Skip to main content

Weak Electrolyte Transport across Biological Membranes

General Principles

  • Chapter
Physiology of Membrane Disorders

Abstract

The objective of studies on the physiology of cellular membranes is to define the factors that determine the distribution of solutes between a cell and its environment. For the purpose of defining these determinants it is usually found convenient to divide solutes into two groups(1); those that exist as neutral molecules in aqueous solution, the nonelectrolytes; and those that bear a net positive or negative charge, the ions. The determinants for transmembrane movement of these two groups of solutes differ both with respect to the physical forces driving their flows and in terms of the interactions with membrane constituents that determine the rate at which a flow may occur. A third group of solutes may be identified which, from the perspective of their transport through biological membranes, exhibits properties in common with both nonelectrolytes and ions. These solutes are the weak electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Diamond, J. M., and E. M. Wright. 1969. Biological membranes: The physical basis of ion and non-electrolyte selectivity. Annu. Rev. Physiol. 31: 581–646.

    Article  PubMed  CAS  Google Scholar 

  2. Overton, E. 1900. Studien über die Aufnahme der Anilinfarben durch die lebende Zelle. Jahrb. Wiss. Bot. 34: 699–701.

    Google Scholar 

  3. Warburg, O. 1910. Über die Oxydationen in lebenden Zellen nach Versuchen am Seeigelei. Z Physiol. Chem. 66: 305–342.

    Article  Google Scholar 

  4. Jacobs, M. H. 1920. The production of intracellular acidity by neutral and alkaline solutions containing carbon dioxide. Am. J. Physiol. 53: 457–463.

    CAS  Google Scholar 

  5. Nierenstein, E. 1920. Über das Wesen der Vitalfarbung. Pfluegers Arch. 179: 233–336.

    Article  Google Scholar 

  6. Osterhörn, W. J. V. 1925. Is living protoplasm permeable to ions? J. Gen. Physiol. 8: 131–146.

    Article  Google Scholar 

  7. Smith, H. W. 1925. The action of acids on cell division with reference to the permeability to anions. Am. J. Physiol. 72: 347–371.

    CAS  Google Scholar 

  8. Hober, R., and G. Pupilli. 1931. Neue Versuche über die Aufnahme von Farbstoffen durch die voten Blutkorchen. Pfluegers Arch. 226: 586–599.

    Google Scholar 

  9. Collander, R., and H. Barlund. 1933. Permeabitasstudien an Chara ceracertophylla. II. Die permeabilitat für Nichtelektrolyte. Acta Bot. Fenn. 11: 5–114.

    Google Scholar 

  10. Teorell, T. 1933. Untersuchungen über die Magensaftkeretion. Skand. Arch. Physiol. 66: 225–317.

    CAS  Google Scholar 

  11. Waddell, W. J., and T. C. Butler. 1959. Calculation of intracellular pH from the distribution of 5,5-dimethly-2,4-oxazolidinedione (DMO): Application to skeletal muscle of the dog. J. Clin. Invest. 38: 720–729.

    Article  PubMed  CAS  Google Scholar 

  12. Boron, W. 1985. pH regulation in cells. In: Physiology of Membrane Disorders, 2nd ed. T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds. Plenum Press, New York.

    Google Scholar 

  13. Jacobs, M. H. 1940. Some aspects of cell permeability to weak electrolytes. Cold Spring Harbor Symp. Quant. Biol. 8: 30–39.

    CAS  Google Scholar 

  14. Brodie, B. B., and C. A. M. Hogben. 1957. Some physico-chemical factors in drug action. J. Pharm. Pharmacol. (London) 9:345– 380.

    CAS  Google Scholar 

  15. Orloff, J., and R. W. Berliner. 1956. The mechanism of the excretion of ammonia in the dog. J. Clin. Invest. 35: 223–235.

    Article  PubMed  CAS  Google Scholar 

  16. Jackson, M. J., and V. H. Cohn. 1977. Determinants of xenobiotic transport at biological barriers. In: Handbook of Physiology, Section 9. D. H. K. Lee, H. L. Falk, and S. D. Murphy, eds. American Physiological Society, Washington, D.C. pp. 397–418.

    Google Scholar 

  17. Jackson, M. J. 1981. Absorption and secretion of weak electrolytes in the gastrointestinal tract. In: Physiology of the Gastrointestinal Tract. L. R. Johnson, J. Christiansen, M. I. Grossman, E. D. Jacobson, and S. G. Schultz, eds. Raven Press, New York. pp. 1243–1270.

    Google Scholar 

  18. Jackson, M. J., C.-Y. Tai, and J. E. Steane, 1981. Weak electrolyte permeation in alimentary epithelia. Am. J. Physiol. 3: G191–G198.

    Google Scholar 

  19. McLaughlin, S. G. A., and J. P. Dilger. 1980. Transport of protons across membranes by weak acids. Physiol. Rev. 60: 825–863.

    PubMed  CAS  Google Scholar 

  20. Butler, J. N. 1964. Ionic Equilibrium—A Mathematical Approach. Addison-Wesley, Reading, Mass.

    Google Scholar 

  21. Wartiovaara, V., and R. Collander. 1960. Permeabilitatstheorien: Handbuch der Protoplasmaforschung, Volume II. M. Albert, ed. Springer-Verlag, Vienna, pp. 1–98.

    Google Scholar 

  22. Leo, A., C. Hansch, and D. Elkins. 1971. Partition coefficients and their uses. Chem. Rev. 71: 525–616.

    Article  CAS  Google Scholar 

  23. Davis, S. C., T. Higuchi, and J. H. Rytting. 1974. Determinants of thermodynamics of functional groups in solutions of drug molecules. Adv. Pharm. Sci. 4: 73–261.

    PubMed  CAS  Google Scholar 

  24. Poijarvi, L. A. P. 1928. Über die Basenpermeabilitat pflanzlicher Zellen. Acta Bot. Fenn. 4: 1–102.

    Google Scholar 

  25. Jackson, M. J., A. M. Williamson, W. A. Dombrowski, and D. E. Garner. 1978. Intestinal transport of weak electrolytes: Determinants of influx at the luminal surface. J. Gen. Physiol. 71: 301–327.

    Article  PubMed  CAS  Google Scholar 

  26. Kaufman, J. J., N. M. Semo, and W. S. Koski. 1975. Micro- electrometric titration measurement of the pKa’s and partition and drug distribution coefficients of narcotics and narcotic antagonists and their pH and temperature dependence. J. Med. Chem. 18:647– 665.

    Article  PubMed  CAS  Google Scholar 

  27. Davis, S.S. 1973. Determination of the thermodynamics of hydroxyl and carboxyl groups in solutions of drug molecules. J. Pharm. Pharmacol. 25: 982–992.

    Article  PubMed  CAS  Google Scholar 

  28. Sallee, V. L., and J. M. Dietschy. 1973. Determinants of intestinal mucosal uptake of short- and medium-chain fatty acids and alcohols. J. Lipid Res. 14: 475–484.

    PubMed  CAS  Google Scholar 

  29. Sallee, V. L. 1978. Fatty acid and alcohol partitioning with intestinal brush border and erythrocyte membranes. J. Membr. Biol. 43: 187–201.

    Article  PubMed  CAS  Google Scholar 

  30. Collander, R. 1973. The permeability of plant protoplasts to non- electrolytes. Trans. Faraday Soc. 33: 985–990.

    Article  Google Scholar 

  31. Gutknecht, J., J. J. Graves, and D. C. Tosteson. 1978. Electrically silent anion transport through lipid bilayer membranes containing a long-chain secondary amine. J. Gen. Physiol. 71: 269–284.

    Article  PubMed  CAS  Google Scholar 

  32. Smulders, A. P., and E. M. Wright. 1971. The magnitude of non- electrolyte selectivity in the gall bladder epithelium. J. Membr. Biol. 5: 297–318.

    Article  CAS  Google Scholar 

  33. E. M. Wright, and R. J. Pietras. 1974. Routes of nonelectrolyte permeation across epithelial membranes. J. Membr. Biol. 17:293– 312.

    Article  PubMed  CAS  Google Scholar 

  34. Gutknecht, J., and D. C. Tosteson. 1971. Diffusion of weak acids across lipid bilayer membranes: Effects of chemical reactions in the unstirred layers. Science 182: 1258–1261.

    Article  Google Scholar 

  35. Gutknecht, J., and A. Walter. 1980. Transport of auxin (indoleacetic acid) through lipid bilayer membranes. J. Membr. Biol. 56: 65–72.

    Article  PubMed  CAS  Google Scholar 

  36. Walter, A., D. Hastings, and J. Gutknecht. 1982. Weak acid permeability through lipid bilayer membranes: Role of chemical reactions in the unstirred layer. J. Gen. Physiol. 79: 917–933.

    Article  PubMed  CAS  Google Scholar 

  37. Wolosin, J. M., and H. Ginsberg. 1975. The permeation of organic acids through lecithin bilayers: Resemblance to diffusion in polymers. Biochim. Biophys. Acta 389: 20–33.

    Article  PubMed  CAS  Google Scholar 

  38. Keifer, D. W., and A. Roos. 1980. Membrane permeation to molecular and ionic forms of DMO in barnacle muscle. Am. J. Physiol. 240: C73–C79.

    Google Scholar 

  39. Roos, A., and W. F. Boron. 1981. Intracellular pH. Physiol. Rev. 61: 296–434.

    PubMed  CAS  Google Scholar 

  40. Jackson, M. J., and A. A. Airall. 1978. Transport of heterocyclic acids across rat small intestine in vitro. J. Membr. Biol. 38:255– 269.

    Article  PubMed  CAS  Google Scholar 

  41. Tai, C.-Y., and M. J. Jackson. 1982. Transport of weak bases across rat gastric mucosa in vivo and in vitro. J. Pharmacol. Exp. Ther. 222: 372–378.

    PubMed  CAS  Google Scholar 

  42. Pauling, L. 1960. The Nature of the Chemical Bond. Cornell University Press, Ithaca, N.Y.

    Google Scholar 

  43. Tai, C.-Y., and M. J. Jackson. 1981. Weak-acid transport in the small intestine: Discrimination in the lamina propria. J. Membr. Biol. 59: 35–43.

    Article  PubMed  CAS  Google Scholar 

  44. Wright, E. M., and J. M. Diamond. 1968. Effect of pH and polyvalent cations on the selective permeability of the gall bladder epithelium to monovalent ions. Biochim. Biophys Acta 163: 57–75.

    Article  PubMed  CAS  Google Scholar 

  45. Moreno, J. H., and J. M. Diamond. 1974. Discrimination of monovalent inorganic cations by ‘tight’ junctions in gallbladder epithelium. J. Membr. Biol. 15: 277–318.

    Article  PubMed  CAS  Google Scholar 

  46. Moreno, J. H., and J. M. Diamond. 1975. Nitrogenous cations as probes of permeation channels. J. Membr. Biol. 21: 197–259.

    Article  CAS  Google Scholar 

  47. Moreno, J. H. 1975. Blockage of gallbladder tight junction cation selective channels by 2,4,6-triaminopyridinium (TAP). J. Gen. Physiol. 66: 97–116.

    Article  PubMed  CAS  Google Scholar 

  48. Wright, E. M., and J. M. Diamond. 1977. Anion selectivity in biological systems. Physiol. Rev. 57: 109–156.

    PubMed  CAS  Google Scholar 

  49. Frizzell, R. A., and S. G. Schultz. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum: Influence of shunt on transmural sodium transport and electrical potential differences. J. Gen. Physiol. 59: 318–346.

    Article  PubMed  CAS  Google Scholar 

  50. Munck, B. C., and S. C. Schultz. 1974. Properties of the passive conductance pathway across in vitro rat jejunum. J. Membr. Biol. 16: 163–174.

    Article  PubMed  CAS  Google Scholar 

  51. Westergaard, H., and J. M. Dietschy. 1974. Delineation of the dimensions and permeability characteristics of the two major diffusion barriers to passive mucosal uptake in the rabbit intestine. J. Clin. Invest. 54: 718–732.

    Article  PubMed  CAS  Google Scholar 

  52. Lucas, M. L., W. Schneider, F. J. Haberich, and J. A. Blair. 1975. Direct measurement by pH-microelectrode of the pH microclimate in rat proximal jejunum. Proc. R. Soc. London Ser. B 192: 39–48.

    Article  CAS  Google Scholar 

  53. Hartley, G. S., and J. W. Roe. 1940. Ionic concentrations at interfaces. Trans. Faraday Soc. 36: 101–109.

    Article  CAS  Google Scholar 

  54. Diamond, J. M. 1966. A rapid method for determining voltage- concentration relation across membranes. J. Physiol. (London) 183: 83–100.

    CAS  Google Scholar 

  55. Schafer, J. A., and T. E. Andreoli. 1972. Cellular constraints to diffusion: The flows in isolated mammalian collecting tubules. J. Clin. Invest. 51: 1264–1278.

    Article  PubMed  CAS  Google Scholar 

  56. Lukie, B. E., H. Westergaard, and J. M. Dietschy. 1974. Validation of a chamber that allows measurement of both tissue uptake rates and unstirred layer thickness in the intestine under conditions of controlled stirring. Gastroenterology 67: 652–661.

    PubMed  CAS  Google Scholar 

  57. Wilke, C. R., and P. Chang. 1955. Correlation of diffusion coefficients in dilute solution. Am. Inst. Chem. Eng. J. 1: 264–270.

    CAS  Google Scholar 

  58. Ingraham, R. C., and M. B. Visscher. 1935. Studies on the elimination of dyes in the gastric and pancreatic secretions, and inferences therefrom concerning the mechanisms of secretion of acid and base. J. Gen. Physiol 18: 695–716.

    Article  PubMed  CAS  Google Scholar 

  59. Ruifrok, P. G. 1982. Transport of organic ions through lipid bilayers: The barbiturates. N.-S. Arch. Pharmacol. 319: 185–188.

    Article  CAS  Google Scholar 

  60. Scarpa, A. 1979. Transport across mitochondrial membranes. In: Membrane Transport in Biology, Volume II. G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds. Springer-Verlag, Berlin, pp. 263–356.

    Google Scholar 

  61. Nord, E., S. H. Wright, I. Kippen, and E. M. Wright. 1982. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles. Am. J. Physiol. 12: F456 - F462.

    Google Scholar 

  62. Wright, S. H., I. Kippen, and E. M. Wright. 1982. Stoichiometry of Na + -succinate cotransport in renal brush border membranes. J. Biol. Chem. 257: 1773–1778.

    PubMed  CAS  Google Scholar 

  63. Knoth, J., M. Zallakian, and D. Njus. 1982. Mechanism of proton- linked monoamine transport in chromaffin granule ghosts. Fed. Proc. 41: 2742–2745.

    PubMed  CAS  Google Scholar 

  64. Njus, D., and G. K. Radda. 1978. Bioenergetic processes in chromaffin granules: A new perspective on some old problems. Biochim. Biophys. Acta 463: 219–244.

    PubMed  CAS  Google Scholar 

  65. Johnson, R. G., and A. Scarpa. 1979. Proton-motive force and catecholamine transport in isolated chromaffin granules. J. Biol. Chem. 254: 3750–3760.

    PubMed  CAS  Google Scholar 

  66. Johnson, R. G., S. Carty, and A. Scarpa. 1982. A model of biogenic amine accumulation into chromaffin granules and ghosts based on coupling to the electrochemical proton gradient. Fed. Proc. 41: 2746–2754.

    PubMed  CAS  Google Scholar 

  67. Milne, M. D., B. H. Scribner, and M. A. Crawford. 1958. Non- ionic diffusion and the excretion of weak acids and bases. Am. J. Med. 24: 709–729.

    Article  PubMed  CAS  Google Scholar 

  68. Schanker, L. S. 1968. Secretion of organic compounds in bile. In: Handbook of Physiology, Section 6, Volume V. C.F. Code, ed. American Physiological Society, Washington, D.C. pp. 2437– 2450.

    Google Scholar 

  69. Weiner, I. M. 1973. Transport of weak acids and bases. In: Handbook of Physiology, Section 8. J. Orloff and R. W. Berliner, eds. American Physiological Society, Washington, D.C. pp. 521–554.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Jackson, M.J. (1986). Weak Electrolyte Transport across Biological Membranes. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2097-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2097-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9242-5

  • Online ISBN: 978-1-4613-2097-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics