Skip to main content

Active Transport in Escherichia Coli From Membrane to Molecule

  • Chapter
Physiology of Membrane Disorders

Abstract

Although the 1970s is regarded as the era of molecular genetics, when exciting breakthroughs made possible the isolation, cloning, and sequencing of genetic material from viruses to man, another revolution in our concepts of energy transduction in biological membranes also occurred over the same period of time, but without the same drama. Thus, in much the same way that the Crick-Watson double helix provided the backbone for many advances in molecular biology, the chemiosmotic hypothesis, formulated and refined by Peter Mitchell during the 1960s/1-5) is now the conceptual framework for a wide array of bioenergetic phenomena from photophosphorylation to the uptake and storage of neurogenic amines in the adrenal medulla. Curiously, however, the far-reaching importance of the chemiosmotic concept and the experimental evidence supporting its validity have gone relatively unnoticed because: (1) the chemiosmotic hypothesis was formulated initially to explain oxidative phosphorylation and is still strongly identified with this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitchell, P. 1961. Coupling of phosphorylation to electron hydrogen transfer by a chemiosmotic type of mechanism. Nature (London) 191: 144.

    Article  CAS  Google Scholar 

  2. Mitchell, P. 1963. Molecule, group, and electron translocation through natural membranes. Biochem. Soc. Symp. 22: 142.

    Google Scholar 

  3. Mitchell, P. 1966. Chemiosmotic Coupling in Oxidative andPhotophosphorylation. Glynn Research Ltd., Bodmin, England.

    Google Scholar 

  4. Mitchell, P. 1966. Chemiosmotic Coupling and Energy Transduction. Glynn Research Ltd., Bodmin, England.

    Google Scholar 

  5. Mitchell, P. 1973. Performance and conservation of osmotic work by proton-coupled solute porter systems. J. Bioenerg. 4: 63.

    Article  PubMed  CAS  Google Scholar 

  6. Kaback, H. R. 1960. Uptake of amino acids by “ghosts” of mutant strains of Escherichia coli. Fed. Proc. 19: 130.

    Google Scholar 

  7. Kaback, H. R., and E. R. Stadtman. 1966. Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli. Proc. Natl. Acad. Sci. USA 55: 920.

    Article  CAS  Google Scholar 

  8. Lombardi, F. J., and H. R. Kaback. 1972. Mechanisms of active transport in isolated bacterial membrane vesicles. J. Biol. Chem. 247: 7844.

    PubMed  CAS  Google Scholar 

  9. Short, S. A., D. C. White, andH. R. Kaback. 1972. Mechanisms of active transport in isolated bacterial membrane vesicles. J. Biol. Chem. 247: 7452.

    PubMed  CAS  Google Scholar 

  10. Ramos, S., and H. R. Kaback. 1977. The relationship between the electrochemical proton gradient and active transport in E. coli membrane vesicles. Biochemistry 16: 854.

    Article  PubMed  CAS  Google Scholar 

  11. Short, S. A., H. R. Kaback, and L. D. Kohn. 1974. D-Lactate dehydrogenase binding in E. coli dld- membrane vesicles reconstituted for active transport. Proc. Natl. Acad. Sci. USA 71: 1461.

    Article  PubMed  CAS  Google Scholar 

  12. Kaback, H. R. 1971. Bacterial membranes. Methods Enzymol. 22:99

    Article  Google Scholar 

  13. Owen, P., and H. R. Kaback. 1978. Molecular structure of membrane vesicles from£. coli. Proc. Natl. Acad. Sci. USA 75: 3148.

    Article  CAS  Google Scholar 

  14. Owen, P., and H. R. Kaback. 1979. Immunochemical analysis of membrane vesicles from E. coli. Biochemistry 18: 1413.

    CAS  Google Scholar 

  15. Owen, P., and H. R. Kaback. 1979. Antigenic architecture of membrane vesicles from E. coli. Biochemistry 18: 1422.

    CAS  Google Scholar 

  16. Stroobant, P., and H. R. Kaback. 1975. Ubiquinone-mediated coupling of NADH dehydrogenase to active transport in membrane vesicles from£. coli. Proc. Natl. Acad. Sci. USA 72: 3970.

    Article  CAS  Google Scholar 

  17. Hertzberg, E., and P. C. Hinkle. 1974. Oxidative phosphorylation and proton translocation in membrane vesicles prepared from E. coli. Biochem. Biophys. Res. Commun. 58: 178.

    Article  CAS  Google Scholar 

  18. Rosen, B. P., and J. S. McClees. 1974. Active transport of calcium in inverted membrane vesicles of E. coli. Proc. Natl. Acad. Sci. USA 71: 5042.

    Article  CAS  Google Scholar 

  19. Reenstra, W. W., L. Patel, H. Rottenberg, and H. R. Kaback. 1980. Electrochemical proton gradient in inverted membrane vesicles from E. coli. Biochemistry 19: 1.

    CAS  Google Scholar 

  20. Kaback, H. R. 1970. Transport. Annu. Rev. Biochem. 39: 561.

    Article  PubMed  CAS  Google Scholar 

  21. Kundig, W., S. Ghosh, and S. Roseman. 1964. Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system. Proc. Natl. Acad. Sci. USA 52: 1067.

    Article  PubMed  CAS  Google Scholar 

  22. Dills, S. S., A. Apperson, M. R. Schmidt, and M. H. Saier, Jr. 1980. Carbohydrate transport in bacteria. Microbiol. Rev. 44: 385.

    PubMed  CAS  Google Scholar 

  23. Saier, M. H. 1982. The bacterial phototransferase system in regulation of carbohydrate permease synthesis and activity. In: Membranes and Transport, Volume 2. A. Martonosi, ed. Plenum Press, New York. p. 27.

    Google Scholar 

  24. Kaback, H. R. 1974. Transport studies in bacterial membrane vesicles. Science 186: 882.

    Article  PubMed  CAS  Google Scholar 

  25. Futai, M. 1973. Membrane D-lactate dehydrogenase from Escherichia coli: Purification and properties. Biochemistry 12: 2468.

    Article  PubMed  CAS  Google Scholar 

  26. Kohn, L. D., and H. R. Kaback. 1973. Mechanisms of active transport in isolated bacterial membrane vesicles. XV. Purification and properties of the membrane-bound D-lactate dehydrogenase from E. coli. J. Biol. Chem. 248: 7012.

    CAS  Google Scholar 

  27. Santos, E., H.-F. Kung, I. G. Ylung, andH. R. Kaback. 1982. In vitro synthesis of the membrane-bound D-lactate dehydrogenase of Escherichia coli. Biochemistry 21: 2085.

    Google Scholar 

  28. Young, I. G., A. Jaworowski, and M. Poulis. 1982. Proton electrochemical gradient in Escherichia coli cells and its relation to active transport of lactose. Biochemistry 21: 2092.

    Article  PubMed  CAS  Google Scholar 

  29. Stroobant, P., and H. R. Kaback. 1979. Reconstitution of ubiq- uinone-linked function in membrane vesicles from a double quinone mutant of Escherichia coli. Biochemistry 18: 226.

    CAS  Google Scholar 

  30. Konings, W. N., E. M. Barnes, Jr., and H. R. Kaback. 1971. Mechanisms of active transport in isolated membrane vesicles. J. Biol. Chem. 246: 5857.

    PubMed  CAS  Google Scholar 

  31. Konings, W. N., and J. Boonstra. 1976. Anaerobic electron transfer and active transport in bacteria. Curr. Top. Membr. Transp. 9: 177.

    Article  Google Scholar 

  32. Konings, W. N., and H. R. Kaback. 1973. Anaerobic transport in Escherichia coli membrane vesicles. Proc. Natl. Acad. Sci. USA 70: 3376.

    Article  PubMed  CAS  Google Scholar 

  33. Kaback, H. R. 1976. Molecular biology and energetics of membrane transport. J. Cell. Physiol. 89: 575.

    Article  PubMed  CAS  Google Scholar 

  34. Hugenholtz, J., J.-S. Hong, andH.R. Kaback. 1981. ATP-driven active transport in right-side-out bacterial membrane vesicles. Proc. Natl. Acad. Sci. USA 78: 3446.

    Article  PubMed  CAS  Google Scholar 

  35. Saier, M. H., Jr., D. L. Wentzel, B. U. Feucht, and J. J. Justice. 1975. A transport system for phosphoenolpyruvate, 2-phos- phoglycerate, and 3-phosphogly cerate in Salmonella typhimurium. J. Biol. Chem. 250: 5089.

    CAS  Google Scholar 

  36. Hirata, H., K. H. Altendorf, and F. M. Harold. 1973. Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles of Escherichia coli. Proc. Natl. Acad. Sci. USA 70: 1804.

    Article  CAS  Google Scholar 

  37. Hirata, H., K. H. Altendorf, and F. M. Harold. 1974. Energy coupling in membrane vesicles of Escherichia coli. J. Biol. Chem. 249: 2939.

    PubMed  CAS  Google Scholar 

  38. Kaczorowski, G. J., D. E. Robertson, and H. R. Kaback. 1979. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed Δψ, ΔpH and ΔµH +. Biochemistry 18: 3697.

    Article  PubMed  CAS  Google Scholar 

  39. Schuldiner, S., and H. R. Kaback. 1975. Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochemistry 14: 5451.

    CAS  Google Scholar 

  40. Greville, G. D. 1969. Scrutiny of Mitchell’s chemiosmotic hypothesis of respiratory chain and photosynthetic phosphorylation. Curr. Top. Bioenerg. 3: 1.

    CAS  Google Scholar 

  41. Harold, F. M. 1972. Conservation and transformation of energy by bacterial membranes. Bacteriol. Rev. 36: 172.

    PubMed  CAS  Google Scholar 

  42. Harold, F. M. 1978. Vectorial metabolism. In: The Bacteria, Volume 61. C. Gunsalus, L. N. Ornston, and T. R. Sokatch, eds. Academic Press, New York. p. 463.

    Google Scholar 

  43. Hinkle, P. C., and R. E. McCarty. 1978. How cells make ATP. Sci. Am. 238: 104.

    Article  PubMed  CAS  Google Scholar 

  44. Skulachev, V. P., and P. C. Hinkle, eds. 1981. Chemiosmotic Proton Circuits in Biological Membranes. Addison-Wesley, Reading, Mass.

    Google Scholar 

  45. Doetsch, R. N., and R. D. Sjoblad. 1980. Flagellar structure and function in eubacteria. Annu. Rev. Microbiol. 34: 69.

    Article  PubMed  CAS  Google Scholar 

  46. Laane, C., W. Krone, W. Konings, H. Haaker, and C. Veeger. 1980. Short-term effect of ammonium chloride on nitrogen fixation by Azotobacter vinelandii and by bacteroids of Rhizobium leguminosarum. Eur. J. Biochem. 103: 39.

    Article  CAS  Google Scholar 

  47. Grinius, L., and J. Bervinskiene. 1976. Studies on DNA transport during bacterial conjugation: Role of protonmotive force-generat- ing H + -ATPase and respiratory chain. FEBS Lett. 72: 151.

    Article  PubMed  CAS  Google Scholar 

  48. Grinius, L. 1980. Nucleic acid transport driven by ion gradient across cell membrane. FEBS Lett. 113: 1.

    Article  PubMed  CAS  Google Scholar 

  49. Kalasauskaite, E., and L. Grinius. 1979. The role of energy- yielding ATPase and respiratory chain at early stages of bacteriophage T4 infection. FEBS Lett. 99: 297.

    Article  Google Scholar 

  50. Labedan, G., and E. B. Goldberg. 1979. Requirement for membrane potential in injection of phage T4 DNA. Proc. Natl. Acad. Sci. USA 76: 4669.

    Article  PubMed  CAS  Google Scholar 

  51. Santos, E., and H. R. Kaback. 1981. Involvement of the proton electrochemical gradient in genetic transformation in Escherichia coli. Biochem. Biophys. Res. Commun. 99: 1153.

    Article  CAS  Google Scholar 

  52. Wagner, E. F., H. Ponta, and M. Schweiger. 1980. Development of Escherichia coli virus T1: The role of the proton-motive force. J. Biol. Chem. 255: 534.

    PubMed  CAS  Google Scholar 

  53. Mates, S., E. S. Eisenberg, L. J. Mandel, L. Patel, H. R. Kaback, and M. H. Miller. 1982. Membrane potential and gentamicin uptake in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 79: 6693.

    Article  CAS  Google Scholar 

  54. Loftfield, R. B., E. H. Eigner, A. Pastuszyn, T. N. E. Lovgren, and H. Jakubowski. 1980. Conformational changes during enzyme catalysis: Role of water in the transition state. Proc. Natl. Acad. Sci. USA 77: 3374.

    Article  PubMed  CAS  Google Scholar 

  55. Delmer, D. P., M. Benziman, and E. Padan. 1982. Requirement for a membrane potential for cellulose synthesis in intact cells of Acetoabacter xylinum. Proc. Natl. Acad. Sci. USA 79: 5282.

    Article  CAS  Google Scholar 

  56. Daniels, C. J., D. G. Bole, S. C. Quay, andD. L. Oxender. 1981. Role for membrane potential in the secretion of protein into the periplasm of Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 5396.

    Article  CAS  Google Scholar 

  57. Date, T., C. Zwizniski, S. Ludmerer, and W. Wickner. 1980. Mechanisms of membrane assembly. Effects of energy poisons on the consrversion of soluble M13-coliphage procoat to membranebound coat protein. Proc. Natl. Acad. Sci. USA 77: 827.

    Article  PubMed  CAS  Google Scholar 

  58. Enequist, H. G., T. R. Hirst, S. J. S. Hardy, S. Harayama, andL. L. Randall. 1981. Energy is required for maturation of exported proteins in Escherichia coli. Eur. J. Biochem. 116: 227.

    CAS  Google Scholar 

  59. Kaczorowski, G. J., and H. R. Kaback. 1979. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 1. Effect of pH on efflux, exchange and counterflow. Biochemistry 18: 3691.

    Article  PubMed  CAS  Google Scholar 

  60. Mitchell, P. 1976. Possible molecular mechanisms of the proton- motive function of cytochrome systems. J. Theor. Biol. 62: 327.

    Article  PubMed  CAS  Google Scholar 

  61. Mitchell, P., and J. Moyle. 1979. Respiratory chain protonmotive stoichiometry. Biochem. Soc. Trans. 7: 887.

    PubMed  CAS  Google Scholar 

  62. Brand, M. D., B. Reynafarje, and A. L. Lehninger. 1976. Re- evaluation of the H +/site ratio of mitochondrial electron transport with oxygen pulse technique. J. Biol. Chem. 251: 5670.

    PubMed  CAS  Google Scholar 

  63. Lawford, H. G. 1977. Energy transduction in the mitochondrial- like bacterium Paracoccus denitrifficans during carbon- or sulphate-limited aerobic growth in continuous culture. Can. J. Biochem. 56: 13.

    Google Scholar 

  64. Papa, S., F. Guerrieri, M. Lorusso, G. Izzo, D. Boffoli, and R. Stefanelli. 1970. Reversible effects of chaotropic agents on the proton permeability of Escherichia coli membrane vesicles. FEBS Symp. 45: 37.

    Google Scholar 

  65. Reynafarje, B., M. D. Brand, and A. L. Lehninger. 1976. Evaluation of the H +/site ratio of mitochondrial electron transport from rate measurements. J. Biol. Chem. 251: 7442.

    PubMed  CAS  Google Scholar 

  66. Reynafarje, B., and A. L. Lehninger. 1978. The K + /site and H + /site stoichiometry of mitochondrial electron transport. J. Biol. Chem. 253: 6331.

    PubMed  CAS  Google Scholar 

  67. Sigel, E., and E. Carafoli. 1978. The proton pump of cytochrome c oxidase and its stoichiometry. Eur. J. Biochem. 89: 119.

    Article  PubMed  CAS  Google Scholar 

  68. Wikström, M., and H. T. Saari. 1977. The mechanism of energy conservation and transduction by mitochondrial cytochrome c oxidase. Biochim. Biophys. Acta 462: 347.

    Article  PubMed  Google Scholar 

  69. Wikström, M., and K. Krab. 1978. Cytochrome c oxidase is a proton pump. FEBS Lett. 91: 8.

    Article  PubMed  Google Scholar 

  70. Short, S. A., H. R. Kaback, and L. D. Kohn. 1975. Localization of D-lactate dehydrogenase in native and reconstituted Escherichia coli membrane vesicles. J. Biol. Chem. 250: 4291.

    PubMed  CAS  Google Scholar 

  71. Kaback, H. R., and E. M. Barnes, Jr. 1971. Mechanisms of active transport in isolated membrane vesicles. J. Biol. Chem. 246: 5523.

    PubMed  CAS  Google Scholar 

  72. Haldar, K., P. J. Olsiewski, C. Walsh, G. J. Kaczorowski, A. Bhaduri, andH. R. Kaback. 1982. Simultaneous reconstitution of Escherichia coli membrane vesicles with D-lactate and D-amino acid dehydrogenases. Biochemistry 21: 4590.

    Article  PubMed  CAS  Google Scholar 

  73. Olsiewski, P. J., G. Kaczorowski, C. T. Walsh, and H. R. Kaback. 1981. Reconstitution of Escherichia coli membrane vesicles with D-amino acid dehydrogenase. Biochemistry 20: 6272.

    Article  PubMed  CAS  Google Scholar 

  74. Wikstrom, M., and K. Krab. 1979. Proton-pumping cytochrome c oxidase. Biochim. Biophys. Acta 549: 177.

    PubMed  CAS  Google Scholar 

  75. Solioz, M., E. Carafoli, and B. Ludwig. 1982. The cytochrome c oxidase of Paracoccus denitrificans pumps protons in a reconstituted system. J. Biol. Chem. 257: 1579.

    PubMed  CAS  Google Scholar 

  76. Sone, N., and P. C. Hinkle. 1982. Proton transport of cytochrome c oxidase from the thermophilic bacterium PS3 reconstituted in liposomes. J. Biol. Chem. 257: 12600.

    PubMed  CAS  Google Scholar 

  77. Kita, K., M. Kasahara, and Y. Anraku. 1982. Formation of a membrane potential by reconstituted liposomes made with cytochrome b562-0 complex, a terminal oxidase of Escherichia coli K12. J. Biol. Chem. 257: 7933.

    PubMed  CAS  Google Scholar 

  78. Matsushita, K., L. Patel, R. B. Gennis, and H. R. Kaback. 1983. Reconstitution of active transport in proteoliposomes containing cytochrome o oxidase and lac carrier protein purified from Escherichia coli. Proc. Natl. Acad. Sci. USA 80: 4889.

    Article  CAS  Google Scholar 

  79. Michels, P. A. M., J. P. J. Michels, J. Boonstra, and W. N. Konings. 1979. Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end products. FEMS Microbiol. Lett. 5: 357.

    Article  CAS  Google Scholar 

  80. Otto, R., A. S. M. Sonenberg, H. Veldkamp, andW. N. Konings. 1980. Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux. Proc. Natl. Acad. Sci. USA 77: 5502.

    Article  PubMed  CAS  Google Scholar 

  81. Grinius, L. L., A. A. Jasaitis, Y. P. Kadziauskas, E. A. Liberman, V. P. Skulachev, L. M. Topali, L. M. Tsofina, and M. A. Vladimirova. 1971. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biochim. Biophys. Acta 216: 1.

    Google Scholar 

  82. Haydon, D. A., and S. B. Hladky. 1972. Ion transport across thin lipid-membranes: Critical discussion of mechanisms in selected systems. Q. Rev. Biophys. 5: 187.

    Article  PubMed  CAS  Google Scholar 

  83. Lombardi, F. J., J. P. Reeves, S. A. Short, and H. R. Kaback. 1974. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles. Ann. NY Acad. Sci. 227: 312.

    Article  PubMed  CAS  Google Scholar 

  84. Waggoner, A.J. 1979. The use of cyanine dyes for the determination of membrane potentials in cells, organelles, and vesicles. Methods Enzymol. LV: 689.

    Google Scholar 

  85. Felle, H., J. S. Porter, C. L. Slayman, and H. R. Kaback. 1980. Quantitative measurements of membrane potential in Escherichia coli. Biochemistry 19: 3585.

    CAS  Google Scholar 

  86. Lichtshtein, D., H. R. Kaback, and A. J. Blume. 1979. Use of a lipophilic cation for determination of membrane potential in neuroblastomaglioma hybrid cell suspensions. Proc. Natl. Acad. Sci. USA 76: 650.

    Article  PubMed  CAS  Google Scholar 

  87. Lichtshtein, D., K. Dunlop, H. R. Kaback, and A. J. Blume. 1979. Mechanism of monensin-induced hyperpolarization of neuroblastoma-glioma hybrid NG108-15. Proc. Natl. Acad. Sci. USA 76: 2580.

    Article  PubMed  CAS  Google Scholar 

  88. Young, J. D.-E., J. C. Unkeless, H. R. Kaback, andZ. A. Cohn. 1983. Macrophage membrane potential changes associated with 72b/7l Fc receptor-ligand binding. Proc. Natl. Acad. Sci. USA 80: 1357.

    Article  PubMed  CAS  Google Scholar 

  89. Waddel, W. J. and T. C. Butler. 1959. Calculation of intracellular pH from distribution of 5,5′-dimethyl-2,4-oxazolidinedione (DMO): Application to skeletal muscle of the dog. J. Clin. Invest. 38: 720.

    Article  Google Scholar 

  90. Ramos, S., S. Schuldiner, and H. R. Kaback. 1979. The use of flow dialysis for determinations of ΔpH and active transport. Methods Enzymol. 55: 680.

    Article  PubMed  CAS  Google Scholar 

  91. Kaback, H. R. 1972. Transport across isolated bacterial cytoplasmic membranes. Biochim. Biophys. Acta 265: 367.

    PubMed  CAS  Google Scholar 

  92. Padan, E., D. Zilberstein, and H. Rottenberg. 1976. The proton electrochemical gradient in Escherichia coli cells. Eur. J. Biochem. 63: 533.

    Article  PubMed  CAS  Google Scholar 

  93. Rottenberg, H. 1975. Measurement of transmembrane electrochemical proton gradients. J. Bioenerg. 7: 61.

    Article  PubMed  CAS  Google Scholar 

  94. Colowick, S. P., and F. C. Womack. 1969. Binding of diffusible molecules by macromolecules: Rapid measurement by rate of dialysis. J. Biol. Chem. 244: 774.

    PubMed  CAS  Google Scholar 

  95. Ramos, S., S. Schuldiner, and H. R. Kaback. 1976. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. Proc. Natl. Acad. Sci. USA 73: 1892.

    Article  PubMed  CAS  Google Scholar 

  96. Ramos, S., and H. R. Kaback. 1977. The electrochemical proton gradient in Escherichia coli membrane vesicles. Biochemistry 16: 848.

    Article  PubMed  CAS  Google Scholar 

  97. Ramos, S., and H. R. Kaback. 1977. pH-dependent changes in proton:substrate stoichiometries during active transport in Escherichia coli membrane vesicles. Biochemistry 16: 4271.

    Google Scholar 

  98. Tokuda, H., andH. R. Kaback. 1977. Sodium-dependent methyl 1-thio-β-D-galactopyranoside transport in membrane vesicles isolated from Salmonella typhimurium. Biochemistry 16: 2130.

    Article  CAS  Google Scholar 

  99. Navon, G., S. Ogawa, R. G. Schulman, and T. Yamane. 1977. High resolution 31P nuclear magnetic resonance studies of metabolism in aerobic Escherichia coli cells. Proc. Natl. Acad. Sci. USA 74: 888.

    Article  PubMed  CAS  Google Scholar 

  100. Ogawa, S., R. G. Schulman, P. Glynn, T. Yamane, and G. Navon. 1978. On the measurement of pH in Escherichia coli by 31P nuclear magnetic resonance. Biochim. Biophys. Acta 502: 45.

    Article  PubMed  CAS  Google Scholar 

  101. Zilberstein, D., S. Schuldiner, and E. Padan. 1979. Proton electrochemical gradient in Escherichia coli cells and its relation to active transport of lactose. Biochemistry 18: 669.

    Article  PubMed  CAS  Google Scholar 

  102. Schuldiner, S., and H. Fishkes. 1978. Sodium-proton antiport in isolated membrane vesicles of Escherichia coli. Biochemistry 17: 706.

    CAS  Google Scholar 

  103. Schuldiner, S., and E. Padan. 1982. How does Escherichia coli regulate internal pH? In: Membranes and Transport, Volume 2. A. Martonosi, ed. Plenum Press, New York. p. 65.

    Google Scholar 

  104. Zilberstein, D., E. Padan, and S. Schuldiner. 1980. A single locus in Escherichia coli governs growth in alkaline pH and on carbon sources whose transport is sodium dependent. FEB S Lett. 116: 177.

    Article  CAS  Google Scholar 

  105. Krulwich, T. A. 1982. Bioenergetic problems of alkalophilic bacteria. In: Membranes and Transport, Volume 2. A. Martonosi, ed. Plenum Press, New York. p. 75.

    Google Scholar 

  106. Krulwich, T. A. 1983. Sodium/proton antiporters. Biochim. Biophys. Acta 726: 245.

    PubMed  CAS  Google Scholar 

  107. Henderson, P. J. F., R. A. Giddens, and M. C. Jones-Mortimer. 1977. Transport of galactose, glucose and their molecular analogues by Escherichia coli K12. Biochem. J. 162: 309.

    PubMed  CAS  Google Scholar 

  108. Kashket, E. R., and T. H. Wilson. 1973. Proton-coupled accumulation of galactoside in Streptococcus lactis 7962. Proc. Natl. Acad. Sci. USA 70: 2866.

    Article  PubMed  CAS  Google Scholar 

  109. Lam, V. M. S., K. R. Daruwalla, P. J. F. Henderson, and M. C. Jones-Mortimer. Proton-linked D-xylose transport in Escherichia coli. J. Bacteriol. 143:396.

    Google Scholar 

  110. West, I.C. 1970. Lactose transport coupled to proton movements in Escherichia coli. Biochem. Biophys. Res. Commun. 41: 655.

    Article  CAS  Google Scholar 

  111. West, I. C., and P. Mitchell. 1972. Proton-coupled ß-galactoside translocation in nonmetabolizing Escherichia coli. J. Bioenerg. 3: 445.

    CAS  Google Scholar 

  112. West, I. C., and P. Mitchell. 1973. Stoichiometry of lactose- protein symport across the plasma membrane of Escherichia coli. Biochem. J. 132: 587.

    CAS  Google Scholar 

  113. West, I. C., and T. H. Wilson. 1973. Galactoside transport dissociated from proton movement in mutants in Escherichia coli. Biochem. Biophys. Res. Commun. 50: 551.

    Article  CAS  Google Scholar 

  114. Daruwalla, K. R., A. T. Paxton, and P. J. F. Henderson. 1981. Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli. Biochem. J. 200: 611.

    CAS  Google Scholar 

  115. Patel, L., M. L. Garcia, andH. R. Kaback. 1982. Direct measurement of lactose/proton symport in Escherichia coli membrane vesicles: Further evidence for the involvement of histidine residue(s). Biochemistry 21: 5805.

    Article  PubMed  CAS  Google Scholar 

  116. Robertson, D. E., G. J. Kaczorowski, M. L. Garcia, and H. R. Kaback. 1980. Active transport in membrane vesicles from Escherichia coli: The electrochemical proton gradient alters the distribution by the lac carrier between two different kinetic states. Biochemistry 19: 5692.

    Article  PubMed  CAS  Google Scholar 

  117. LeBlanc, G., G. Rimon, and H. R. Kaback. 1980. Glucose 6- phosphate transport in membrane vesicles isolated from Escherichia colt Effect of imposed electrical potential and pH gradient. Biochemistry 19: 2522.

    Article  PubMed  CAS  Google Scholar 

  118. Rottenberg, H. 1976. The driving force for proton(s)/metabolite contransport in bacterial cells. FEBS Lett. 66: 159.

    Article  PubMed  CAS  Google Scholar 

  119. Booth, I. R., W. J. Mitchell, and W. A. Hamilton. 1979. Quantitative analysis of proton-linked transport systems: The lactose permease of Escherichia coli. Biochem. J. 182: 687.

    CAS  Google Scholar 

  120. Taylor, D. J., andR. C. Essenberg. 1979. Proc. 11th Int. Congr. Biochem. (abstract) p. 460.

    Google Scholar 

  121. Stock, J., and S. Roseman. 1971. A sodium-dependent sugar cotransport system in bacteria. Biochem. Biophys. Res. Commun. 44: 132.

    Article  PubMed  CAS  Google Scholar 

  122. Lanyi, J. K., R. Renthal, and R. E. MacDonald. 1976. Light- induced glutamate transport in Halobacterium halobium envelope vesicles. II. Evidence that the driving force is a light-dependent sodium gradient. Biochemistry 15: 1603.

    Article  PubMed  CAS  Google Scholar 

  123. Cohn, D., G. J. Kaczorowski, andH. R. Kaback. 1981. Effect of the proton electrochemical gradient on maleimide inactivation of active transport in Escherichia coli membrane vesicles. Biochemistry 20: 3308.

    Article  PubMed  CAS  Google Scholar 

  124. Cuffanti, A. A., D. E. Cohn, H. R. Kaback, andT. A. Krulwich. 1981. Relationship between the Na + /H + antiporter and Na +/substrate symport in Bacillus alcalophilus. Proc. Natl. Acad. Sci. USA 78: 1481.

    Article  Google Scholar 

  125. Cohen, G. N., and H. V. Rickenberg. 1955. Study of the fixation of an inducer of ß-galactosidase by Escherichia coli. Compt. Rendu 240: 466.

    CAS  Google Scholar 

  126. Cohen, G. N., and J. Monad. 1957. Bacterial permeases. Bacteriol. Rev. 21: 169.

    PubMed  CAS  Google Scholar 

  127. Kepes, A., andG. N. Cohen. 1962. Permeation. In: The Bacteria, Volume 4.1. C. Gunsalus, and R. Stanier, eds. Academic Press, New York. p. 179.

    Google Scholar 

  128. Kepes, A. 1971. ß-Galactoside permease of Escherichia coli. J. Membr. Biol. 4: 87.

    CAS  Google Scholar 

  129. Rickenberg, H. V., G. N. Cohen, G. Buttin, and J. Monod. 1956. Galactoside-permease of Escherichia coli. Ann. Inst. Pasteur 91: 829.

    CAS  Google Scholar 

  130. Ghazi, A., and E. Shechter. 1981. Lactose transport in Escherichia coli cells: Dependence of kinetic parameters on the transmembrane electrical potential difference. Biochim. Biophys. Acta 645: 305.

    Google Scholar 

  131. Sandermann, H., Jr. 1977. ß-D-Galactoside transport in Escherichia coli: Substrate recognition. Eur. J. Biochem. 80: 507.

    Article  PubMed  CAS  Google Scholar 

  132. Hobson, A. C., D. Gho, and B. Müller-Hill. 1977. Isolation, genetic analysis, and characterization of Escherichia coli mutants with defects in the lac y gene. J. Bacteriol. 131: 830.

    PubMed  CAS  Google Scholar 

  133. Kennedy, E.P.I 1970. The lactose permease system of Escherichia coli. In: The Lactose Operon. J. R. Beckwith and D. Zipser, eds. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y. p. 49.

    Google Scholar 

  134. Padan, E., S. Schuldiner, and H. R. Kaback. 1979. Reconstitution of lac carrier function in cholate-extracted membranes from Escherichia coli. Biochem. Biophys. Res. Commun. 91: 854.

    Article  CAS  Google Scholar 

  135. Teather, R. M., B. Müller-Hill, V. Abrutsch, G. Aichele, and P. Overath. 1978. Amplification of lactose carrier protein in Escherichia coli using a plasmid vector. Mol. Gen. Genet. 159: 239.

    Article  PubMed  CAS  Google Scholar 

  136. Teather, R. M., J. Bramhall, I. Riede, J. K. Wright, M. Fürst, G. Aichele, V. Wilhelm, and P. Overath. 1980. Lactose carrier protein of Escherichia coli: Structure and expression of plasmids carrying the y gene of the lac operon. Eur. J. Biochem. 108: 223.

    Article  PubMed  CAS  Google Scholar 

  137. Büchel, D. E., B. Gronenborn, and B. Müller-Hill. 1980. Sequence of the lactose permease gene. Nature (London) 283: 541.

    Article  Google Scholar 

  138. Ehring,R.,K.Beyreuther, J. K.Wright, and P. Overath. 1980. In vitro and in vivo products of Escherichia coli lactose permease gene are identical. Nature (London) 283: 537.

    Article  Google Scholar 

  139. Newman, M. J., and T. H. Wilson. 1980. Solubilization and reconstitution of the lactose transport system from Escherichia coli. J. Biol. Chem. 255: 10583.

    CAS  Google Scholar 

  140. Racker, E., B. Violand, S. O’Neal, M. Alfonzo, and J. Telford. 1979. Reconstitution, a way of biochemical research; some new approaches to membrane-bound enzymes. Arch. Biochem. Biophys. 198: 470.

    Article  PubMed  CAS  Google Scholar 

  141. Kaczorowski, G. J., G. LeBlanc, and H. R. Kaback. 1980. Specific labeling of the lac carrier protein in membrane vesicles of Escherichia coli by a photoaffinity reagent. Proc. Natl. Acad. Sei. USA 77: 6319.

    Article  CAS  Google Scholar 

  142. Foster, D. L., M. L. Garcia, M. J. Newman, L. Patel, and H. R. Kaback. 1982. Lactose-proton symport by purified lac carrier protein. Biochemistry 21: 5634.

    Article  PubMed  CAS  Google Scholar 

  143. Newman, M. J., D. Foster, T. H. Wilson, and H. R. Kaback. 1981. Purification and reconstitution of functional lactose carrier from Escherichia coli. J. Biol. Chem. 256: 11804.

    CAS  Google Scholar 

  144. Patel, L., S. Schuldiner, and H. R. Kaback. 1975. Reversible effects of chaotropic agents on the proton permeability of Escherichia coli membrane vesicles. Proc. Natl. Acad. Sci. USA 72: 3387.

    Article  PubMed  CAS  Google Scholar 

  145. Jones, T. H. D., and E. P. Kennedy. 1969. Characterization of the membrane protein component of the lactose transport system of Escherichia coli. J. Biol. Chem. 244: 5981.

    CAS  Google Scholar 

  146. Banker, G. A., and C. W. Cotman. 1972. Measurement of free electrophoretic mobility and retardation coefficient of protein-sodium dodecyl sulfate complexes by gel electrophoresis. J. Biol. Chem. 247: 5856.

    PubMed  CAS  Google Scholar 

  147. Neville, D., M., Jr. 1971. Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J. Biol. Chem. 246: 6328.

    PubMed  CAS  Google Scholar 

  148. König, B., and H. Sandermann, Jr. 1982. ß-Galactoside transport in Escherichia coli: Mr determination of the transport protein in organic solvent. FEBS Lett. 147: 31.

    Article  PubMed  Google Scholar 

  149. Garcia, M. L., P. Viitanen, D. L. Foster, and H. R. Kaback. 1983. Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. I. Effect of pH and imposed membrane potential on efflux, exchange and counterflow. Biochemistry 22: 2524.

    Article  PubMed  CAS  Google Scholar 

  150. Hong, J.-S. 1977. An ecf mutation in Escherichia coli pleiotropically affecting energy coupling in active transport but not generation or maintenance of membrane potential. J. Biol. Chem. 252: 8582.

    PubMed  CAS  Google Scholar 

  151. Plate, C. A., and J. L. Suit. 1981. The eup genetic locus of Escherichia coli and its role in H + /solute symport. J. Biol. Chem. 256: 12974.

    PubMed  CAS  Google Scholar 

  152. Villarejo, M., and C. Ping. 1978. Localization of the lactose permease protein(s) in the E. coli envelope. Biochem. Biophys. Res. Commun. 82: 935.

    Article  PubMed  CAS  Google Scholar 

  153. Villarejo, M. 1980. Evidence for the two lac y gene derived protein products in the Escherichia coli membrane. Biochem. Biophys. Res. Commun. 93: 16.

    Article  PubMed  CAS  Google Scholar 

  154. Wright, J. K., H. Schwarz, E. Straub, P. Overath, B. Bieseler and K. Beyreuther. 1982. Lactose carrier protein of Escherichia coli. Reconstitution of galactoside binding and countertransport. Eur. J. Biochem. 124: 545.

    Article  PubMed  CAS  Google Scholar 

  155. Viitanen, P., M. L. Garcia, D. L. Foster, G. J. Kaczorowski, and H. R. Kaback. 1983. Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. 2. Deuterium solvent isotope effects. Biochemistry 22: 2531.

    Article  PubMed  CAS  Google Scholar 

  156. Jencks, W. P. 1969. Catalysis in Chemistry and Enzymology. McGraw-Hill, New York.

    Google Scholar 

  157. Foster, D. L., M. Boublik, and H. R. Kaback. 1983. Structure nt the lac carrier protein of Escherichia coli. J. Biol. Chem. 258: 31.

    CAS  Google Scholar 

  158. Kyte, J., and R. F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105.

    Article  PubMed  CAS  Google Scholar 

  159. Chou, P. Y., and G. D. Fasman. 1974. Prediction of protein conformation. Biochemistry 13: 222.

    Article  PubMed  CAS  Google Scholar 

  160. Engleman, D. M., P. Henderson, A. D. McLachlan, and B. A. Wallace. 1980. Path of the polypeptide in bacteriorhodopsin. Proc. Natl. Acad. Sei. USA 77: 2023.

    Article  Google Scholar 

  161. Henderson, R. and P. N. T. Unwin. 1975. Three-dimensional model of purple membrane obtained by electron microscopy. Nature (London) 257: 28.

    Article  CAS  Google Scholar 

  162. Goldkorn, T., G. Rimon, and H. R. Kaback. 1983. Topology of the lac carrier protein in the membrane of Escherichia coli. Proc. Natl. Acad. Sei. USA 80: 3322.

    Article  CAS  Google Scholar 

  163. Seckler, R., J. K. Wright, and P. Overath. 1983. Peptide-specific antibody locates the COOH terminus of the lactose carrier of Escherichia coli on the cytoplasmic side of the plasma membrane. J. Biol. Chem. 258: 10817.

    PubMed  CAS  Google Scholar 

  164. Carrasco, N., D. Herzlinger, S. DeChiara, W. Danho, T. F. Gabriel, and H. R. Kaback. 1984. Topology of the lac carrier protein in the membrane of Escherichia coli. Biophys. J. 45: 83a.

    Google Scholar 

  165. Carrasco, N., D. Herzlinger, R. Mitchell, S. DeChiara, W. Danho, T. F. Gabriel, and H. R. Kaback. 1984. Intramolecular dislocation of the C-terminus of the lac carrier protein in reconstituted proteoliposomes. Proc. Natl. Acad. Sci. USA 81: 4672.

    Article  PubMed  CAS  Google Scholar 

  166. Carrasco, N., P. Viitanen, D. Herzlinger, and H. R. Kaback. 1984. Monoclonal antibodies against the lac carrier protein from Escherichia coli. I. Functional studies. Biochemistry 23: 3681.

    Article  PubMed  CAS  Google Scholar 

  167. Herzlinger, D., P. Viitanen, N. Carrasco, and H. R. Kaback. 1984. Monoclonal antibodies against the lac carrier protein from Escherichia coli. II. Binding studies with membrane vesicles and proteoliposomes reconstituted with purified lac carrier protein. Biochemistry 23: 3688.

    Article  PubMed  CAS  Google Scholar 

  168. Seckler, R., and J. K. Wright. 1984. Sidedness of native membrane vesicles of Escherichia coli and orientation of the reconstituted lactose:H+ carrier. Eur. J. Biochem. 142: 269.

    Article  PubMed  CAS  Google Scholar 

  169. Seckler, R., and J. K. Wright. 1984. Sidedness of native membrane vesicles of Escherichia coli and orientation of the reconstituted lactose:H+ carrier. Eur. J. Biochem. 142: 269.

    Article  PubMed  CAS  Google Scholar 

  170. Wong, P. T. S., E. R. Kashket, and T. H. Wilson. 1970. Energy- coupling in the lactose transport system of Escherichia coli. Proc. Natl. Acad. Sci. USA 65: 63.

    Article  CAS  Google Scholar 

  171. Wright, J. K., U. Weigel, A. Lustig, H. Bocklage, M. Mieschendahl, B. Müller-Hill, and P. Overath. 1983. Does the lactose carrier of Escherichia coli function as a monomer? FEBS Lett. 162: 11.

    Article  PubMed  CAS  Google Scholar 

  172. Goldkorn, T., G. Rimon, and H. R. Kaback. 1983. Topology of the lac carrier protein in the membrane of Escherichia coli. Proc. Natl. Acad. Sei. USA 80: 3322.

    Article  CAS  Google Scholar 

  173. Mieschendahl, M., D. Büchel, H. Bocklage, B. Müller-Hill. 1981. Mutations in the lac y gene of Escherichia coli define functional organization of lactose permease. Proc. Natl. Acad. Sci. USA 78: 7652.

    Article  PubMed  CAS  Google Scholar 

  174. Fox, C. F., and E. P. Kennedy. 1965. Specific labeling and partial purification of the M protein, a component of the ß-galactoside transport system of Escherichia coli. Proc. Natl. Acad. Sci. USA 54: 891.

    Article  CAS  Google Scholar 

  175. Beyreuther, K., B. Bieseler, R. Ehring, and B. Müller-Hill. 1981. Identification of internal residues of lactose permease of Escherichia coli by radiolabel of peptide mixtures. In: Methods in Protein Sequence Analysis. M. Elzina, ed. Humana Press, Clifton, N.J. p. 139.

    Google Scholar 

  176. Zoller, M. J., and M. Smith. 1983. Oligonucleotide-directed mutagenesis of DNA fragments cloned into Ml3 vectors. Methods Enzymol. 100: 468.

    Article  PubMed  CAS  Google Scholar 

  177. Trumble, W. R., P. V. Viitanen, H. K. Sarkar, M. S. Poonian, and H. R. Kaback. 1984. Site-directed mutagenesis of Cys148 in the lac carrier protein of Escherichia coli. Biochem. Biophys. Res. Commun. 119: 860.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Kaback, H.R. (1986). Active Transport in Escherichia Coli From Membrane to Molecule. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2097-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2097-5_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9242-5

  • Online ISBN: 978-1-4613-2097-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics