Skip to main content

Simulation Techniques for Advanced Device Development

  • Chapter
Computer-Aided Design and VLSI Device Development

Abstract

In this chapter, the basic simulation techniques for advanced MOS device development will be described. First of all, the basic device physics of MOSFET is presented. The discussion will be in very simple terms, although sufficient to allow the process engineers to understand the basic characteristics of MOSFETS and their significance. The techniques of generating the device parameters are then presented. Also to be discussed are the short channel effects such as drain-induced barrier lowering. Simulations are used to reveal details of these phenomena. The relationship between process parameters and device characteristics are discussed. Simulated results are compared with experimental results. The SUPREM, GEMINI and PISCES programs are used for simulating the device characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. M. Sze, Physics of Semiconductor Devices, 2nd ed., New York: Wiley-Interscience, 1981.

    Google Scholar 

  2. A. S. Grove, Physics and Technology of Semiconductor Devices, New York: John Wiley & Sons, Inc., 1967.

    Google Scholar 

  3. R. R. Troutman, “Subthreshold Design Considerations for Insulated Gate Field Effect Transistors,” IEEE J. Solid State Circuits, SC-9, April 1974, pp. 55–60.

    Article  Google Scholar 

  4. R. R. Troutman, “VLSI Limitations from Drain-Induced Barrier Lowering,” IEEE Trans. Electron Devices, ED-27, April 1979, pp. 461–468.

    Article  Google Scholar 

  5. B. Eitan and D. Frohman-Bentchkowsky, “Surface Conduction in Short-channel MOS Devices as a Limitation to VLSI Scaling,” IEEE Trans. Electron Devices, ED-29, Feb. 1982, pp. 254–266.

    Article  Google Scholar 

  6. G. W. Taylor, “Subthreshold Conduction in MOSFET’s,” IEEE Trans. Electron Devices, ED-25, March 1978, pp. 337–350.

    Article  Google Scholar 

  7. K. Yamaguchi, “A Mobility Model for Carriers in the MOS Inversion Layers,” IEEE Trans, on Electron Devices, ED-30, pp. 658–663, June 1983.

    Article  Google Scholar 

  8. Y. El-Mansy, “MOS Device and Technology Constraints in VLSI,” IEEE Trans, on Electron Devices, ED-29, Apr 1982, pp. 567–573.

    Article  Google Scholar 

  9. S. E. Laux and F. H. Gaensslen, “A Study of Avalanche Breakdown in Scaled n-MOSFET’s,” Tech. Digest of lEDM 1984, pp. 84–86.

    Google Scholar 

  10. F.-C. Hsu, P.-K. Ko, S. Tarn, C. Hu and R. S. Muller, “An Analytical Breakdown Model for Short-Channel MOSFET’s,” IEEE Trans. Electron Devices, ED-29, Nov. 1982, pp. 1735–1740.

    Google Scholar 

  11. H. Katto, K. Okuyama, S. Meguro, R. Nagai and S. Ikeda, “Hot Carrier Degradation Modes and Optimization of LDD MOSFET’s,” Tech Digest of IEDM 1984, pp. 774–777.

    Google Scholar 

  12. L. A. Akers, M. A. Holly and C. Lund, “Hot Carriers in Small Geometry CMOS,” Tech. Digest of IEDM 1984, pp. 80–83.

    Google Scholar 

  13. C. Hu, “Hot Electron Effects in MOSFET’s,” Tech. Digest of IEDM 1983, pp. 176–181.

    Google Scholar 

  14. F.-C. Hsu and K.-Y. Chiu, “A Comparative Study of Tunnelling, Substrate Hot-Electron and Channel Hot Electron Injection Induced Degradation in Thin Gate MOSFET’s,” Tech. Digest of IEDM 1984, pp. 96–99.

    Google Scholar 

  15. D. B. Estreich, “The Physics and Modeling of Latch-Up in CMOS Integrated Circuits,” Stanford Electronics Labs Report #G-201–9,1980.

    Google Scholar 

  16. R. R. Troutman, “Recent Developments in CMOS Latchup,” Tech. Digest of IEDM 1984, pp. 296–299.

    Google Scholar 

  17. M. R. Pinto, R. W. Dutton, H. Iwai and C. S. Rafferty, “Computer-Aids for Analysis and Scaling of Electron Devices,” Tech. Digest of IEDM 1984, pp. 288–291.

    Google Scholar 

  18. D. A. Antoniadis, S. E. Hansen, and R. W. Dutton, “SUPREMII — A Program for IC Process Modeling and Simulation,” TR 5019.2, Stanford Electronics Laboratories, Stanford University, Calif., June 1979.

    Google Scholar 

  19. K. Y. Chiu, J. L. Moll, K. M. Cham, J. Lin, C. Lage, S. Angelos, and R. Tillman, “The Sloped-Wall SWAMI — A Defect-Free Zero Bird’s Beak Local Oxidation Process For Scaled VLSI Technology,” IEEE Trans. Electron Devices, ED-30, Nov. 1983, pp. 1506–1510.

    Google Scholar 

  20. R. R. Troutman, “Ion-Implanted Threshold Tailoring for Insulated Gate Field-Effect Transistors,” IEEE Trans. Electron Devices, ED-24, Mar 1977, pp. 182–192.

    Article  Google Scholar 

  21. H.-G. Lee, S.-Y. Oh and G. Fuller, “A Simple and Accurate Method to Measure the Threshold Voltage of an Enhancement-Mode MOSFET,” IEEE Trans. Electron Devices, ED-29, Feb. 1982, pp. 346–348.

    Google Scholar 

  22. S. Odanaka, M. Fukumoto, G. Fuse, M. Sasago, T. Yabu, and T. Ohzone, “A New Half-Micrometer P-Channel MOSFET with Efficient Punchthrough Stops,” IEEE Trans. Electron Devices, ED-33, Mar. 1986, pp. 317–321. 317–321. 317–321.

    Google Scholar 

  23. P. K. Chatterjee and J. E. Leiss, “An Analytic Charge-Sharing Predictor Model for Submicron MOSFET’s,” Tech. Digest of IEDM 1980, pp. 28–33.

    Google Scholar 

  24. K. Yokoyama et al., “Threshold-Sensitivity Minimization of Short-Channel MOSFET’s by Computer Simulation,” IEEE Trans. Electron Devices, ED-27, Aug 1980, pp. 1509–1514.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Cham, K.M., Oh, SY., Moll, J.L., Lee, K., Vande Voorde, P., Chin, D. (1988). Simulation Techniques for Advanced Device Development. In: Computer-Aided Design and VLSI Device Development. The Kluwer International Series in Engineering and Computer Science, vol 53. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1695-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1695-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8956-2

  • Online ISBN: 978-1-4613-1695-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics