Skip to main content

Reliability and Failures

  • Chapter
Wafer-Level Integrated Systems

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 70))

  • 155 Accesses

Abstract

The design of reliable systems has been a major topic of systems research and development. Though a complex topic, several general principles of analysis and modeling have been developed (e.g. [1,2]). WSI provides reconfiguration or other repair strategies to avoid faulty components, assuming that the faults are known. The emphasis has been on initial yield of functional circuitry, with less attention of achieving tolerance for in-service faults. However, as wafer-level systems evolve, maintenance based on replacing faulty IC’s with functional IC’s becomes more difficult and expensive. In this sense, achieving reliable systems (perhaps beyond the reliability of conventional IC-based components) is potentially as important to the success of wafer-level system modules as achieving high initial yields. This chapter reviews general measures of reliability and then discusses several of the failure mechanisms seen in silicon VLSI. Studies of the impact of scaling devices to smaller sizes on reliability are also reviewed, suggesting that the reliability issue will become more prominent as device dimensions shrink.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable System Design, Digital Press, Bedford, MA (1982).

    Google Scholar 

  2. R. E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing, Holt, Rhinehart and Winston, New York (1975).

    MATH  Google Scholar 

  3. H.J. Larson and B. O. Shubert, Probabilistic Models in Engineering Sciences, Vol. 1: Random Variables and Stochastic Processes, John Wiley & Sons, New York (1979).

    Google Scholar 

  4. W. H. Becker, Reliability, in Quick Reference Manual for Silicon Integrated Circuit Technology, W. E. Beadle, J.C.C. Tsai and R. D. Plummer (Eds), Chapter 15, John Wiley & Sons, New York (1985).

    Google Scholar 

  5. W. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech., vol. 18, pp. 293–297 (1951).

    MATH  Google Scholar 

  6. J. T. Duane, Learning curve approach to reliability modeling, IEEE Trans. Aerospace, vol. 2, pp. 563–566 (1964).

    Article  Google Scholar 

  7. A. S. Jordon and T. D. O’Sullivan, Planning of aging experiments for semiconductor devices by means of the assurance test matrix, Microelectronics Reliability, vol. 24, pp. 125–146 (1984).

    Article  Google Scholar 

  8. F. Fantini, Reliability problems with VLSI, Microelectronics and Reliability, vol. 24, pp. 275–296 (1984).

    Article  Google Scholar 

  9. F. Fantini and M. Vanzi, VLSI failure mechanisms, Proc. IEEE CompEuro, pp. 937–943 (1987).

    Google Scholar 

  10. M. R. Woods, MOS VLSI reliability and yield trends, Proc. IEEE, vol. 74, pp. 1715–1728 (1986).

    Article  Google Scholar 

  11. F. Fantini and C. Morandi, Failure modes and mechanisms for VLSI IC’s — a review, IEE Proc., vol. 132 G, pp. 74–81 (1985).

    Google Scholar 

  12. N. D. Stojadinović, Failure physics of integrated circuits — a review, Microelectron. Reliab., vol. 23, pp. 609–707 (1983).

    Article  Google Scholar 

  13. J. W. McPherson and C. F. Dunn, A model for stress-induced metal notching and voiding in very large-scale integrated Al-Si (1%) metalization, J. Vac. Sci. Technol. B, vol. 5, pp.1321–1325 (1987).

    Article  Google Scholar 

  14. D. B. Estreich, The physics and modeling of latch-up and CMOS integrated circuits, Stanford Electronics Laboratories, Techn. Report G201–9, Stanford University, Stanford, CA (Nov. 1980).

    Google Scholar 

  15. R. R. Troutman, Latchup in CMOS Technology: The Problem and its Cure, Kluwer Academic Pub., Boston (1986).

    Google Scholar 

  16. P. M. Carter and B. R. Wilkins, Influences on soft error rates in static RAMS, IEEE J. Solid-State Circuits, vol. SC-22, pp. 430–436 (1987).

    Article  Google Scholar 

  17. J. Healy, Modeling IC failure rates, Proc. IEEE Annual Reliability and Maintainability Symposium, pp. 307–311 (1986).

    Google Scholar 

  18. T. S. Hohol and L. A. Glasser, RELIC: a reliability simulator for integrated circuits, Proc. IEEE Int. Conf. Computer-Aided Design, pp. 517–520 (1986).

    Google Scholar 

  19. F. H. Reynolds, Thermally activated aging of semiconductor components, Proc. IEEE, vol. 62, pp. 212 -222 (1974).

    Article  Google Scholar 

  20. J. Lee, I.-C. Chen and C. Hu, Comparison between CVD and thermal oxide dielectric integrity, IEEE Electron Dev. Lett., vol. EDL-7, pp. 506–509 (1986).

    Article  Google Scholar 

  21. K. Yamabe, K. Taniguchi and Y. Matsushita, Thickness dependence of dielectric breakdown failure of thermal SiO2 films, Proc. 1983 Int. Reliab. Phys. Symp., p. 184 (1983).

    Google Scholar 

  22. K. Yamabe and K. Taniguchi, Time-dependent dielectric breakdown of thin thermally grown SiO2 films, IEEE Trans. Electron Devices, vol. ED-32, pp. 423–428 (1985).

    Article  Google Scholar 

  23. H. Abe, F. Kiyosumi, K. Yoshioka and M. Ino, Analysis of defects in thin SiO2 thermally grown on Si substrate, Digest: IEEE Int Electron Device Meeting, p. 397 (Dec. 1985).

    Google Scholar 

  24. I.-C. Chen, S. Holland and C. Hu, Electrical breakdown in thin gate and tunneling oxides, IEEE Trans. Electron Devices, vol. 32, pp. 413–422 (1985).

    Article  Google Scholar 

  25. J. Lee, I.-C. Chen, S. Holland, Y. Fong and C. Hu, Oxide defect density, failure rate and screen yield, Proc. IEEE Symp. on VLSI Technology, pp. 69–70 (1986).

    Google Scholar 

  26. P. B. Ghate, Reliability of VLSI interconnections, Proc. IEEE Int. Conf. Computer Design, pp. 240–243 (1987).

    Google Scholar 

  27. P. A. Heimann, S. P. Muraka and T. T. Sheng, Electrical conduction and breakdown in oxides of polysilicon and their correlation with interface traps, J. Appl. Phys., vol. 53, pp. 6240–6245 (1982).

    Article  Google Scholar 

  28. S. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, pg. 497 (1981).

    Google Scholar 

  29. I. C. Chen, S. Holland and C. Hu, Hole trapping and breakdown in thin SiO 2 , IEEE Electron Dev. Lett., vol. EDL-7, pp. 164–168 (1986).

    Article  Google Scholar 

  30. E. Taneda and N. Suzuki, An empirical model for device degradation due to hot-carrier injection, IEEE Electron Dev. Lett., vol. EDL-4(4), pp. 111–113 (1983).

    Google Scholar 

  31. H.-U. Schreiber, Electromigration mechanism in aluminum lines, Solid State Electronics, vol. 28, pp. 1153–1163 (1985).

    Article  Google Scholar 

  32. H.-U. Schreiber, Activation energies for the different electromigration mechanisms in aluminum, Solid State Electronics, vol. 24, pp. 583–589 (1981)

    Article  Google Scholar 

  33. I. A. Blech, Electromigration in thin aluminum films on titanium nitride, J. Appl. Phys, vol. 47, pp. 1203–1208 (1976).

    Article  Google Scholar 

  34. H.-U. Schreiber, Electromigration mechanisms in aluminum lines, Solid State Electronics, vol. 28, pp. 1153–1163 (1985).

    Article  Google Scholar 

  35. H.-U. Schreiber, Bulk electromigraion by eliminating grain boundary mass flow in continuous aluminum lines, Solid State Electronics, vol. 29, pp. 545–549 (1986).

    Article  Google Scholar 

  36. H.-U. Schreiber, Bulk electromigration reliability test of large-grained aluminum lines with regard to semiconductor contacts, Solid-State Electronics, vol. 29, pp. 893–901 (1986).

    Article  Google Scholar 

  37. I. A. Blech and K. L. Tai, Measurements of stress gradients generated by electromigration, Appl. Phys. Lett., vol. 30, pp. 387–389 (1977).

    Article  Google Scholar 

  38. D. S. Gardner, J. D. Meindl and K. C. Saraswat, Interconnection and electromigration scaling theory, IEEE Trans. Electron Dev., vol. ED-34, pp. 633–643 (1987).

    Article  Google Scholar 

  39. P. M. Smith, J. R. Lloyd and G. S. Prokop, Lot-to-lot variations in electromigration performance for thin film circuits, J. Vac. Sci. Technol. A, vol. 2, pp. 220–224 (1984).

    Article  Google Scholar 

  40. P. B. Ghate, Electromigration-induced failure in VLSI interconnects, Proc. IEEE Int. Reliability Phys. Symp., pp. 292–299 (1982).

    Google Scholar 

  41. S. Vaidya, D. Fraser and W. Lindenberger, Electromigration in fine-line sputter-gun Al, J. Appl. Phys., vol. 51, pp.4475–4482 (1980).

    Article  Google Scholar 

  42. K. P. Rodbell and S. R. Shatynski, A new method for detecting electromigration failure in VLSI metalization, IEEE Trans. Electron Devices, vol. ED-31, pp. 232–233 (1984).

    Article  Google Scholar 

  43. J. R. Hines, Reducing IC metal interconnection failures, Microelectronics Manufacturing and Testing, pp. 73–74 (Sept 1987).

    Google Scholar 

  44. T. H. Yuzuriha and S. R. Early, Failure mechanisms in a 4 micron pitch 2-layer gold IC metalization process, Proc. IEEE Int. VLSI Multilevel Interconnection Conf., pp. 146–152 (June 1986).

    Google Scholar 

  45. C. Canali, F. Fantini, E. Zanoni, A. Giovannetti and P. Brambille, Failures induced by electromigration in ECL 100K devices, Microelect. Reliability, vol. 24, pp. 77–100 (1984).

    Article  Google Scholar 

  46. K. P. Rodbell and S. R. Shatynski, Electromigration in sputtered Al-Cu thin films, Thin Solid Films, vol. 108, pp. 95–102 (1983).

    Article  Google Scholar 

  47. R. W. Pasco and J. A. Schwarz, Temperature-ramp resistance analysis to characterize electromigration, Solid State Electronics, vol. 26, pp. 445–452 (1983).

    Article  Google Scholar 

  48. J.R. Black, in Ohmic Contacts to Semiconductors, B. Schwartz (Ed), The Electrochem. Soc, New York p. 311 (1969).

    Google Scholar 

  49. J.R. Black, Electromigration of Al-Si alloy films, Proc. IEEE Int. Reliability Physics Symp., pp. 233–240 (1978).

    Google Scholar 

  50. P.B. Ghate, Electromigration testing of Al-alloy films, Proc. IEEE Int. Reliability Physics Symp., pp. 243–252 (1981).

    Google Scholar 

  51. P.A. Gargini, C. Tseng, M.H. Woods, Proc. IEEE Int. Reliability Physics Symp., pp. 66–76 (1982).

    Google Scholar 

  52. M. J. Attardo and R. Rosenberg, Electromigration damage in aluminum film conductors, J. Appl. Phys., vol. 41, pp. 2381–2386 (1970).

    Article  Google Scholar 

  53. S. Vaidya and A. K. Sinha, Effect of texture and grain structure on electromigraion in Al-0.5%Cu thin films, Thin Solid Films, vol. 75, pp. 253–259 (1981).

    Article  Google Scholar 

  54. R. H. Dennard, F. H. Gaennslen, H.-N. Yu, V. L. Rideout, E. Baussous and A. R. LeBlanc, Design of ion-implanted MOSFET’s with very small dimensions, IEEE J. Solid-State Circuits, vol. SC-9, pp. 256–268 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tewksbury, S.K. (1989). Reliability and Failures. In: Wafer-Level Integrated Systems. The Kluwer International Series in Engineering and Computer Science, vol 70. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1625-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1625-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8898-5

  • Online ISBN: 978-1-4613-1625-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics