Skip to main content

Yield Models and Analysis

  • Chapter
Wafer-Level Integrated Systems

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 70))

  • 152 Accesses

Abstract

This chapter reviews the several models which have been developed to predict the yield of monolithic circuits. Circuit faults arise from a variety of effects. Defects during patterning or film depositions can lead to shorts, open lines or defective transistors, as discussed in the previous chapter. Such defect-based faults are considered in this chapter. However, faults also arise through degradation in features, such as electromigration failure of aluminum interconnections, which cause failure of an operational circuit after some period of operation. Such faults are called failures and are addressed under the topic of reliability. Other faults arise from violation of design rules (i.e. placing diffusions too close to one another, insufficient spacing between metal interconnections, etc). Such design rule violations are not considered here under the presumption that CAD-based design rule checkers catch such violations. Another category of faults arises from statistical parameter variations arising during processing. Yield degradation due to such fabrication variations are called parametric yield [1,2,3], resulting in circuits which do not operate within specification. Though of considerable importance in developing a VLSI fabrication line, parametric yield is beyond the scope of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Cox, P. Yang, S. S. Mahant-Shetti and P. Chatterjee, Statistical modeling for efficient parametric yield estimation of MOS VLSI circuits, IEEE Trans. Electron Devices, vol. ED-32, pp. 471–478 (1985).

    Article  Google Scholar 

  2. D. E. Hocevar, M. R. Lightner and T. N. Trick, An extrapolated yield approximation technique for use in yield maximization, IEEE Trans. Computer-Aided Design, vol. CAD-3, pp. 279–287 (1984).

    Article  Google Scholar 

  3. M. A. Styblinski and L. J. Opalski, Algorithms and software tests for IC yield optimization based on fundamental fabrication parameters, IEEE Trans. Computer-Aided Design, vol. CAD-5, pp. 79–89 (1986).

    Article  Google Scholar 

  4. W. Maly, A. J. Strojwas and S. W. Director, VLSI yield prediction and estimation: a unified framework, IEEE Trans. Computer-Aided Design, vol. CAD-5, pp. 114–129 (1986).

    Article  Google Scholar 

  5. R. M. Warner, Jr., Applying a composite model to the IC yield problem, IEEE J. Solid-State Circuits, vol. SC-9, pp. 86–95 (1974).

    Article  Google Scholar 

  6. K. Saito and E. Arai, Experimental analysis and new modeling of MOS LSI yield with the number of elements, IEEE J. Solid-State Circuits, vol. SC-17, pp. 28–33 (1982).

    Article  Google Scholar 

  7. A. Gupta and J. W. Lathrop, Yield analysis of large integrated-circuit chips, IEEE J. Solid-State Circuits, vol. SC-7, pp. 389–395 (1972).

    Article  Google Scholar 

  8. T. Yanagawa, Influence of epitaxial mounds on the yield of integrated circuits, Proc. IEEE, vol. 57, pp. 1621–1628 (1969).

    Article  Google Scholar 

  9. C. L. Mallory, D. S. Perloff, T. F. Hasan and R. M. Stanley, Spatial yield analysis in integrated circuit manufacturing, Solid State Technology, pp. 121–127 (Nov. 1983).

    Google Scholar 

  10. W. E. Ham, Yield-area analysis: Part I — A diagnostic tool for fundamental integrated-circuit process problems, RCA Review, vol. 39, pp. 231–249 (1978).

    Google Scholar 

  11. B. T. Murphy, Cost-size optima of monolithic integrated circuits, Proc. IEEE, vol. 52, pp. 1537–1545 (1964).

    Article  Google Scholar 

  12. G. E. Moore, What level of LSI is best for you?, Electronics, vol. 43, pp. 126–130 (Feb. 1970).

    Google Scholar 

  13. O. Paz and T.R. Lawson, Jr, Modification of Poisson statistics: modeling defects induced by diffusion, IEEE J. Solid-State Circuits, vol. SC-12, pp. 540–546 (1977).

    Article  Google Scholar 

  14. J.E. Price, A new look at yield of integrated circuits, Proc. IEEE, pp. 1290–1291 (1970).

    Google Scholar 

  15. S. L. Weisbrod, The application of statistical regression to yield modeling, Semiconductor International, pp. 261–265 (May 1985).

    Google Scholar 

  16. H. G. Claudius, Practical defect reduction in an MOS IC line, Microcontamination, pp. 47–67 (April 1987).

    Google Scholar 

  17. R. B. Seeds, Yield and cost analysis of bipolar LSI, Digest: IEEE Int. Electron Device Meeting (1967).

    Google Scholar 

  18. C.H. Stapper, Defect density distribution for LSI yield calculations, IEEE Trans. Electron Dev., vol. ED-20, pp. 655–657 (1973).

    Article  Google Scholar 

  19. C. H. Stapper, On a composite model to the IC yield problem, IEEE J. Solid-State Circuits, vol. XXX, pp. 537–539 (1974).

    Google Scholar 

  20. C. H. Stapper, Yield model for fault clusters within integrated circuits, IBM J. Res. Develop., Vol. 28, pp. 636–640 (1984).

    Article  Google Scholar 

  21. C. H. Stapper, Modeling of integrated circuit defect sensitivities, IBM J. Res. Develop., vol. 27, pp. 549–557 (1983).

    Article  Google Scholar 

  22. C. H. Stapper, A. N. McLaren and M. Dreckmann, Yield model for productivity optimization of VLSI memory chips with redundancy and partially good product, IBM J. Res. Develop., vol. 24, pp. 398–409 (1980).

    Article  Google Scholar 

  23. C. H. Stapper, Comments on “Some considerations in the formulation of IC yield statistics”, Solid-State Electronics, vol. 24, pp. 127–132 (1981).

    Article  Google Scholar 

  24. C. H. Stapper and R. J. Rosner, A simple method for modeling VLSI yields, Solid-State Electronics, vol. 25, pp. 487–489 (1982).

    Article  Google Scholar 

  25. C. H. Stapper, P. P. Castrucci, R. A. Maeder, W. E. Rowe and R. A. Verheist, Evolution and accomplishments of VLSI yield management at IBM, IBM J. Res. Develop., vol. 26, pp. 532–545 (1982).

    Article  Google Scholar 

  26. C. H. Stapper, F. M. Armstrong and K. Saji, Integrated circuit yield statistics, Proc. IEEE, vol. 71, pp. 453–470 (1983).

    Article  Google Scholar 

  27. C. H. Stapper, Modeling of defects in integrated circuit photolithographic patterns, IBM J. Res. Develop., vol. 28, pp. 461–475 (1984).

    Article  Google Scholar 

  28. C. H. Stapper, The effects of wafer to wafer defect density variations on integrated circuit defect and fault distributions, IBM J. Res. Develop., vol. 29, pp. 87–97 (1985).

    Article  Google Scholar 

  29. C. H. Stapper, VLSI modeling and packaging, Technical Digest: 1986 IEEE Int. Solid-State Circuits Conf., pp. 168–169 (1986).

    Google Scholar 

  30. C. H. Stapper, The defect-sensitivity effect of memory chips, IEEE J. Solid-State Circuits, vol. SC-21, pp. 193–198 (1986).

    Article  Google Scholar 

  31. C. H. Stapper, On yield, fault distributions and clustering of particles, IBM J. Res Develop., vol. 30, pp. 326–338 (1986).

    Article  Google Scholar 

  32. A. V. Ferris-Prabhu, Modeling of the critical area in yield forecasts, IEEE J. Solid-State Circuits, vol. SC-20, pp. 874–878 (1985).

    Article  Google Scholar 

  33. A. V. Ferris-Prabhu, Defect size variations and their effect on the critical area of VLSI devices, IEEE J. Solid-State Circuits, vol. SC-20, pp. 878–880 (1985).

    Article  Google Scholar 

  34. W. Maley, Modeling of lithography related yield losses for CAD of VLSI circuits, IEEE Trans. Computer-Aided Design, vol. CAD-4, pp. 166–177 (1985).

    Article  Google Scholar 

  35. C. L. Winter and W. L. Cook, Interval estimates for yield modeling, IEEE J. Solid-State Circuits, vol. SC-21, pp. 590–591 (1986).

    Article  Google Scholar 

  36. V. F. Flack, Estimating variation in IC yield estimates, IEEE J. Solid-State Circuits, vol. SC-21, pp. 362–365 (1986).

    Article  Google Scholar 

  37. V. Flack, A model for predicting the production yield of integrated circuits, J. Opl. Res. Soc, vol. 36, pp. 499–505 (1985).

    Article  Google Scholar 

  38. I. Chen and A. J. Strojwas, RYE: a realistic yield simulator for VLSIC structural failures, Carnegie-Mellon University Technical Report No. CMU CAD-87–21 (1987).

    Google Scholar 

  39. R. Razdan and A. J. Strojwas, A statistical design rule developer, IEEE Trans. on Computer-Aided Design, vol. CAD-5, pp. 508–520 (1986).

    Article  Google Scholar 

  40. H. Walker and S. W. Director, VLASIC: a catastrophic fault yield simulator for integrated circuits, IEEE Tran. Computer-Aided Design, vol. CAD-5, pp. 541–556 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tewksbury, S.K. (1989). Yield Models and Analysis. In: Wafer-Level Integrated Systems. The Kluwer International Series in Engineering and Computer Science, vol 70. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1625-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1625-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8898-5

  • Online ISBN: 978-1-4613-1625-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics