Skip to main content

The Study of Transport and Enzymatic Processes in Reconstituted Biological Systems

  • Chapter
Physiology of Membrane Disorders

Abstract

Reconstitution of biological systems has proven a most valuable tool for the elucidation of multicomponent biochemical pathways. The study of a biological activity in both partially resolved or highly purified systems necessitates the assay of a specific, well-defined functional property of an enzyme or protein complex. In contrast to studies of soluble enzymatic complexes in homogeneous solution wherein the reactants and products may be readily distinguished from each other, the biological activity of a number of membrane processes is the translocation of a species from one compartment to another via passive, coupled, or active transport mechanisms. The biological activity may also be dependent upon a receptor-ligand interaction resulting in the change in a membrane permeability or the activation of an enzymatic complex. Each of these different functions, namely passive transport systems, receptor or voltage-dependent permeabilities, coupled transport, and the energy-transducing ATPases, is amenable to studies in reconstituted membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Racker, E., B. Violand, S. O’Neal, M. Alfonzo, and J. Telford. 1979. Reconstitution, a way of biochemical research; some new approaches to membrane-bound enzymes. Arch. Biochem. Biophys. 198: 470–477.

    Article  PubMed  CAS  Google Scholar 

  2. Hokin, L. E. 1981. Reconstitution of “carriers” in artificial membranes. J. Membr. Biol. 60: 77–93.

    Article  PubMed  CAS  Google Scholar 

  3. Miller, C., and E. Racker. 1979. Reconstitution of membrane transport functions. In: The Receptors. R. D. O’Brien, ed. Plenum Press, New York. pp. 1–31.

    Google Scholar 

  4. Loomis, W. F., and F. Lippmann. 1948. Reversible inhibition of the coupling between phosphorylation and oxidation. J. Biol. Chem. 172: 807–808.

    Google Scholar 

  5. Hopfer, U., A. L. Lehninger, andT. E. Thompson. 1968. Protonic conductance across phospholipid bilayer membranes induced by uncoupling agents for oxidative phosphorylation. Proc. Natl. Acad. Sci. USA 59: 489–490.

    Article  Google Scholar 

  6. Lardy, H. A., D. Johnson, and W. C. McMurray. 1958. Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylation and glycolytic systems. Arch. Biochem. Biophys. 78: 587–597.

    Article  PubMed  CAS  Google Scholar 

  7. Boyer, P. D., A. B. Falcone, and W. H. Harrison. 1954. Reversal and mechanism of oxidative phosphorylation. Nature (London) 174: 401–402.

    Article  CAS  Google Scholar 

  8. Penefsky, H. S., M. E. Pullman, A. Datta, and E. Racker. 1960. Partial resolution of the enzymes catalyzing oxidative phosphorylation. II. Participation of a soluble adenosine triphosphatase in oxidative phosphorylation. J. Biol. Chem. 235: 3330–3336.

    PubMed  CAS  Google Scholar 

  9. Cooper, C., and A. L. Lehninger. 1957. Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. V. The adenosine triphosphate-phosphate exchange reaction. J. Biol. Chem. 224: 561–578.

    PubMed  CAS  Google Scholar 

  10. Horstman, L., and E. Racker. 1970. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXII. Interaction between mitochondrial adenosine triphosphatase inhibitor and mitochondrial adenosine triphosphatase. J. Biol. Chem. 245: 1336–1344.

    PubMed  CAS  Google Scholar 

  11. Racker, E. 1963. A mitochondrial factor conferring oligomycin sensitivity on soluble mitochondrial ATPase. Biochem. Biophys. Res. Commun. 10: 435–439.

    Article  PubMed  CAS  Google Scholar 

  12. Racker, E. 1962. Studies on factors involved in oxidative phosphorylation. Proc. Natl. Acad. Sci. USA 48: 1659–1663.

    Article  PubMed  CAS  Google Scholar 

  13. Racker, E., and T. E. Conover. 1963. Multiple coupling factors in oxidative phosphorylation. Fed. Proc. 22: 1088–1091.

    PubMed  CAS  Google Scholar 

  14. Kagawa, Y., and E. Racker. 1966. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XIII. Properties of a factor conferring oligomycin sensitivity on mitochondrial adenosine triphosphatase. J. Biol. Chem. 241: 2461–2466.

    PubMed  CAS  Google Scholar 

  15. Arion, W. J., and E. Racker. 1970. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXIII. Preservation of energy coupling in submitochondrial particles lacking cytochrome oxidase. J. Biol. Chem. 245: 5186–5194.

    PubMed  CAS  Google Scholar 

  16. Kagawa, Y., and E. Racker. 1966. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXV. Reconstitution of vesicles catalyzing 32P-adenosine triphosphate exchange. J. Biol. Chem. 241: 5477–5487.

    Google Scholar 

  17. Mitchell, P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41: 445–502.

    Article  PubMed  CAS  Google Scholar 

  18. Racker, E. 1972. Reconstitution of cytochrome oxidase vesicles and conferral of sensitivity to energy transfer inhibitors. J. Membr. Biol. 10: 221–235.

    Article  PubMed  CAS  Google Scholar 

  19. Racker, E., and A. Kandrach. 1973. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXIX. Reconstitution of the third segment of oxidative phosphorylation. J. Biol. Chem. 248: 5841–5847.

    PubMed  CAS  Google Scholar 

  20. Ragan, G. F., and E. Racker. 1973. Partial resolution of the en-zymes catalyzing oxidative phosphorylation. XXVIII. The reconstitution of the first site of energy conservation. J. Biol. Chem. 248: 2563–2569.

    PubMed  CAS  Google Scholar 

  21. Boyer, P. D. 1964. Carboxyl activation as a possible common reaction in substrate-level and oxidative phosphorylation and in muscle contraction. In: Oxidases and Related Redox Systems. T. E. King, H. S. Muson, and M. Morrison, eds. Wiley, New York. pp. 994–1017.

    Google Scholar 

  22. Racker, E., and W. Stoeckenius. 1974. Reconstitution of purple membrane vesicles catalyzing light driven proton uptake and adenosine triphosphate formation. J. Biol. Chem. 249: 662–663.

    PubMed  CAS  Google Scholar 

  23. Kagawa, Y., K. Ohno, M. Yoshida, Y. Takeuchi, and N. Sone. 1977. Proton translocation by ATPase and bacteriorhodopsin. Fed. Proc. 36: 1815–1818.

    PubMed  CAS  Google Scholar 

  24. Winget, G. D., N. Kanner, and E. Racker. 1977. Formation of ATP by the adenosine triphosphatase complex from spinach chloroplasts reconstituted together with bacteriorhodopsin. Biochim. Biophys. Acta 460: 490–499.

    Article  PubMed  CAS  Google Scholar 

  25. Poyton, R. V., and G. Schatz. 1975. Cytochrome c oxidase from baker’s yeast. III. Physical characterization of isolated subunits and chemical evidence for two different classes of polypeptides. J. Biol. Chem. 250: 752–761.

    PubMed  CAS  Google Scholar 

  26. Werner, S. 1977. Preparation of polypeptide subunits of cytochrome oxidase from Neurospora crassa. Eur. J. Biochem. 79: 103–110.

    Article  PubMed  CAS  Google Scholar 

  27. Carroll, R. C., and E. Racker, 1977. Preparation and characterization of cytochrome c oxidase vesicles with high respiratory control. Biol. Chem. 252: 6981–6990.

    CAS  Google Scholar 

  28. Malmstrom, B. G. 1979. Cychrome c oxidase structure and catalytic activity. Biochim. Biophys. Acta 549: 281–303.

    PubMed  CAS  Google Scholar 

  29. Hinkle, P. C., J. J. Kim, and E. Racker. 1972. Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J. Biol. Chem. 247: 1338–1339.

    PubMed  CAS  Google Scholar 

  30. Hinkle, P. C. 1973. Electron transfer across membranes and energy coupling. Fed. Proc. 32: 1988–1992.

    PubMed  CAS  Google Scholar 

  31. Racker, E. 1972. Reconstitution of cytochrome oxidase vesicles and conferral of sensitivity to energy transfer inhibitors. J. Membr. Biol. 10: 221–235.

    Article  PubMed  CAS  Google Scholar 

  32. Racker, E., and A. Kandrach. 1973. Partial resolution of the enzyme catalyzing oxidative phosphorylation. XXIX. Reconstitution of the third segment of oxidative phosphorylation. J. Biol. Chem. 248: 5841–5847.

    PubMed  CAS  Google Scholar 

  33. Wikstrom, M. K. F., and H. T. Suari. 1977. The mechanism of energy conservation and transduction by mitochondrial cytochrome c oxidase. Biochim. Biophys. Acta 462: 347–361.

    Article  PubMed  CAS  Google Scholar 

  34. Krab, K., and M. Wikstrom. 1978. Proton translocating cytochrome c oxidase in artificial phospholipid vesicles. Biochim. Biophys. Acta 504: 200–214.

    Article  PubMed  CAS  Google Scholar 

  35. Casey, R. P., M. Thelen, and A. Azzi. 1979. Dicyclohexylcar- bodiimide inhibits proton translocation by cytochrome c oxidase. Biochem. Biophys. Res. Commun. 87: 1044–1051.

    Article  PubMed  CAS  Google Scholar 

  36. Martonosi, A. 1972. Biochemical and clinical aspects of sarcoplasmic reticulum function. Curr. Top. Membr. Transp. 3: 87–197.

    Google Scholar 

  37. Martonosi, A. 1968. Sarcoplasmic reticulum. IV. Solubilization of microsomal adenosine triphosphatase. J. Biol. Chem. 243: 71–81.

    PubMed  CAS  Google Scholar 

  38. MacLennan, D. H. 1970. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J. Biol. Chem. 245: 4508–4518.

    PubMed  CAS  Google Scholar 

  39. Pick, U., and E. Racker. 1979. Inhibition of the (Ca2 +) ATPase from sarcoplasmic reticulum by decyclohexylcarbodiimide: Evidence for location of the Ca2 + binding site in a hydrophobic region. Biochemistry 18: 108–113.

    Article  PubMed  CAS  Google Scholar 

  40. le Maire, M., J. V. Moller, and C. Tanford. 1976. Retention of enzyme activity by detergent solubilized sarcoplasmic reticulum Ca2 +-ATPase. Biochemistry 15: 2336–2342.

    Article  PubMed  Google Scholar 

  41. Racker, E. 1972. Reconstitution of a calcium pump with phos-pholipids and a purified Ca2 + -adenosine triphosphatase from sarcoplasmic reticulum. J. Biol. Chem. 247: 8198–8200.

    PubMed  CAS  Google Scholar 

  42. Knowles, A. F., and E. Racker. 1975. Properties of a reconstituted calcium pump. J. Biol. Chem. 250: 3538–3544.

    PubMed  CAS  Google Scholar 

  43. Zimniak, P., and E. Racker. 1978. Electrogenicity of Ca2 + transport catalyzed by the Ca2 +-ATPase from sarcoplasmic reticulum. J. Biol. Chem. 253: 4631–4637.

    PubMed  CAS  Google Scholar 

  44. Hazelbauer, G. L., and J.-P. Changeaux. 1974. Reconstitution of a chemically excitable membrane. Proc. Nat. Acad. Sci. USA 71: 1479–1483.

    Article  PubMed  CAS  Google Scholar 

  45. Michealson, D. M., and M. A. Raftery. 1974. Purified acetylcholine receptor: Its reconstitution to a chemically excitable membrane. Proc. Nat. Acad. Sci. USA 71: 4768–4772.

    Article  Google Scholar 

  46. McNamee, M. G., C. L. Weill, and A. Karlin. 1975. Purification of acetylcholine receptor from Torpedo californica and its incorporation into phospholipid vesicles. Ann. N.Y. Acad. Sci. 264: 175–182.

    Article  PubMed  CAS  Google Scholar 

  47. Epstein, M., and E. Racker. 1978. Reconstituion of car- bamylcholine-dependent sodium ion flux and desensitization of the acetylcholine receptor from Torpedo californica. J. Biol. Chem. 253: 6660–6662.

    PubMed  CAS  Google Scholar 

  48. Huganir, R. L., M. A. Schell, and E. Racker. 1979. Reconstitution of the purified acetylcholine receptor from Torpedo californica. FEBS Lett. 108: 155–160.

    Article  PubMed  CAS  Google Scholar 

  49. Killian, P. C., C. R. Dunlap, P. Mueller, M. A. Schell, R. L. Huganir, and, E. Racker. 1980. Reconstitution of acetylcholine receptor from Torpedo californica with highly purified phos-pholipids: Effect of a-tocopherol, phylloquinone, and other terpenoid quinones. Biochem. Biophys. Res. Commun. 93: 409–414.

    Google Scholar 

  50. Ochoa, E. L. M., A. W. Dalziel, and M. G. McNamee. 1983. Reconstitution of acetylcholine receptor function in lipid vesicles of defined composition. Biochim. Biophys. Acta 727: 151–162.

    Article  PubMed  CAS  Google Scholar 

  51. Criado, M., H. Eibl, andF. J. Barrantes. 1982. Effects of lipids on acetylcholine receptor: Essential need of cholesterol for maintenance of agonist-induced state transitions in lipid vesicles. Biochemistry 21: 3622–3629.

    Article  PubMed  CAS  Google Scholar 

  52. Wu, W. C. S., H. P. H. Moore, andM. A. Raftery. 1981. Quantitation of cation transport by reconstituted membrane vesicles containing purified acetylcholine receptor. Proc. Natl. Acad. Sci. USA 78: 775–779.

    Article  PubMed  CAS  Google Scholar 

  53. Lindstrom, J., R. Anholt, B. Einarson, A. Engel, M. Osame, and M. Montai. 1980. Purification of acetylcholine receptors, reconstitution into lipid vesicles and study of agonist induced cation channel regulation. J. Biol. Chem. 255: 8340–8350.

    PubMed  CAS  Google Scholar 

  54. Reynolds, J. A., and A. Karlin. 1978. Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica. Biochemistry 17: 2035–2038.

    Article  PubMed  CAS  Google Scholar 

  55. Karlin, A. 1980. Molecular properties of nicotinic acetylcholine receptors. In: Cell Surface Reviews. C. W. Cotman, G. Poste, and G. L. Nicholson, eds. Elsevier/North-Holland, Amsterdam, pp. 191–260.

    Google Scholar 

  56. Huginar, R. L., and E. Racker. 1980. Endogenous and exogenous proteolysis of the acetylcholine receptor from Torpedo californica. J. Supramol. Struct. 14: 13–19.

    Article  Google Scholar 

  57. Raftery, M. A., M. W. Hunkapillar, C. D. Strader, and L. E. Hood. 1980. Acetylcholine receptor: Complex of homologous sub- units. Science 208: 1454–1456.

    Article  PubMed  CAS  Google Scholar 

  58. Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, Y. Furutini, T. Hirose, M. Asai, S. Inayama, T. Miyata, and S. Numa. 1982. Primary structure of a-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature (London) 299: 793–797.

    Article  CAS  Google Scholar 

  59. Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyotani, T. Hirose, M. Asai, M. Takashima, S. Inayama, T. Miyata, and S. Numa. 1983. Primary structures of p- and 7-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature (London) 301: 251 - 255.

    Article  CAS  Google Scholar 

  60. Hoffmann, F. M. 1979. Solubilization and reconstitution of dopamine-sensitive adenylate cyclase from bovine caudate nucleus. J. Biol. Chem. 254: 255–258.

    PubMed  CAS  Google Scholar 

  61. Hoffmann, F. M. 1979. A new method for removing nonionic detergent that allows reconstitution of dopamine-sensitive adenylate cyclase. Biochem. Biophys. Res. Commun. 86: 988–994.

    Article  PubMed  CAS  Google Scholar 

  62. Kanner, B. I. 1978. Solubilization and reconstitution of the 7- aminobutyric acid transporter from rat brain. FEBS Lett. 89: 47–50.

    Article  PubMed  CAS  Google Scholar 

  63. Kramer, R., and M. Klingenberg. 1979. Reconstitution of adenine nucleotide transport from beef heart mitochondria. Biochemistry 18: 4209–4215.

    Article  PubMed  CAS  Google Scholar 

  64. Miyamoto, H., and E. Racker. 1980. Solubilization and partial purification of the Ca2 + /Na+ antiporter from the plasma membrane of bovine heart. J. Biol. Chem. 255: 2656–2658.

    PubMed  CAS  Google Scholar 

  65. Hirata, H., S. Nobuhito, Y. Masasuke, and Y. Kagawa. 1977. Isolation of the alanine carrier from the membranes of a thermophilic bacterium and its reconstitution into vesicles capable of transport. J. Supramol. Struct. 6: 77–84.

    Article  PubMed  CAS  Google Scholar 

  66. Fairclough, P., P. Malathi, H. Preiser, and R. K. Crane. 1979. Reconstitution into liposomes of glucose active transport from rabbit renal proximal tubule. Biochim. Biophys. Acta 553: 295–306.

    Article  PubMed  CAS  Google Scholar 

  67. Rothstein,A.,Z.T.Cabantchik,M.Balshin,andR.Juliano. 1975. Enhancement of anion permeability in lecithin vesicles by hydro-phobic protein extracted from red cell membranes. Biochem. Biophys. Res. Commun. 64: 144–150.

    Article  Google Scholar 

  68. Newman, M. J., D. L. Foster, T. H. Wilson, and H. R. Kaback. 1981. Purification and reconstitution of functional lactose carrier from Escherichia coli. J. Biol. Chem. 256: 11804–11808.

    PubMed  CAS  Google Scholar 

  69. Tank, D. W., C. Miller, and W. W. Webb. 1982. Isolated-patch recording from liposomes containing functionally reconstituted chloride channels from Torpedo electroplax. Proc. Natl. Acad. Sci. USA 79: 7749–7753.

    Article  PubMed  CAS  Google Scholar 

  70. Lin, S., and Spudich, J. A. 1974. Binding of cytochalasin B to a red cell membrane protein. Biochem. Biophys. Res. Commun. 61: 1471–1475.

    Article  PubMed  CAS  Google Scholar 

  71. Jung, C. Y., and L. M. Carlson. 1975. Glucose transport carrier in human erythrocyte membranes. J. Biol. Chem. 250: 3217–3220.

    PubMed  CAS  Google Scholar 

  72. Kasahara, M., and P. C. Hinkle. 1976. Reconstitution of D-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes. Proc. Natl. Acad. Sci. USA 73: 396–400.

    Article  PubMed  CAS  Google Scholar 

  73. Kasahara, M., and P. C. Hinkle. 1977. Reconstitution and purification of the D-glucose transporter from human erythrocytes. J. Biol. Chem. 252: 7384–7390.

    PubMed  CAS  Google Scholar 

  74. Kahlenberg, A., and C. A. Zala. 1977. Reconstitution of D-glucose transport in vesicles composed of lipids and intrinsic protein (zone 4.5) of the human erythrocyte membrane. J. Supramol. Struct. 7: 287–300.

    Article  PubMed  CAS  Google Scholar 

  75. Wheeler, T. J., and P. C. Hinkle. 1981. Kinetic properties of the reconstituted glucose transporter from human erythrocytes. J. Biol. Chem. 256: 8907–8914.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Dubinsky, W.P. (1986). The Study of Transport and Enzymatic Processes in Reconstituted Biological Systems. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2097-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2097-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9242-5

  • Online ISBN: 978-1-4613-2097-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics