Skip to main content

Ion-Coupled Transport of Organic Solutes across Biological Membranes

  • Chapter
Physiology of Membrane Disorders

Abstract

The decade between 1957 and 1967 was a remarkable period in the evolution of our understanding of the relations between membrane transport and energy transduction by biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Skou, J. C. 1957. The influence of some cations on adenosinetriphosphatase from peripheral nerves. Biochim. Biophys. Acta 23: 394 – 401.

    Article  PubMed  CAS  Google Scholar 

  2. Dean, R. B. 1941. Theories of electrolyte equilibrium in muscle. Biol. Symp. 3: 331 – 348.

    CAS  Google Scholar 

  3. Garrahan, P. J., and I. M. Glynn. 1967. The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump. J. Physiol. (London) 192: 237 – 256.

    CAS  Google Scholar 

  4. Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic mechanism. Nature (London) 191: 144 – 148.

    Article  CAS  Google Scholar 

  5. Kaback, H. R. 1983. The Lac carrier protein in Escherichia coli. J. Membr. Biol. 76: 95 – 112.

    Article  PubMed  CAS  Google Scholar 

  6. Schultz, S. G., and P. F. Curran. 1970. Coupled transport of sodium and organic solutes. Physiol. Rev. 50: 637 – 718.

    PubMed  CAS  Google Scholar 

  7. Mitchell, P. 1963. Molecular, group and electron translocation through natural membranes. Biochem. Soc. Symp. 22: 142 – 169.

    Google Scholar 

  8. Eddy, A. A. 1978. Proton-dependent solute transport in microorganisms. Curr. Top. Membr. Transp. 10: 279 – 360.

    Article  CAS  Google Scholar 

  9. Eddy, A. A., K. Backen, A. J. Nowacki. 1969. Translocation of protons and alkali metal cations accompanying the uptake of neutral amino acids by yeast. Biochem. J. 116: 34P – 35 P.

    Google Scholar 

  10. Mitchell, P. 1973. Performance and conservation of osmotic work by proton-coupled solute porter systems. J. Bioenerg. 4: 63 – 91.

    Article  PubMed  CAS  Google Scholar 

  11. Bentrup, F. W. 1980. Electrogenic membrane transport in plants: A review. Biophys. Struct. Mech. 6: 175 – 189.

    Article  CAS  Google Scholar 

  12. Tanner, W., E. Komor, F. Fenzl, and M. Decker. 1977. Sugar- proton cotransport systems. In: Regulation of Cell Membrane Activities in Plants. E. Marre and O. Cifferri, eds. Elsevier, Amsterdam. pp. 79 – 90.

    Google Scholar 

  13. Slayman, C. L. 1975. Proton pumping and generalized energetics of transport: A review. In: Membrane Transport in Plants. U. Zimmermann and J. Dainty, eds. Springer-Verlag, Berlin, pp. 107– 119.

    Google Scholar 

  14. Schultz, S. G. 1978. Ion-coupled transport across biological membranes. In: Physiology of Membrane Disorders. T. E. Andreoli, J. F. Hoffman and D. D. Fanestil, eds. Plenum Press, New York. pp. 273 – 286.

    Google Scholar 

  15. Crane, R. K. 1977. The gradient hypothesis and other models of carrier-mediated active transport. Rev. Physiol. Biochem. Pharmacol. 78: 99 – 159.

    Article  PubMed  CAS  Google Scholar 

  16. Gomme, J. 1982. Epidermal nutrient absorption in marine invertebrates: A comparative analysis. Am. Zool. 22: 691 – 708.

    CAS  Google Scholar 

  17. Kimmich, G. A. 1973. Coupling between Na and sugar transport in small intestine. Biochim. Biophys. Acta 300: 31 – 78.

    PubMed  CAS  Google Scholar 

  18. Schultz, S. G. 1977. Sodium-coupled solute transport by small intestine: A status report. Am. J. Physiol. 233: E249 – E254.

    PubMed  CAS  Google Scholar 

  19. Kimmich, G. A. 1981. Intestinal absorption of sugar. In: Physiology of the Gastrointestinal Tract. L. R. Johnson, ed. Raven Press, New York. pp. 1035 – 1061.

    Google Scholar 

  20. Stevens, B. R., J. D. Kaunitz, and E. M. Wright. 1984. Intestinal transport of amino acids and sugars: Advances using membrane vesicles. Annu. Rev. Physiol. 46: 417 – 433.

    Article  PubMed  CAS  Google Scholar 

  21. Kinne, R. 1976. Properties of the glucose transport system in the renal brush border. Curr. Top. Membr. Transp. 8: 209 – 267.

    CAS  Google Scholar 

  22. Sacktor, B. 1982. Na+ gradient-dependent transport systems in renal proximal tubule brush border membrane vesicles. In: Membranes and Transport, Volume 2. A Martonosi, ed. Plenum Press, New York. pp. 197 – 206.

    Google Scholar 

  23. Geek, P., and E. Heinz. 1976. Coupling in secondary transport: Effect of electrical potentials on the kinetics of ion linked co-transport. Biochim. Biophys. Acta 443: 49 – 63.

    Article  Google Scholar 

  24. Heinz, E., and P. Geek. 1978. The electrical potential difference as a driving force in Na+-linked cotransport of organic solutes. In: Membrane Transport Processes, Volume 1. J. F. Hoffman, ed. Raven Press, New York. pp. 13 – 30.

    Google Scholar 

  25. Hansen, U.-P., D. Gradmann, D. Sanders, and C. L. Slayman. 1981. Interpretation of current-voltage relationships for “active” ion transport systems. I. Steady-state reaction-kinetic analysis of class-I mechanisms. J. Membr. Biol. 63: 165 – 190.

    Article  PubMed  CAS  Google Scholar 

  26. Sanders, D., U.-P. Hansen, D. Gradmann, and C. L. Slayman. 1984. Generalized kinetic analysis of ion-driven cotransport systems: A unified interpretation of selective ionic effects on Michaelis parameters. J. Membr. Biol. 77: 123 – 152.

    PubMed  CAS  Google Scholar 

  27. Jacquez, J. A. 1972. Models of ion and substrate cotransport and the effect of the membrane potential. Math. Biosci. 13: 71 – 93.

    Article  CAS  Google Scholar 

  28. Turner, R. J. 1983. Quantitative studies of cotransport systems: Models and vesicles. J. Membr. Biol. 76: 1 – 15.

    Article  PubMed  CAS  Google Scholar 

  29. Turner, R. J. 1981. Kinetic analysis of a family of cotransport models. Biochim. Biophys. Acta 649: 269 – 280.

    Article  PubMed  CAS  Google Scholar 

  30. Csaky, T. Z., and M. Thale. 1960. Effect of ionic environment on intestinal sugar transport. J. Physiol. (London) 151: 59 – 65.

    CAS  Google Scholar 

  31. Csaky, T. Z. 1963. A possible link between active transport of electrolytes and nonelectrolytes. Fed. Proc. 22: 3 – 7.

    CAS  Google Scholar 

  32. Bihler, I., and R. K. Crane. 1962. Studies on the mechanism of the intestinal absorption of sugars. V. The influence of several cations and anions on the active transport of sugars, in vitro, by various preparations of hamster small intestine. Biochim. Biophys. Acta 59: 78 – 93.

    Article  PubMed  CAS  Google Scholar 

  33. Bihler, I., K. A. Hawkins, and R. K. Crane. 1962. Studies on the mechanism of intestinal absorption of sugars. VI. The specificity and other properties of Na+ dependent entrance of sugars into intestinal tissue under anaerobic conditions in vitro. Biochim. Biophys. Acta 59: 94 – 102.

    Article  PubMed  CAS  Google Scholar 

  34. Schultz, S. G., and R. Zalusky. 1964. Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport. J. Gen. Physiol. 47: 1043 – 1059.

    Article  PubMed  CAS  Google Scholar 

  35. Schultz, S. G., and R. Zalusky. 1965. Interactions between active sodium transport and active amino acid transport in isolated rabbit ileum. Nature (London) 204: 292 – 294.

    Article  Google Scholar 

  36. Frizzell, R. A., and S. G. Schultz. 1970. Effects of monovalent cations on the sodium-alanine interaction in rabbit ileum: Implication of anionic groups in sodium binding. J. Gen. Physiol. 56:462– 490.

    Article  PubMed  CAS  Google Scholar 

  37. Wright, E. M. 1984. Electrophysiology of plasma membrane vesicles. Am. J. Physiol. 246: F363 – F372.

    PubMed  CAS  Google Scholar 

  38. Rose, R. C., and S. G. Schultz. 1971. Studies on the electrical potential profile across rabbit ileum: Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J. Gen. Physiol. 57: 639 – 663.

    Article  PubMed  CAS  Google Scholar 

  39. White, J. F., and W. M. Armstrong. 1971. Effect of transported solutes on membrane potentials in bullfrog small intestine. Am. J. Physiol. 221: 194 – 201.

    PubMed  CAS  Google Scholar 

  40. Maruyama, T., and T. Hoshi. 1972. The effect of D-glucose on the electrical potential profile across the proximal tubule of newt kidney. Biochim. Biophys. Acta 282: 214 – 225.

    Article  PubMed  CAS  Google Scholar 

  41. Hoshi, T., K. Sudo, and Y. Suzuki. 1976. Characteristics of changes in the intracellular potential associated with transport of neutral, dibasic and acidic amino acids in Triturus proximal tubule. Biochim. Biophys. Acta 448: 492 – 504.

    Article  PubMed  CAS  Google Scholar 

  42. Okada, Y., W. Tsuchiya, A. Irimajiri, and A. Inouye. 1977. Electrical properties and active solute transport in rat small intestine. I. Potential profile changes associated with sugar and amino acid transports. J. Membr. Biol. 31: 205 – 219.

    Article  PubMed  CAS  Google Scholar 

  43. Gunter-Smith, P., E. Grasset, and S. G. Schultz. 1982. Sodium- coupled amino acid and sugar transport by Necturus small intestine: An equivalent electrical circuit analysis of a rheogenic co-transport system. J. Membr. Biol. 66: 25 – 39.

    Article  PubMed  CAS  Google Scholar 

  44. Fromter, E. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. I. Basic principles. Pfluegers Arch. 393: 179 – 189.

    Article  CAS  Google Scholar 

  45. Samarziji, I., and E. Fromter. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. III. Neutral amino acids. Pfluegers Arch. 393: 199 – 209.

    Article  Google Scholar 

  46. Samarziji, I., and E. Fromter. 1982. Electrophysiologic analysis of rat renal sugar and amino acid transport. IV. Basic amino acids. Pfluegers Arch. 393: 210 – 214.

    Article  Google Scholar 

  47. Samarziji, I., and E. Fromter. 1982. Electrophysiologic analysis of rat renal sugar and amino acid transport. V. Acidic amino acids. Pfluegers Arch. 393: 215 – 221.

    Article  Google Scholar 

  48. Lee, C. O., and W. M. Armstrong. 1972. Activities of sodium and potassium ions in epithelial cells of small intestine. Science 175: 1261–1264.

    Article  PubMed  CAS  Google Scholar 

  49. Hudson, R. L., and S. G. Schultz. 1984. Sodium-coupled sugar transport: Effects on intracellular sodium activities and sodium- pump activity. Science 224: 1237 – 1239.

    Article  PubMed  CAS  Google Scholar 

  50. O’Doherty, J., J. F. Garcia-Diaz, and W. M. Armstrong. 1979. Sodium-selective liquid ion-exchanger microelectrodes for intracellular measurements. Science 203: 1349 – 1351.

    Article  PubMed  Google Scholar 

  51. Goldner, A. M., S. G., Schultz, and P. F. Curran. 1969. Sodium and sugar fluxes across the mucosal border of rabbit ileum. J. Gen. Physiol. 53: 362 – 383.

    Article  PubMed  CAS  Google Scholar 

  52. Hopfer, U., and R. Groseclose. 1980. The mechanism of Na-dependent d-glucose transport. J. Biol. Chem. 255: 4453 – 4462.

    PubMed  CAS  Google Scholar 

  53. Kaunitz, J. D., R. Gunther, and E. M. Wright. 1982. Involvement of multiple sodium ions in intestinal d-glucose transport. Proc. Natl. Acad. Sci. USA 79: 2315 – 2318.

    Article  PubMed  CAS  Google Scholar 

  54. Kimmich, G. A., and J. Randies. 1980. Evidence for an intestinal Na: sugar transport coupling stoichiometry of 2.0. Biochim. Biophys. Acta 596: 439 – 444.

    Article  PubMed  CAS  Google Scholar 

  55. Turner, R. J., and A. Moran. 1982. Stoichiometric studies of the renal outer cortical brush border membrane d-glucose transporter. J. Membr. Biol. 67: 73 – 80.

    Article  PubMed  CAS  Google Scholar 

  56. Turner, R. J., and A. Moran. 1982. Heterogeneity of sodium- dependent d-glucose transport sites along the proximal tubule: Evidence from vesicle studies. Am. J. Physiol. 242: F406 – F414.

    PubMed  CAS  Google Scholar 

  57. Kaunitz, J. D., and E. M. Wright. 1984. Kinetics of sodium d- glucose cotransport in bovine intestinal brush border vesicles. J. Membr. Biol, 79: 41 – 51.

    Article  PubMed  CAS  Google Scholar 

  58. Armstrong, W. M., B. J. Byrd, and P. M. Hamang. 1973. Energetic adequacy of Na gradients for sugar accumulation in epithelial cells of small intestine. Biochim. Biophys. Acta 330: 237 – 241.

    Article  PubMed  CAS  Google Scholar 

  59. Armstrong, W. M., J. F. Garcia-Diaz, J. O’Doherty, and M. G. O’Regan. 1979. Transmucosal Na electrochemical potential difference and solute accumulation in epithelial cells of the small intestine. Fed. Proc. 38: 2722 – 2728.

    PubMed  CAS  Google Scholar 

  60. Dubinsky, W. P., and J. E. Langridge-Smith. 1985. Endogenous transmembrane pH and electrical gradients in apical plasma membrane vesicles isolated from bovine tracheal epithelium. J. Physiol. (London). 358: 73 p.

    Google Scholar 

  61. Hopfer, U. 1977. Kinetics of Na-dependent d-glucose transport. J. Supramol. Struct. 7: 1 – 13.

    Article  PubMed  CAS  Google Scholar 

  62. Stirling, C. E. 1967. High-resolution radioautography of phlorizin-3H in rings of hamster intestine. J. Cell Biol. 35: 605 – 618.

    Article  PubMed  CAS  Google Scholar 

  63. Aronson, P. S. 1978. Energy-dependence of phlorizin binding to isolated renal microvillus membranes. J. Membr. Biol. 42: 81 – 98.

    Article  PubMed  CAS  Google Scholar 

  64. Toggenburger, G., M. Kessler, A. Rothstein, G. Semenza, and C. Tannenbaum. 1978. Similarity in effects of Na-gradients and membrane potentials on d-glucose transport and phlorizin binding to vesicles derived from brush borders of rabbit intestinal cells. J. Membr. Biol. 40: 269 – 290.

    Article  PubMed  CAS  Google Scholar 

  65. Turner, R. J., and M. Silverman. 1981. Interaction of phlorizin and sodium with the renal brush border membrane d-glucose transporter: Stoichiometry and order of binding. J. Membr. Biol. 58:43– 55.

    Article  PubMed  CAS  Google Scholar 

  66. Kessler, M., and G. Semenza. 1983. The small-intestinal Na+, d- glucose cotransporter: An asymmetric gated channel (or pore) responsive to Δ ψ. J. Membr. Biol. 76: 27 – 56.

    Article  PubMed  CAS  Google Scholar 

  67. Deidrich, D. F. 1966. Glucose transport carrier in dog kidney: Its concentration and turnover number. Am. J. Physiol. 211: 581 – 587.

    Google Scholar 

  68. Bode, F., K. Baumann, and D. F. Diedrich. 1972. Inhibition of 3H- phlorizin binding to isolated kidney brush border membranes by phlorizin-like compounds. Biochim. Biophys. Acta 290: 134 – 149.

    Article  PubMed  CAS  Google Scholar 

  69. Hoffman, J. F., B. G. Kennedy, and G. Lunn. 1981. Modulators of red cell Na/K pump rates. In: Erythrocyte Membranes 2: Recent Clinical and Experimental Advances. W. C. Kruckeberg, J. W. Eaton, and G. J. Brewer, eds. Liss, New York. pp. 5 – 9.

    Google Scholar 

  70. Klingenberg, M. 1980. The ADP-ATP translocation in mitochondria, a membrane potential controlled transport. J. Membr. Biol. 56: 97 – 105.

    Article  PubMed  CAS  Google Scholar 

  71. Läuger, P. 1972. Carrier-mediated ion transport. Science 178:24– 30.

    Article  PubMed  Google Scholar 

  72. Segel, I. H. 1975. Enzyme Kinetics. Wiley, New York.

    Google Scholar 

  73. Amdur, I., and G. G. Hammes. 1966. Chemical Kinetics: Principles and Selected Topics. McGraw-Hill, New York.

    Google Scholar 

  74. Schultz, S. G. 1980. Basic Principles of Membrane Transport. Cambridge University Press, London.

    Google Scholar 

  75. Widdas, W. F. 1980. The asymmetry of the hexose transfer system in the human red cell membrane. Curr. Top. Membr. Transp. 14: 166 – 223.

    Google Scholar 

  76. Semenza, G. 1982. The small intestinal Na+ d-glucose carrier is inserted asymmetrically with respect to the plane of the brush border membrane. In: Membranes and Transport, Volume 2. A. Martonosi, ed. Plenum Press, New York. pp. 175 – 182.

    Google Scholar 

  77. Hosang, M., E. M. Gibbs, D. F. Diedrich, and G. Semenza. 1981. Photoaffinity labeling and identification of (a component of) the small intestinal Na+, d-glucose transporter using 4-azidophlorizin. FEBS Lett. 130: 244 – 248.

    Article  PubMed  CAS  Google Scholar 

  78. Schmidt, U. M., B. Eddy, C. M. Fraser, J. C. Venter, and G. Semenza. 1983. Isolation of (a subunit of) the Na + d-glucose cotransporter(s) of rabbiy intestinal brush border membranes using monoclonal antibodies. FEBS Lett. 161: 279 – 283.

    Article  PubMed  CAS  Google Scholar 

  79. Koepsell, H., H. Menuhr, I. Ducis, and T. H. Wissmuller. 1983. Partial purification and reconstitution of the Na-d-glucose cotransport protein from pig renal proximal tubules. J. Biol. Chem. 258: 1888 – 1894.

    PubMed  CAS  Google Scholar 

  80. Ducis, T., and H. Koepsell. 1983. A simple liposomal system to reconstitute and assay highly efficient Na + d-glucose cotransport from kidney brush-border membranes. Biochim. Biophys. Acta 730: 119–129.

    Article  PubMed  CAS  Google Scholar 

  81. Läuger, P. 1980. Kinetic properties of ion carriers and channels. J. Membr. Biol. 57: 163 – 178.

    Article  PubMed  Google Scholar 

  82. Wilson, T. H. 1978. Lactose transport in Escherichia coli. In: Physiology of Membrane Disorders. T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds. Plenum Press, New York. pp. 459 – 478.

    Google Scholar 

  83. West, I. C. 1970. Lactose transport coupled to proton movements in Escherichia coli. Biochem. Biophys. Res. Commun. 41: 655 – 661.

    Article  PubMed  CAS  Google Scholar 

  84. West, I. C., and P. Mitchell. 1973. Stoichiometry of lactose-H symport across the plasma membrane of Eschierchia coli. Biochem. J. 132: 587 – 592.

    PubMed  CAS  Google Scholar 

  85. Robertson, D. E., G. J. Kaczorowski, M.-L. Garcia, and H. R. Kaback. 1980. Active trasnport in membrane vesicles from Escherichia coli: The electrochemical proton gradient alters the distribution of the lac carrier between two different kinetic states. Biochemistry 19: 5692 – 5702.

    Article  PubMed  CAS  Google Scholar 

  86. Crane, R. K., and F. C. Dorando. 1982. The kinetics and mechanism of Na+ gradient-coupled glucose transport. In: Membranes and Transport, Volume 2 A. Martonosi, ed. Plenum Press, New York. pp. 153 – 160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Schultz, S.G. (1986). Ion-Coupled Transport of Organic Solutes across Biological Membranes. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2097-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2097-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9242-5

  • Online ISBN: 978-1-4613-2097-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics