubule in healthy individuals. Lab. Invest. 18: 655–668.

    PubMed  CAS  Google Scholar 

  28. Kaissling, B., and M. LeHir. 1982. Distal tubular segments of the rabbit kidney after adaptation to altered Na and K intake. I. Structural changes. Cell Tissue Res. 224: 469–492.

    PubMed  CAS  Google Scholar 

  29. Schiller, A., R. Taugner, andB. Roesinger. 1978. Vergleichende Morphologie der zonulae occludentes am Nierentubulus. Verh. Anat. Ges. 72: 229–234.

    PubMed  Google Scholar 

  30. Schmidt, U., and U. C. DuBach. 1971. Na-K-ATPase in the rat nephron related to sodium transport: Results with quantitative histochemistry. In: Recent Advances in Quantitative Histochemistry and Cytochemistry. Huber, Bern. pp. 320–344.

    Google Scholar 

  31. Schmidt, U., and M. Horster. 1977. Na-K-activated ATPase: Maturation in rabbit nephron segments. Am. J. Physiol. 233: F55–F60.

    PubMed  CAS  Google Scholar 

  32. Ganote, C. E., J. J. Grantham, H. L. Moses, M. B. Burg, and J. Orloff. 1968. Ultrastructural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit. J. Cell Biol. 36: 355–367.

    PubMed  CAS  Google Scholar 

  33. Tisher, C. C., R. E. Bulger, and H. Valtin. 1971. Morphology of renal medulla in water diuresis and vasopressin-induced anti-diuresis. Am. J. Physiol. 220: 87–94.

    PubMed  CAS  Google Scholar 

  34. Hagege, J., M. Gage, and G. Richet. 1974. Scanning of the apical pole of distal tubular cells under differing acid-base conditions. Kidney Int. 5: 137–146.

    PubMed  CAS  Google Scholar 

  35. Costanzo, L. S. 1984. Comparison of Ca and Na transport in early and late rat distal tubules: Amiloride effect. Am. J. Physiol. 246: F937–F945.

    PubMed  CAS  Google Scholar 

  36. Morel, F. 1981. Sites of hormone action in the mammalian nephron. Am. J. Physiol. 240: F159–F164.

    PubMed  CAS  Google Scholar 

  37. Giebisch, G., and E. E. Windhager. 1964. Renal tubular transfer of sodium chloride and potassium. Am. J. Med. 36: 643–669.

    PubMed  CAS  Google Scholar 

  38. Khuri, R. N., M. Wiederholt, N. Strieder, andG. Giebisch. 1975. Effects of graded solute diuresis on renal tubular sodium transport in the rat. Am. J. Physiol. 228: 1262–1268.

    PubMed  CAS  Google Scholar 

  39. Barratt, L. J., F. C. Rector, Jr., J. P. Kokko, C. C. Tisher, andD. W. Seldin. 1975. Transepithelial potential difference profile of the distal tubule of the rat kidney. Kidney Int. 8: 368–375.

    PubMed  CAS  Google Scholar 

  40. Malnic, G., and G. Giebisch. 1972. Some electrical properties of distal tubular epithelium in the rat. Am. J. Physiol. 223: 797–808.

    PubMed  CAS  Google Scholar 

  41. de Bermudez, L., and E. E. Windhager. 1975. Osmotically induced changes in electrical resistance of distal tubules of rat kidney. Am. J. Physiol. 229: 1536–1546.

    PubMed  Google Scholar 

  42. Malnic, G., R. M. Klose, and G. Giebisch. 1966. Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am. J. Physiol. 211: 548–559.

    PubMed  CAS  Google Scholar 

  43. Burg, M. 1976. Tubular chloride transport and the mode of action of some diuretics. Kidney Int. 9: 189–197.

    PubMed  CAS  Google Scholar 

  44. Schlatter, E., R. Gregor, and C. Weidtke. 1983. Effect of “high ceiling” diuretics on active salt transport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pfluegers Arch. 396: 210–217.

    CAS  Google Scholar 

  45. Good, D. W., and F. S. Wright. 1979. Luminal influences on potassium secretion: Sodium concentration and fluid flow rate. Am. J. Physiol. 236: F192–F205.

    PubMed  CAS  Google Scholar 

  46. Lassiter, W. E., C. W. Gottschalk, and M. Mylle. 1961. Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am. J. Physiol. 200: 1139–1146.

    PubMed  CAS  Google Scholar 

  47. Lassiter, W. E., C. W. Gottschalk, and M. Mylle. 1964. Micropuncture study of net transtubular movement of water and urea in rat kidney during saline diuresis. Am. J. Physiol. 206: 669–673.

    PubMed  CAS  Google Scholar 

  48. Danielson, R. A., B. Schmidt-Nielsen, and C. Hohberger. 1970. Micropuncture study of the regulation of urea excretion by the collecting ducts in rats on high and low protein diets. In: Urea and the Kidney. B. Schmidt-Nielsen, ed. Excerpta Medica, Amsterdam. pp. 375 - 384.

    Google Scholar 

  49. Capek, K., R. Rumrich, and K. J. Ullrich. 1966. Harnstoffpermeabilitat der corticalen Tubulusabschnitte von Ratten in Anti- diurese and Wasserdiurese. Pfluegers Arch. 290: 237–249.

    CAS  Google Scholar 

  50. Diezi, J., P. Michoud, A. Grandchamp, and G. Giebisch. 1976. Effects of nephrectomy on renal salt and water transport in the remaining kidney. Kidney Int. 10: 450–462.

    PubMed  CAS  Google Scholar 

  51. Knox, F. G., and J. Gasser. 1974. Altered distal sodium reabsorption in volume expansion. Mayo Clin. Proc. 49: 775–781.

    PubMed  CAS  Google Scholar 

  52. Stein, J. H., and H. J. Reineck. 1974. Role of the collecting duct in the regulation of excretion of sodium and other electrolytes. Kidney Int. 6: 1–9.

    PubMed  CAS  Google Scholar 

  53. Kunau, R. 1972. Changes in Na+ reabsorption in the loop of Henle and distal convolution of the rat nephron following minimal and marked increases in Na delivery. Clin. Res. 20: 762.

    Google Scholar 

  54. Giebisch, G., and E. E. Windhager. 1973. Electrolyte transport across renal tubular membranes. In: Handbook of Physiology, Section 8. J. Orloff and R. W. Berliner, eds. American Physiological Society, Washington, D.C. pp. 315–376.

    Google Scholar 

  55. Windhager, E. E., and G. Giebisch. 1976. Proximal sodium and fluid transport. Kidney Int. 9: 121–133.

    PubMed  CAS  Google Scholar 

  56. Stein, J. H., R. W. Osgood, S. Boonjarern, and T. F. Ferris. 1973. A comparison of the segmental analysis of sodium reabsorp- tion during Ringer’s and hyperoncotic albumin infusion in the rat. J. Clin. Invest. 52: 2313–2323.

    PubMed  CAS  Google Scholar 

  57. Sonnenberg, H. 1973. Proximal and distal tubular function in salt- deprived and salt-loaded deoxycorticosterone acetate-escape rats. J. Clin. Invest. 52: 263–272.

    PubMed  CAS  Google Scholar 

  58. Osgood, R. W., H. J. Reineck, and J. H. Stein. 1978. Further studies on segmented sodium transport in the rat kidney during expansion of the extracellular fluid volume. J. Clin. Invest. 62: 311–0320.

    PubMed  CAS  Google Scholar 

  59. Camargo, M. J. F., H. D. Kleinert, S. A. Atlas, J. E. Sealey, J. H. Laragh, and T. Maack. 1984. Ca-dependent hemodynamic and natriuretic effects of atrial extract in isolated rat kidney. Am. J. Physiol. 246: F447–F456.

    PubMed  CAS  Google Scholar 

  60. Sonnenberg, H., W. A. Copples, A. J. DeBold, and A. T. Veress. 1982. Intrarenal localization of the natriuretic effect of cardiac atrial extract. Can. J. Physiol. Pharmacol. 60: 1149–1152.

    PubMed  CAS  Google Scholar 

  61. Briggs, J. P., B. Steipe, G. Schubert, and J. Schnermann. 1982. Micropuncture studies of the renal effects of atrial natriuretic substance. Pfluegers Arch. 395: 271–276.

    CAS  Google Scholar 

  62. Anagnostopoulos, T., M. U. Kinney, and E. E. Windhager. 1971. Salt and water reabsorption by short loops of Henle during renal vein constriction. Am. J. Physiol. 220: 1060–1066.

    PubMed  CAS  Google Scholar 

  63. Landwehr, D. M., R. M. Klose, and G. Giebisch. 1967. Renal tubular sodium and water reabsorption in the isotonic sodium chloride-loaded rat. Am. J. Physiol. 212: 1327–1333.

    PubMed  CAS  Google Scholar 

  64. Schwartz, G. J., and M. B. Burg. 1978. Mineralocorticoideffects on cation transport by cortical collecting tubules in vitro. Am. J. Physiol. 235: F576–F585.

    CAS  Google Scholar 

  65. Gross, J. B., M. Imai, and J. P. Kokko. 1975. A functional comparison of the cortical collecting tubule and the distal convoluted tubule. J. Clin. Invest. 55: 1284–1294.

    PubMed  CAS  Google Scholar 

  66. Wiederholt, M. 1966. Mikropunktionsuntersuchungen am proximalen und distalen Konvolut der Rattenniere uber den Einfluss von Actinomycin D auf den mineralocorticoidabhangigen Na- Transport. Pfluegers Arch. 292: 334–342.

    CAS  Google Scholar 

  67. Horisberger, J. D., and J. Diezi. 1983. Effects of mineralocorticoids on Na and K excretion in the adrenalectomized rat. Am. J. Physiol. 245: F89–F99.

    PubMed  CAS  Google Scholar 

  68. Geheb, M., E. Hercker, I. Singer, and M. Cox. 1981. Subcellular localization of aldosterone-induced proteins in toad urinary bladders. Biochim. Biophys. Acta 641: 422–426.

    PubMed  CAS  Google Scholar 

  69. Geheb, M., G. Huber, E. Hercker, and M. Cox. 1981. Aldosterone-induced proteins in toad urinary bladders. J. Biol. Chem. 256: 11716–11723.

    PubMed  CAS  Google Scholar 

  70. Geheb, M., R. Alvis, E. Hercker, and M. Cox. 1983. Miner- alocorticoid-specificity of aldosterone-induced protein synthesis in giant toad (Bufo marinus) urinary bladders. Biochem. J. 214: 29–35.

    PubMed  CAS  Google Scholar 

  71. Petty, K. J., J. P. Kokko, and D. Marver. 1981. Secondary effect of aldosterone on Na-K ATPase activity in the rabbit cortical collecting tubule. J. Clin. Invest. 68: 1514–1521.

    PubMed  CAS  Google Scholar 

  72. Perkins, F. M., and J. S. Handler. 1981. Transport properties of toad kidney epithelia in culture. Am. J. Physiol. 241: C154–C159.

    PubMed  CAS  Google Scholar 

  73. Palmer, L. G., J. H. Y. Li, B. Lindemann, and I. S. Edelman. 1981. Aldosterone control of the density of sodium channels in the toad urinary bladder. J. Membr. Biol. 69: 91–102.

    Google Scholar 

  74. Garty, H., and I. S. Edelman. 1983. Amiloride-sensitive trypsinization of apical sodium channels. J. Gen. Physiol. 81: 785–803.

    PubMed  CAS  Google Scholar 

  75. Sariban-Sohraby, S., M. B. Burg, and R. J. Turner. 1983. Apical sodium uptake in toad kidney epithelial cell line A6. Am. J. Physiol. 245: C167–C171.

    PubMed  CAS  Google Scholar 

  76. Schmidt, U., J. Schmid, H. Schmid, and U. C. Dubach. 1975. Sodium and potassium-activated ATPase: A possible target of aldosterone. J. Clin. Invest. 55: 655–660.

    PubMed  CAS  Google Scholar 

  77. Horster, M., H. Schmid, and U. Schmidt. 1980. Aldosterone in vitro restores nephron Na-K ATPase of distal segments from adrenalectomized rabbits. Pfluegers Arch. 384: 203–206.

    CAS  Google Scholar 

  78. Garg, L. C., M. A. Knepper, andM. B. Burg. 1981. Mineralocorticoid effects on Na-K ATPase in individual nephron segments. Am. J. Physiol. 240: F536–F544.

    PubMed  CAS  Google Scholar 

  79. Doucet, A., and A. I. Katz. 1981. Mineralocorticoid receptors along the nephron: 3H aldosterone binding in rabbit tubules. Am. J. Physiol. 241: F605–F611.

    PubMed  CAS  Google Scholar 

  80. Le Hir, M., B. Kaissling, and U. C. Dubach. 1982. Distal tubular segments of the rabbit kidney after adaptation to altered Na and K intake. II. Changes in Na-K ATPase activity. Cell Tissue Res. 224: 493–504.

    PubMed  Google Scholar 

  81. El Mernissi, G., and A. Doucet. 1983. Short-term effects of aldosterone and dexamethasone on Na-K ATPase along the rabbit nephron. Pfluegers Arch. 399: 147–151.

    Google Scholar 

  82. El Mernissi, G., and A. Doucet. 1983. Short-term effects of aldosterone and dexamethasone on Na-K ATPase along the rabbit nephron. Pfluegers Arch. 399: 147–151.

    Google Scholar 

  83. Kunau, R. T., D. R. Weller, and H. L. Webb. 1975. Clarification of the site of action of chlorothiazide in the rat nephron. J. Clin. Invest. 56: 401–407.

    PubMed  CAS  Google Scholar 

  84. Duarte, C. G., F. Chomety, and G. Giebisch. 1971. Effect of amiloride, ouabain, and furosemide on distal tubular function in the rat. Am. J. Physiol. 221: 632–639.

    PubMed  CAS  Google Scholar 

  85. Gottschalk, C. W. 1962-1963. Renal tubular function: Lessons from micropuncture. Harvey Lect. 58: 99–123.

    Google Scholar 

  86. Windhager, E. E., and G. Giebisch. 1961. Micropuncture study of renal tubular transfer of sodium chloride in the rat. Am. J. Physiol. 200: 581–590.

    PubMed  CAS  Google Scholar 

  87. Malnic, G., M. de Mello-Aires, and F. Viera. 1970. Chloride excretion in single nephrons of rat kidney during alterations of acid-base equilibrium. Am. J. Physiol. 218: 20–26.

    CAS  Google Scholar 

  88. Rector, F. C., and J. R. Clapp. 1962. Evidence for active chloride reabsorption in the distal renal tubule of the rat. J. Clin. Invest. 41: 101–107.

    PubMed  CAS  Google Scholar 

  89. Berliner, R. W. 1961. Renal mechanisms for potassium secretion. Harvey Lect. 55: 141–171.

    Google Scholar 

  90. Wright, F. S., and G. Giebisch. 1978. Renal potassium transport: Contributions of individual nephron segments and populations. Am. J. Physiol. 235: F515–F527.

    PubMed  CAS  Google Scholar 

  91. Khuri, R. N., M. Wiederholt, N. Strieder, andG. Giebisch. 1975. The effect of flow rate and potassium intake on distal tubular potassium transfer. Am. J. Physiol. 228: 1249–1261.

    PubMed  CAS  Google Scholar 

  92. Brenner, B. M., and R. W. Berliner. 1969. Relationship between extracellular volume and fluid reabsorption by the rat kidney. Am. J. Physiol. 217: 6–12.

    PubMed  CAS  Google Scholar 

  93. Cortney, M. D., M. Mylle, W. E. Lassiter, and C. W. Gottschalk. 1965. Renal transport of water, solute and PAH in rats loaded with isotonic saline. Am. J. Physiol. 209: 1199–1205.

    PubMed  CAS  Google Scholar 

  94. Morgan, T., M. Tadokoro, D. Margin, and R. W. Berliner. 1970. Effect of furosemide on Na + and K + transport studied by micro- perfusion of the rat nephron. Am. J. Physiol. 218: 292–297.

    PubMed  CAS  Google Scholar 

  95. Kunau, R. T., Jr., H. L. Webb, and S. C. Borman. 1974. Characteristics of the relationship between the flow rate of tubular fluid and potassium transport in the distal tubule of the rat. J. Clin. Invest. 54: 1488–1495.

    PubMed  Google Scholar 

  96. Stokes, J. B. 1982. Na and K transport across the cortical and outer medullary collecting tubule of the rabbit: Evidence for diffusion across the outer medullary portion. Am. J. Physiol. 242: F514–F520.

    PubMed  CAS  Google Scholar 

  97. Watson, J. F. 1966. Potassium reabsorption in the proximal tubule of the dog nephron. J. Clin. Invest. 45: 1341–1348.

    PubMed  CAS  Google Scholar 

  98. Bennett, C. M., J. R. Clapp, and R. W. Berliner. 1967. Micropuncture study of the proximal and distal tubule in the dog. Am. J. Physiol. 213: 1254–1262.

    PubMed  CAS  Google Scholar 

  99. Bennett, C. M., B. M. Brenner, andR. W. Berliner. 1968. Micropuncture study of nephron function in the Rhesus monkey. J. Clin. Invest. 47: 203–216.

    PubMed  CAS  Google Scholar 

  100. Grantham, J. J., M. B. Burg, and J. Orloff. 1970. The nature of transtubular Na and K transport in isolated rabbit renal collecting tubules. J. Clin. Invest. 49: 1815–1826.

    PubMed  CAS  Google Scholar 

  101. Stokes, J. B. 1981. Potassium secretion by the cortical collecting tubule: Relation to sodium absorption, luminal sodium concentration and transepithelial voltage. Am. J. Physiol. 241: F395–F402.

    PubMed  CAS  Google Scholar 

  102. Giebisch, G. 1971. Renal potassium excretion. In: The Kidney: Morphology, Biochemistry, Physiology, Volume 3. C. Rouiller and A. Muller, eds. Academic Press, New York. pp. 329–382.

    Google Scholar 

  103. Wright, F. S., N. Strieder, N. B. Fowler, and G. Giebisch. 1971. Potassium secretion by the distal tubule after potassium adaptation. Am. J. Physiol. 221: 437–448.

    PubMed  CAS  Google Scholar 

  104. Bank, N., and H. S. Aynedjian. 1973. A micropuncture study of potassium excretion by the remnant kidney. J. Clin. Invest. 52: 1480–1490.

    PubMed  CAS  Google Scholar 

  105. Finklestein, F. O., and J. P. Hayslett. 1974. Role of medullary structures in the functional adaptation of renal insufficiency. Kidney Int. 6: 419–425.

    Google Scholar 

  106. Orloff, J., and D. G. Davidson. 1959. The mechanism of potassium excretion in the chicken. J. Clin. Invest. 38: 21–30.

    PubMed  CAS  Google Scholar 

  107. Stanton, B. A., and G. H, Giebisch. 1982. Potassium transport by the renal distal tubule: Effects of potassium loading. Am. J. Physiol. 243: F487–F493.

    PubMed  CAS  Google Scholar 

  108. Stanton, B. A., D. Biemesderfer, J. B. Wade, and G. Giebisch. 1981. Structural and functional study of the rat distal nephron: Effects of potassium adaptation and depletion. Kidney Int. 19: 36–48.

    PubMed  CAS  Google Scholar 

  109. Stanton, B. A., D. Biemesderfer, J. B. Wade, and G. Giebisch. 1981. Structural and functional study of the rat distal nephron: Effects of potassium adaptation and depletion. Kidney Int. 19: 36–48.

    PubMed  CAS  Google Scholar 

  110. Stetson, D. L., J. B. Wade, and G. Giebisch. 1980. Morphologic alterations in the rat medullary collecting duct following potassium depletion. Kidney Int. 17: 45–56.

    PubMed  CAS  Google Scholar 

  111. Cortney, M. A. 1969. Renal tubular transfer of water and electrolytes in adrenalectomized rats. Am. J. Physiol. 216: 589–598.

    PubMed  CAS  Google Scholar 

  112. Wiederholt, M., C. Behn, W. Schoormans, andL. Hansen. 1972. Effect of aldosterone on sodium potassium transport in the kidney. J. Steroid Biochem. 3: 151–159.

    PubMed  CAS  Google Scholar 

  113. Wiederholt, M., W. Schoormans, F. Fischer, and C. Behn. 1973. Mechanism of action of aldosterone on potassium transfer in the rat kidney. Pfluegers Arch. 345: 159–178.

    CAS  Google Scholar 

  114. Wiederholt, M., S. K. Aguilian, and R. N. Khuri. 1974. Intracellular potassium in the distal tubule of the adrenalectomized and aldosterone treated rat. Pfluegers Arch. 347: 117–123.

    CAS  Google Scholar 

  115. Fimognari, G. M., D. D. Fanestil, and I. S. Edelman. 1967. Induction of RNA and protein synthesis in the action of aldosterone. Am. J. Physiol. 213: 954–962.

    PubMed  CAS  Google Scholar 

  116. Horisberger, J. D., and J. Diezi. 1984. Inhibition of aldosterone- induced anti-natriuresis and kaliuresis by actinomycin D. Am. J. Physiol. 246: F201–F204.

    PubMed  CAS  Google Scholar 

  117. Malnic, G., M. de Mello-Aires, and G. Giebisch. 1971. Potassium transport across renal distal tubules during acid-base disturbances. Am. J. Physiol. 221: 1192–1208.

    CAS  Google Scholar 

  118. Scott, D., and G. H. Mcintosh. 1975. Changes in blood composition and in urinary mineral acid excretion in the pig in response to acute acid-base disturbances. Q. J. Exp. Physiol. 60: 131–140.

    CAS  Google Scholar 

  119. Rostand, S., and J. Watkins. 1977. Response of the isolated rat kidney to metabolic and respiratory acidosis. Am. J. Physiol. 233: F82–F88.

    PubMed  CAS  Google Scholar 

  120. Giebisch, G., G. Malnic, and R. W. Berliner. 1981. Renal transport and control of potassium excretion. In: The Kidney, 2nd ed. B. M. Brenner and F. C. Rector, eds. pp. 408–439.

    Google Scholar 

  121. Stanton, B. A., and G. Giebisch. 1982. Effects of pH on potassium transport by renal distal tubule. Am. J. Physiol. 242: F544–F551.

    PubMed  CAS  Google Scholar 

  122. de Mello-Aires, M., G. Giebisch, and G. Malnic. 1973. Kinetics of potassium transport across single distal tubules of rat kidney. J. Physiol. (London) 232: 47–70.

    Google Scholar 

  123. Peterson, L. N., and F. S. Wright. 1977. Effect of sodium intake on renal potassium excretion. Am. J. Physiol. 233: F225–F234.

    PubMed  CAS  Google Scholar 

  124. Dirks, J. H., and J. F. Seely. 1970. Effect of saline infusions and furosemide on the dog distal nephron. Am. J. Physiol. 219:114121.–

    PubMed  CAS  Google Scholar 

  125. Seely, J. F., and J. H. Dirks. 1969. Micropuncture study of hypertonic mannitol diuresis in the proximal and distal tubule of the dog kidney. J. Clin. Invest. 48: 2330–2340.

    PubMed  CAS  Google Scholar 

  126. McDougal, W. S., and F. S. Wright. 1972. Defect in proximal and distal sodium transport in post-obstructive diuresis. Kidney Int. 2: 304–317.

    PubMed  CAS  Google Scholar 

  127. Peters, G. 1963. Compensatory adaptation of renal functions in the unanesthetized rat. Am. J. Physiol. 205: 1042–1048.

    PubMed  CAS  Google Scholar 

  128. Reineck,H. J., R.W.Osgood, T.F.Ferris, and J. H. Stein. 1975. Potassium transport in the distal tubule and collecting duct of the rat. Am. J. Physiol. 229: 1403–1409.

    Google Scholar 

  129. Good, D. W., H. Velazquez, and F. S. Wright. 1984. Luminal influences on potassium secretion: Low sodium concentration. Am. J. Physiol. 246: F609–F619.

    PubMed  CAS  Google Scholar 

  130. Field, M. J., B. A. Stanton, and G. H. Giebisch. 1984. Influence of ADH on renal potassium handling: A micropuncture and microperfusion study. Kidney Int. 25: 502–511.

    PubMed  CAS  Google Scholar 

  131. Barnatt, L. J. 1976. The effect of amiloride on the transepithelial potential difference of the distal tubule of the rat kidney. Pfluegers Arch. 361: 251–254.

    Google Scholar 

  132. Velazquez, H., F. S. Wright, and D. W. Good. 1982. Luminal influences on potassium secretion: Chloride replacement with sulfate. Am. J. Physiol. 242: F46–F55.

    PubMed  CAS  Google Scholar 

  133. Garcia-Filho, E., G. Malnic, and G. Giebisch. 1982. Effects of changes in electrical potential difference on tubular potassium transport. Am. J. Physiol. 238: F235–F246.

    Google Scholar 

  134. Ullrich, K. J., G. Rumrich, and G. Fuchs. 1964. Wasserper- meabilitat und transtubularer Wasserfluss cortikaler Nephron- abschnitte bei verschiedenen Diuresezustanden. Pfluegers Arch. 280: 99–119.

    CAS  Google Scholar 

  135. Ullrich, K. J. 1973. Permeability characteristics of the mammalian nephron. In: Handbook of Physiology, Section 8. J. Orloff and R. W. Berliner, eds. American Physiological Society, Washington, D.C. pp. 377–398.

    Google Scholar 

  136. Stolte, H., J. P. Brecht, M. Wiederholt, and K. Hierholzer. 1968. Einfluss von Adrenalektomie und Glucocorticoiden auf die Wasserpermeabilitat cortikaler Nephronabschnitte der Ratten- niere. Pfluegers Arch. 299: 99–127.

    CAS  Google Scholar 

  137. Lassiter, W. E., A. Frick, G. Rumrich, and K. J. Ullrich. 1965. Influence of ionic calcium on the water permeability of proximal and distal tubules in the rat kidney. Pflugers Arch. 285: 90–95.

    CAS  Google Scholar 

  138. Wirz, H. 1956. Der osmotische Druck in den corticalen Tubuli der Rattenniere. Helv. Physiol. Pharmacol. Acta 14: 353–362.

    PubMed  CAS  Google Scholar 

  139. Gottschalk, C. W., and M. Mylle. 1959. Micropuncture study of the mammalian urinary concentrating mechanism: Evidence for the countercurrent hypothesis. Am. J. Physiol. 196: 927–936.

    PubMed  CAS  Google Scholar 

  140. Colindres, R. E., R. Kramp, M. E. Allison, and C. W. Gottschalk. 1977. Hydrodynamic alterations during distal tubular fluid collections in the rat kidney. Am. J. Physiol. 232: F497–F505.

    PubMed  CAS  Google Scholar 

  141. Clapp, J. R., and R. R. Robinson. 1966. Osmolality of distal tubular fluid in the dog. J. Clin. Invest. 45: 1847–1853.

    PubMed  CAS  Google Scholar 

  142. Imbert, M., D. Chabardes, M. Montegut, A. Clique, and F. Morel. 1975. Vasopressin dependent adenylate cyclase in single segments of rabbit kidney tubule. Pfluegers Arch. 357: 173–186.

    CAS  Google Scholar 

  143. Imbert-Teboul, M., D. Chabardes, M. Montegut, A. Clique, and F. Morel. 1978. Vasopressin-dependent adenylate cyclase activities in the rat kidney medulla: Evidence for two separate sites of action. Endocrinology 102: 1254–1261.

    PubMed  CAS  Google Scholar 

  144. Chabardes, D., M. Imbert-Teboul, M. Gagnon-Brunette, and F. Morel. 1978. Different hormonal target sites along the mouse and rabbit nephrons. In: Biochemical Nephrology. W. G. Guder and U. Schmidt, eds. Huber, Bern. pp. 447–454.

    Google Scholar 

  145. Chabardes, D., M. Gagnon-Brunette, M. Imbert-Teboul, O. Gontcharevskaia, M. Montegut, A. Clique, and F. Morel. 1980. Adenylate cyclase responsiveness to hormones in various portions of the human nephron. J. Clin. Invest. 65: 439–448.

    PubMed  CAS  Google Scholar 

  146. Kachadorian, W. A., J. B. Wade, and V. A. DiScala. 1975. Vasopressin: Induced structural change in toad bladder luminal membrane. Science 190: 67–69.

    PubMed  CAS  Google Scholar 

  147. Kachadorian, W. A., S. D. Levine, J. B. Wade, V. A. DiScala, and R. M. Hays. 1977. Relationship of aggregated intramembranous particles to water permeability in vasopressin-treated toad urinary bladder. J. Clin. Invest. 59: 576–581.

    PubMed  CAS  Google Scholar 

  148. Harmanci, M. C., P. Stern, W. A. Kachadorian, H. Valtin, and V. A. DiScala. 1980. Vasopressin and collecting duct intra- membranous particle clusters: A dose-response relationship. Am. J. Physiol. 239: F560–F564.

    PubMed  CAS  Google Scholar 

  149. Glabman, S., R. M. Klose, and G. Giebisch. 1963. Micropuncture study of ammonia excretion in the rat. Am. J. Physiol. 205: 127–132.

    PubMed  CAS  Google Scholar 

  150. Hayes, C. P., J. S. Mayson, E. E. Owen, and R. R. Robinson. 1964. A micropuncture evaluation of renal ammonia excretion in the rat. Am. J. Physiol. 207: 77–83.

    PubMed  CAS  Google Scholar 

  151. Lucci, M. S., L. R. Pucacco, N. W. Carter, and T. D. DuBose. 1982. Evaluation of bicarbonate transport in rat distal tubule: Effects of acid-base status. Am. J. Physiol. 243: F335–F341.

    PubMed  CAS  Google Scholar 

  152. Gottschalk, C. W., W. E. Lassiter, and M. Mylle. 1960. Localization of urine acidification in the mammalian kidney. Am. J. Physiol. 198: 581–585.

    PubMed  CAS  Google Scholar 

  153. Vierra, F. L., and G. Malnic. 1968. Hydrogen ion secretion by rat renal cortical tubules as studied by an antimony microelectrode. Am. J. Physiol. 214: 710–718.

    Google Scholar 

  154. DuBose, T. D., L. R. Pucacco, M. S. Lucci, and N. W. Carter. 1979. Micropuncture determination of pH, PC02 and total C02 concentration in accessible structures of the rat renal cortex. J. Clin. Invest. 64: 476–482.

    PubMed  Google Scholar 

  155. DuBose, T. D. 1983. Application of the disequilibrium pH method to investigate the mechanism of urinary acidification. Am. J. Physiol. 245: F535–F544.

    PubMed  Google Scholar 

  156. Rector, F. C., N. W. Carter, andD. W. Seldin. 1965. The mechanism of bicarbonate reabsorption in the proximal and distal tubules of the kidney. J. Clin. Invest. 44: 278–290.

    PubMed  CAS  Google Scholar 

  157. Warnock, D. G., and F. C. Rector. 1981. Renal acidification mechanisms. In: The Kidney, 2nd ed. B. M. Brenner and F. C. Rector, eds. Saunders, Philadelphia, pp. 440–494.

    Google Scholar 

  158. DuBose, T. D., L. R. Pucacco, and N. W. Carter. 1981. Determination of disequilibrium pH in the rat kidney in vivo: Evidence for hydrogen secretion. Am. J. Physiol. 240: F138–F146.

    PubMed  CAS  Google Scholar 

  159. Karlmark, B., P. Jaeger, and G. Giebisch. 1983. Luminal buffer transport in rat cortical tubule: Relationship to potassium metabolism. Am. J. Physiol. 245: F584–F592.

    PubMed  CAS  Google Scholar 

  160. Lonnerholm, G. 1971. Histochemical demonstration of carbonic anhydrase activity in the rat kidney. Acta Physiol. Scand. 81: 433–439.

    PubMed  CAS  Google Scholar 

  161. Lonnerholm, G., and Y. Ridderstrale. 1980. Intracellular distribution of carbonic anhydrase in the rat kidney. Kidney Int. 17: 162–174.

    PubMed  CAS  Google Scholar 

  162. Sohtell, M., and B. Karlmark. 1976. In vivo micropuncture PC02 measurements. Pfluegers Arch. 363: 179–180.

    CAS  Google Scholar 

  163. Maren, T. H. 1967. Carbonic anhydrase: Chemistry, physiology and inhibition. Physiol. Rev. 47: 595–781.

    PubMed  CAS  Google Scholar 

  164. Lassiter, W. E., C. W. Gottschalk, and M. Mylle. 1963. Micropuncture study of renal tubular reabsorption of calcium in normal rodents. Am. J. Physiol. 204: 771–775.

    CAS  Google Scholar 

  165. Walser, M. 1971. Calcium-sodium interdependence in renaltransport. In: Renal Pharmacology. Appleton, New York. pp. 21–41.

    Google Scholar 

  166. Sutten, R. A. L., and J. H. Dirks. 1981. Renal handling of calcium, phosphate and magnesium. In: The Kidney, 2nd ed. B. M. Brenner and F. C. Rector, eds. Saunders, Philadelphia, pp. 551–618.

    Google Scholar 

  167. Bourdeau, J. E., and M. B. Burg. 1979. Voltage dependence of calcium transport in the thick ascending limb of Henle’s loop. Am. J. Physiol. 236: F357–F364.

    PubMed  CAS  Google Scholar 

  168. Suki, W. N., D. Rouse, R. C. K. Ng, and J. P. Kokko. 1980. Calcium transport in the thick ascending limb of Henle. J. Clin. Invest. 66: 1004–1009.

    PubMed  CAS  Google Scholar 

  169. Costanzo, L. S., and I. M. Weiner. 1976. Relationship between clearances of Ca and Na: Effect of distal diuretics and PTH. Am. J. Physiol. 230: 67–73.

    PubMed  CAS  Google Scholar 

  170. Lemann, J., J. R. Litzow, and E. J. Lennon. 1967. Studies of the mechanism by which chronic metabolic acidosis augments urinary calcium excretion in man. J. Clin. Invest. 46: 1318–1328.

    PubMed  CAS  Google Scholar 

  171. Sutton, R. A. L., N. L. M. Wong, and J. H. Dirks. 1979. Effects of metabolic acidosis and alkalosis on Na and Ca transport in the dog kidney. Kidney Int. 15: 520–533.

    PubMed  CAS  Google Scholar 

  172. Sutton, R. A. L., N. L. M. Wong, and J. H. Dirks. 1976. Renal tubular Na and Ca reabsorption: Dissociation by maneuvers which increase bicarbonate excretion. Clin. Res. 24: 413a.

    Google Scholar 

  173. Peraino, R. A., and W. N. Suki. 1980. Urine HC03- augments renal Ca absorption independent of systemic acid-base changes. Am. J. Physiol. 238: F394–F398.

    PubMed  CAS  Google Scholar 

  174. Peraino, R. A., W. N. Suki, and B. J. Stinebaugh. 1983. Renal excretion of calcium and magnesium during correction of metabolic acidosis by bicarbonate infusion in the dog. Miner. Electrolyte Metab. 3: 87–93.

    Google Scholar 

  175. Marone, C. C., N. L. M. Wong, R. A. L. Sutton, and J. H. Dirks. 1983. Effects of metabolic alkalosis on calcium excretion in the conscious dog. J. Lab. Clin. Med. 101: 264–273.

    PubMed  CAS  Google Scholar 

  176. Robinson, B. H. S., E. B. Marsh, J. W. Duckett, and M. Walser. 1962. Adrenocortical modification of the interdependence of calcium and sodium reabsorption in the kidney. J. Clin. Invest. 41: 1394.

    Google Scholar 

  177. Goldfarb, S., G. R. Westby, M. Goldberg, and Z. S. Agus. 1977. Renal tubular effects of chronic phosphate depletion. J. Clin. Invest. 59: 770–779.

    PubMed  CAS  Google Scholar 

  178. Wong, N. L. M., G. A. Quamme, T. J. O’Callaghan, R. A. L. Sutton, and J. H. Dirks. 1980. Renal tubular transport in phosphate depletion: A micropuncture study. Can. J. Physiol. Pharmacol. 58: 1063–1071.

    PubMed  CAS  Google Scholar 

  179. Biber, T. U. L. 1971. Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin. J. Gen. Physiol. 58: 131–144.

    PubMed  CAS  Google Scholar 

  180. Nagel, W., and A. Dorge. 1970. Effect of amiloride on sodium transport of frog skin: Action on intracellular sodium content. Plfuegers Arch. 317: 84–92.

    CAS  Google Scholar 

  181. O’Neil, R. G., and E. L. Boulpaep. 1979. Effect of amiloride on the apical cell membrane cation channels of a sodium-absorbing, potassium-secreting renal epithelium. J. Membr. Biol. 50: 365–387.

    PubMed  Google Scholar 

  182. Taylor, A., and E. E. Windhager. 1979. Possible roles of cyto- solic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am. J. Physiol 236: F505–F512.

    PubMed  CAS  Google Scholar 

  183. Friedman, P. A., J. F. Figueiredo, T. Maack, and E. E. Windhager. 1981. Sodium-calcium interactions in the renal proximal convoluted tubule of the rabbit. Am. J. Physiol. 240: F558–F568.

    PubMed  CAS  Google Scholar 

  184. Frindt, G., E. E. Windhager, and A. Taylor. 1982. Hydroosmotic response of collecting tubules to ADH or cAMP at reduced peritubular sodium. Am. J. Physiol. 243: F503–F513.

    PubMed  CAS  Google Scholar 

  185. Lorenzen, M., C. O. Lee, and E. E. Windhager. 1984. Cytosolic Ca + 2 and Na + activities in perfused proximal tubules of Necturus kidney. Am. J. Physiol. 247: F93–F102.

    PubMed  CAS  Google Scholar 

  186. Wen, S. F., R. L. Evanson, and J. H. Dirks. 1970. Micropuncture study of renal magnesium transport in proximal and distal tubule of the dog. Am. J. Physiol. 219:570–576. LeGrimellec,C. L., N. Roinel, andF. Morel. 1973. Simultaneous Mg, Ca, P, K, Na and CI analysis in rat tubular fluid during perfusion of either inulin or ferrocyanide. Pfluegers Arch. 340: 181–196.

    Google Scholar 

  187. Brunnette, M., H. Vigneault, and S. Carriere. 1974. Micro- puncture study of magnesium transport along the nephron in the young rat. Am. J. Physiol. 227: 891–896.

    Google Scholar 

  188. Carney, S. L., N. L. M. Wong, G. A. Quamme, and J. H. Dirks. 1980. Effect of magnesium deficiency on renal magnesium and calcium transport in the rat. J. Clin. Invest. 65: 180–188.

    PubMed  CAS  Google Scholar 

  189. Harris, C. A., M. A. Burnatowska, J. F. Seely, R. A. L. Sutton, G. A. Quamme, and J. H. Dirks. 1979. Effects of parathyroid hormone on electrolyte transport in the hamster nephron. Am. J. Physiol. 236: 342–348.

    Google Scholar 

  190. Quamme, G. A. 1980. Effect of calcitonin on calcium and magnesium transport in the rat nephron. Am. J. Physiol. 238: 573–578.

    Google Scholar 

  191. Quamme, G. A. 1981. Effect of furosemide on calcium and magnesium transport in the rat nephron. Am. J. Physiol. 241: 340–347.

    Google Scholar 

  192. Quamme, G. A., and J. H. Dirks. 1980. Effect of intraluminal and contraluminal magnesium on magnesium and calcium transfer in the rat nephron. Am. J. Physiol. 238: 187–198.

    Google Scholar 

  193. Wen, S. F., N. L. M. Wong, and J. H. Dirks. 1971. Evidence for renal magnesium secretion during magnesium infusion in the dog. Am. J. Physiol. 220: 33–37.

    PubMed  CAS  Google Scholar 

  194. LeGrimellec, C., N. Roinel, and F. Morel. 1973. Simultaneous Mg, Ca, P, K, Na and CI analysis in rat tubular fluid. II. During acute Mg plasma loading. Pfluegers Arch. 340: 197–210.

    CAS  Google Scholar 

  195. Quamme, G. A., and J. H. Dirks. 1983. Renal magnesium transport. Rev. Physiol. Biochem. Pharmacol. 97: 69–110.

    PubMed  CAS  Google Scholar 

  196. Massry, S. G., J. W. Coburn, and C. R. Kleeman. 1969. Renal handling of magnesium in the dog. Am. J. Physiol. 216: 1460–1467.

    PubMed  CAS  Google Scholar 

  197. Maclntyre, I. 1967. Magnesium metabolism. Adv. Intern. Med. 13: 143–154.

    Google Scholar 

  198. Wacker, W. E. C., and A. F. Parisi. 1968. Magnesium metabolism. N. Engl. J. Med. 278: 658–776.

    PubMed  CAS  Google Scholar 

  199. King, R. G., and S. W. Stanbury. 1970. Magnesium metabolism in primary hyperparathyroidism. Clin. Sci. 39: 281–303.

    PubMed  CAS  Google Scholar 

  200. Kuntziger, H., C. Amiel, N. Roinel, and F. Morel. 1974. Effects of parathyroidectomy and cyclic AMP on renal transport of phosphate, calcium and magnesium. Am. J. Physiol. 227: 905–911.

    PubMed  CAS  Google Scholar 

  201. Shareghi, G. R., and Z. S. Agus. 1982. Magnesium transport in the cortical thick ascending limb of Henle’s loop of the rabbit. J. Clin. Invest. 69: 759–769.

    PubMed  CAS  Google Scholar 

  202. Wong, N. L. M., G. A. Quamme, and J. H. Dirks. 1982. Effect of chlorothiazide on renal calcium and magnesium handling in the hamster. Can. J. Physiol. Pharmacol. 60: 1160–1165.

    PubMed  CAS  Google Scholar 

  203. LeGrimellec, C., N. Roinel, and F. Morel. 1974. Simultaneous Mg, Ca, P, K and CI analysis in rat tubular fluid. IV. During acute phosphate plasma loading. Pfluegers Arch. 346: 189–204.

    CAS  Google Scholar 

  204. Amiel, C., H. Kuntziger, and G. Richet. 1970. Micropuncture study of handling of phosphate by proximal and distal nephron in normal and parathyroidectomized rat: Evidence for distal reab-sorption. Pfluegers Arch. 317: 93–109.

    CAS  Google Scholar 

  205. Poujeol, P., D. Chabardes, N. Roinel, and C. DeRouffinac. 1976. Influence of extracellular fluid volume expansion on magnesium, calcium and phosphate handling along the rat nephron. Pfluegers Arch. 365: 203–211.

    CAS  Google Scholar 

  206. Beck, L. H., and M. Goldberg. 1974. Mechanism of the blunted phosphaturia in saline-loaded thyroidectomized dogs. Kidney Int. 6: 18–23.

    PubMed  CAS  Google Scholar 

  207. Knox, F. G., and C. Lechene. 1975. Distal site of action of parathyroid hormone on phosphate reabsorption. Am. J. Physiol. 229: 1556–1560.

    PubMed  CAS  Google Scholar 

  208. Pastoriza-Munoz, E., R. E. Colindres, W. E. Lassiter, and C. Lechene. 1978. Effect of parathyroid hormone on phosphate reabsorption in rat distal convolution. Am. J. Physiol. 235: F321–F330.

    PubMed  CAS  Google Scholar 

  209. Lang, F., R. Gregor, G. Marchand, and F. G. Knox. 1976. Stationary microperfusion study of phosphate reabsorption in proximal and distal nephron segments. Pfluegers Arch. 368: 45–48.

    Google Scholar 

  210. Gross, J. B., and J. P. Kokko. 1977. Effects of aldosterone and potassium-sparing diuretics on electrical potential differences across the distal nephron. J. Clin. Invest. 59: 82–89.

    PubMed  CAS  Google Scholar 

  211. Stoner, L. C. 1977. Isolated, perfused amphibian renal tubules: The diluting segment. Am. J. Physiol. 233: F438–F444.

    PubMed  CAS  Google Scholar 

  212. Koeppen, B. M., and G. Giebisch. 1983. Electrophysiology of mammalian renal tubules: Inferences from intracellular micro-electrode studies. Annu. Rev. Physiol. 45: 497–517.

    PubMed  CAS  Google Scholar 

  213. Allen, G. G., and L. J. Barratt. 1981. Electrophysiology of the early distal tubule: Further observations of electrode techniques. Kidney Int. 19: 24–35.

    PubMed  CAS  Google Scholar 

  214. Allen, G. G., and L. J. Barratt. 1981. Effect of aldosterone on the transepithelial potential difference of the rat distal tubule. Kidney Int. 19: 678–686.

    PubMed  CAS  Google Scholar 

  215. Giebisch, G., G. Malnic, R. M. Klose, and E. E. Windhager. 1966. Effect of ionic substitutions on distal potential differences in rat kidney. Am. J. Physiol. 211: 560–568.

    PubMed  CAS  Google Scholar 

  216. Hayslett, J. P., E. L. Boulpaep, and G. H. Giebisch. 1978. Factors influencing transepithelial potential difference in mammalian distal tubule. Am. J. Physiol. 234: F182–F191.

    PubMed  CAS  Google Scholar 

  217. Hayslett, J. P., E. L. Boulpaep, M. Kashgarian, and G. H. Giebisch. 1977. Electrical characteristics of the mammalian distal tubule: Comparison of Ling-Gerard and macroelectrodes. Kidney Int. 12: 324–331.

    PubMed  CAS  Google Scholar 

  218. Khuri, R. N., S. K. Agulian, and K. Kallognlian. 1972. Intracellular potassium in cells of the distal tubule. Pfluegers Arch. 335: 297–308.

    CAS  Google Scholar 

  219. Temple-Smith, P., L. Costanzo, and E. E. Windhager. 1977. Reexamination of transepithelial potential difference in distal convoluted tubules of the rat. Electrophysiology of the Nephron. T. Anagnostopoulos, ed. Inserm Editions, Paris, pp. 115–124.

    Google Scholar 

  220. Imai, M. 1979. The connecting tubule: A functional subdivision of the rabbit distal nephron segments. Kidney Int. 15: 346–356.

    PubMed  CAS  Google Scholar 

  221. Good, D. W., and F. S. Wright. 1980. Luminal influences on potassium secretion: Transepithelial voltage. Am. J. Physiol. 239: F289–F298.

    PubMed  CAS  Google Scholar 

  222. Khuri, R. N., S. K. Agulian, and K. Bogharian. 1974. Electrochemical potential of chloride in distal renal tubule of the rat. Am. J. Physiol. 227: 1352–1355.

    PubMed  CAS  Google Scholar 

  223. Wiederholt, M., W. Schoormans, L. Hanson, and C. Behn. 1974. Sodium conductance changes by aldosterone in the rat kidney. Pfluegers Arch. 348: 155–165.

    CAS  Google Scholar 

  224. Boulpaep, E. L., and J. F. Seely. 1971. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Am. J. Physiol. 221: 1084–1096.

    PubMed  CAS  Google Scholar 

  225. Sullivan, J. 1968. Electrical potential differences across distal renal tubules of Amphiuma. Am. J. Physiol. 214: 1096–1103.

    CAS  Google Scholar 

  226. Maude, D. L., I. Shehadeh, and A. K. Solomon. 1966. Sodium and water transport in single perfused distal tubules of Necturus kidney. Am. J. Physiol. 211: 1043–1049.

    PubMed  CAS  Google Scholar 

  227. Windhager, E. E., and G. Giebisch. 1965. Electrophysiology of the nephron. Physiol. Rev. 45: 214–244.

    PubMed  CAS  Google Scholar 

  228. Jentsch, T., M. Koch, A. Krolik, and M. Wiederhold. 1982. Calcium transport in the distal tubule of the Amphiuma kidney. Pfluegers Arch. 392 (Suppl.): R15.

    Google Scholar 

  229. Cohen, B., G. Giebisch, L. L. Hansen, U. Teuscher, and M. Wiederholt. 1984. Relationship between peritubular membrane potential and net fluid reabsorption in the distal renal tubule of Amphiuma. J. Physiol. (London) 348: 115–134.

    CAS  Google Scholar 

  230. Oberleithner, H., W. Guggino, and G. Giebisch. 1982. Mechanism of distal tubular chloride transport in Amphiuma kidney. Am. J. Physiol. 242: F331–F339.

    PubMed  CAS  Google Scholar 

  231. Wiederholt, M., and G. Giebisch. 1974. Some electrophysiological properties of the distal tubule of Amphiuma kidney. Fed. Proc. 33: 387.

    Google Scholar 

  232. Oberleithner, H., W. Guggino, and G. Giebisch. 1981. The cellular mechanism of potassium adaptation in the distal amphibian nephron. J. Physiol. (London) 318:55P-56P. ification of the basolateral solution reduces potassium conductance of the apical membrane. Fed. Proc. 41: 1006.

    Google Scholar 

  233. Oberleithner, H., F. Lang, R. Gregor, W. Wang, and G. Giebisch. 1983. Effect of luminal potassium on cellular sodium activity in the early distal tubule of Amphiuma kidney. Pfluegers Arch. 396: 34–40.

    CAS  Google Scholar 

  234. Burg, M., and L. Stoner. 1974. Sodium transport in the distal nephron. Fed. Proc. 33: 31–36.

    PubMed  CAS  Google Scholar 

  235. Wright, F. S. 1971. Alterations in electrical potential and ionic conductance of renal distal tubule cells in potassium adaptation. Proc. Int. Union Physiol. Sci. 9: 609.

    Google Scholar 

  236. Oberleithner, H., W. Guggino, and G. Giebisch. 1983. The effect of furosemide on luminal sodium, chloride and potassium transport in the early distal tubule of Amphiuma kidney: Effects of potassium adaptation. Pfluegers Arch. 396: 27–33.

    CAS  Google Scholar 

  237. Velazquez, H. E., and F. S. Wright. 1984. Sodium, chloride and potassium transport by the distal nephron: Effect of bumetanide and chlorothiazide. Kidney Int. 25: 319a.

    Google Scholar 

  238. Ellison, D. H., H. E. Velazquez, and F. S. Wright. 1984. Effects of barium and chloride on net and unidirectional potassium fluxes across distal tubules. Proc. 9th Int. Congr. Nephrol, p. 411 A.

    Google Scholar 

  239. Schmidt, U., and I. C. Dubach. 1969. Activity of (Na + K)- stimulated adenosine triphosphatase in the rat nephron. Pfluegers Arch. 306: 219–227.

    CAS  Google Scholar 

  240. Ernst, S. A. 1975. Transport ATPase cytochemistry: Ultrastructural localization of potassium-dependent and potassium-independent phosphatase activities in rat kidney cortex. J. Cell Biol. 66: 586–608.

    PubMed  CAS  Google Scholar 

  241. Oberleithner, H., F. Lang, W. Wang, and G. Giebisch. 1982. Effects of inhibition of chloride transport on intracellular sodium activity in distal amphibian nephron. Pfluegers Arch. 394: 55–60.

    CAS  Google Scholar 

  242. O’Neil, R. G., and S. C. Sansom. 1984. Characterization of apical membrane Na and K conductances of cortical collecting duct using microelectrode techniques. Am. J. Physiol. 247: F14–F24.

    PubMed  Google Scholar 

  243. Cuthbert, A. W., and W. K. Shum. 1975. Effects of vasopressin and aldosterone on amiloride binding in toad bladder epithelial cells. Proc. R. Soc. London Ser. B 189: 543–575.

    CAS  Google Scholar 

  244. Kinsella, J. L., and P. S. Aronson. 1981. Amiloride inhibition of the Na-H exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 241: F371–F379.

    Google Scholar 

  245. Velazquez, H., and F. S. Wright. 1983. Distal tubular pathways for sodium, chloride and potassium transport assessed by diuretics. Kidney Int. 23: 269a.

    Google Scholar 

  246. Frindt, G., and E. E. Windhager. 1983. Effect of quinidine, low peritubular Na or Ca on Na transport in isolated perfused rabbit cortical collecting tubules. Fed. Proc. 42: 305a.

    Google Scholar 

  247. Frindt, G., and E. E. Windhager. 1984. Transepithelial electrical resistance (Rt) of cortical collecting tubules at reduced peritubular Na concentration. Proc. 9th Int. Congr. Nephrol, p. 413A.

    Google Scholar 

  248. Frindt, G., and E. E. Windhager. 1984. Transepithelial electrical resistance (Rt) of cortical collecting tubules at reduced peritubular Na concentration. Proc. 9th Int. Congr. Nephrol, p. 413A.

    Google Scholar 

  249. Taylor, A., and E. E. Windhager. 1983. Regulatory role of intracellular calcium ions in epithelial Na transport. Annu. Rev. Physiol. 45: 519–532.

    PubMed  Google Scholar 

  250. Schultz, S. G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush- through.” Am. J. Physiol. 241: F579–F590.

    PubMed  CAS  Google Scholar 

  251. Koeppen, B. M., B. A. Biagi, and G. H. Giebisch. 1983. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am. J. Physiol. 244: F35–F47.

    PubMed  CAS  Google Scholar 

  252. Stanton, B., A. Janzen, T. Klein-Robbenhaar, J. Wade, G. Giebisch, and R. DeFronzo. 1983. Role of physiological levels of aldosterone in regulation of distal tubule morphology and potassium transport. Kidney Int. 23: 267a.

    Google Scholar 

  253. Wade, J. B., R. G. O’Neil, J. L. Pryor, and E. L. Boulpaep. 1979. Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J. Cell Biol. 81: 439–445.

    PubMed  CAS  Google Scholar 

  254. Giebisch, G. 1978. Renal potassium transport. In: Membrane Transport in Biology, Volume IVA. G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds. Springer-Verlag, Berlin, pp. 215–298.

    Google Scholar 

  255. Stanton, B., and G. Giebisch. 1981. Mechanism of urinary potassium excretion. Min. Electrolyte Metab. 5: 100–120.

    CAS  Google Scholar 

  256. Jones, S. M., and J. P. Hayslett. 1983. Demonstration of active potassium secretion in the late distal tubule. Am. J. Physiol. 245: F83–F88.

    PubMed  CAS  Google Scholar 

  257. Strieder, N., R. N. Khuri, M. Wiederholt, and G. Giebisch. 1974. Studies on the renal action of ouabain in the rat: Effects in the non-diuretic state. Pfluegers Arch. 349: 91–107.

    CAS  Google Scholar 

  258. Greger, R., E. Schlatter, and F. Lang. 1983. Evidence for electroneutral sodium chloride cotransport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pfluegers Arch. 396: 308–314.

    CAS  Google Scholar 

  259. Oberleithner, H., G. Giebisch, F. Lang, and W. Wang. 1982. Cellular mechanism of the furosemide sensitive transport system in the kidney. Klin. Wochenschr. 60: 1173–1179.

    PubMed  CAS  Google Scholar 

  260. Sackin, H., N. Morgunov, and E. L. Boulpaep. 1982. Electrical potentials and luminal membrane ion transport in the amphibian renal diluting segment. Fed. Proc. 41: 1495.

    Google Scholar 

  261. Ussing, H. H., and E. E. Windhager. 1964. Nature of shunt path and active sodium transport path through frog skin epithelium. Acta Physiol. Scand. 61: 484–504.

    PubMed  CAS  Google Scholar 

  262. Franz, T. J., W. R. Galey, and J. T. VanBruggen. 1968. Further observations on asymmetrical solute movement across membranes. J. Gen. Physiol. 51: 1–12.

    PubMed  CAS  Google Scholar 

  263. DiBona, I. R., and M. D. Civan. 1973. Pathways for movement of ions and water across toad urinary bladder. I. Anatomical site of transepithelial shunt pathways. J. Membr. Biol. 12: 101–122.

    PubMed  CAS  Google Scholar 

  264. Schafer, J. A., C. S. Patlak, and T. E. Andreoli. 1974. Osmosis in cortical collecting tubules: A theoretical and experimental analysis of the osmotic transient phenomenon. J. Gen. Physiol. 64: 201–237.

    PubMed  CAS  Google Scholar 

  265. Shafer, J. A., S. L. Troutman, and T. E. Andreoli. 1974. Osmosis in cortical collecting tubules: ADH-independent osmotic flow rectification. J. Gen. Physiol. 64: 228–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Costanzo, L.S., Windhager, E.E. (1986). Transport Functions of the Distal Convoluted Tubule. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2097-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2097-5_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9242-5

  • Online ISBN: 978-1-4613-2097-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics