Skip to main content

Formal Models of Reconfiguration

  • Chapter
Wafer-Level Integrated Systems

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 70))

  • 152 Accesses

Abstract

This section reviews several of the fundamental results on the “reconfigurability” of linear or 2-dimensional arrays of N cells as N becomes large. Details of the actual reconfiguration mechanisms (i.e. switches and redundant interconnection lines) are not emphasized, since the principal objective here is to obtain general bounds which can be used to clarify constraints which necessarily apply to specific reconfiguration schemes. Greene and Gamal [1] developed several probabilistic bounds on array reconfiguration and their early study stimulated considerable subsequent work on this topic. Leighton and Leiserson [2] provide a review of algorithms for WSI systolic array reconfiguration, emphasizing large N and the probabilistic bounds on “wire length.” Unbounded increases in wire length would impose a particularly severe constraint on systolic array reconfiguration since the rate of data flow movement through the array becomes limited by the longest delay path. For example, the uniform length, nearest neighbor interconnections of an ideal systolic array provide much of the impetus for systolic array designs in the first place. Introduction of reconfiguration schemes, which introduce interconnections of varying length, destroys the homogeneity of interconnection lengths of the ideal systolic arrays. In addition to this obvious reason to minimize the worst case interconnection length (in pipelined, high throughput rate systolic arrays), there is also an expected increase in the number of reconfiguration wires bypassing each cell as the reconfiguration path distances increase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Greene and A. El Gainai, Configuration of VLSI arrays in the presence of defects, J. ACM, vol. 31, pp. 694–717 (1984).

    Article  MATH  Google Scholar 

  2. T. Leighton and C. E. Leiserson, Wafer-scale integration of systolic arrays, IEEE Trans. Computers, vol. C-34, pp. 448–461 (1985).

    Article  Google Scholar 

  3. R. M. Lea, A WSI image processing module, in Wafer Scale Integration, G. Saucier and J. Trihle (Eds), Elsevier Science Pubs., pp. 43–58 (1986).

    Google Scholar 

  4. R. M. Lea, VLSI and WSI associative string processors for structured data processing, IEE Proc., vol. 133 (Pt.E), pp. 153–162 (1986).

    Google Scholar 

  5. R. M. Lea, VLSI and WSI associative string processors for cost-effective parallel processing, The Computer Journal, vol. 29, pp. 486–494 (1986).

    Article  Google Scholar 

  6. W. R. Moore and M. J. Day, Yield enhancement of a large systolic array chip, Microelectron. Reliab., vol. 24, pp. 511–526 (1984).

    Article  Google Scholar 

  7. T. Leighton and C. E. Leiserson, A survey of algorithms for integrating waferscale systolic arrays, Tech. Report MIT/LCS/TM-302, Laboratory for Comp. Sci., MIT (1986).

    Google Scholar 

  8. A. Aho, J. E. Hopcroft and J. D. Ullman, Data Structures and Algorithms, pp. 233–239, Addison-Wesley Publ. Co., Reading MA (1983).

    MATH  Google Scholar 

  9. M. Sekanina, On the ordering of the set of vertices of a connected graph, Pub. Faculty of Sci., Univ. Brno, Czechoslovakia, no. 412, pp. 137–142 (1960).

    MathSciNet  Google Scholar 

  10. J. J. Karaganis, On the cube of a graph, Canad. Math Bull., no. 11, pp. 295–296 (1968).

    Google Scholar 

  11. J. C. Wierman, Percolation theory, Ann. Prob., vol. 10, pp. 509–524 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. S. Lee and G. Frieder, Computations on a defective processor array, Proc. IEEE CompEuro, pp. 51–55 (1987).

    Google Scholar 

  13. H. Frisch, J. M. Hammersley and D. J. A. Welsh, Monte Carlo estimates of percolation probabilities for various lattices, Phys. Rev., vol. 126, pp. 949–951 (1962).

    Article  Google Scholar 

  14. M. F. Sykes and J. W. Essam, Exact critical percolation probabilities for site and bond problems in two dimensions, J. Math. Phys., vol. 5, pp. 1117–1127 (1964).

    Article  MathSciNet  Google Scholar 

  15. C. D. Thompson, A complexity theory for VLSI, Ph.D. Thesis, Dept. of Computer Science, Carnegie-Mellon University, pp. 36–38 (1980).

    Google Scholar 

  16. A. L. Rosenberg, The Diogenes approach to testable fault-tolerant arrays of processors, IEEE Trans. Computers, vol. C-32, pp. 902–910 (1983).

    Article  Google Scholar 

  17. A. L. Rosenberg, On designing fault-tolerant VLSI processor arrays, in Advances in Computing Research,, F. P. Preparata (Ed), vol. 2, pp. 181–204 (1984).

    Google Scholar 

  18. A. L. Rosenberg, A hypergraph model for fault-tolerant VLSI processor arrays, IEEE Trans. Computers, vol. C-34, pp. 578–584 (1985).

    Article  Google Scholar 

  19. A. L. Rosenberg Graph-theoretic approaches to fault-tolerant WSI, in Wafer Scale Integration, C. Jesshope and W. Moore (Eds), pp. 10–23, Adam Hilger (1986).

    Google Scholar 

  20. A. L. Rosenberg Fault-tolerant WSI processor arrays, Technical Report, Dept. of Computer Science, Duke University (Sept. 1987).

    Google Scholar 

  21. R. Negrini and R. Stefanelli, Comparative evaluation of space- and time- redundancy approaches for WSI processing arrays, in Wafer Scaie Integration, G. Saucier and J. Trihle (eds), Elsevier Science Pubs., pp. 207–222 (1986).

    Google Scholar 

  22. R. Negrini, M. G. Sami and R. Stefanelli, Fault-tolerance approaches for VLSI/WSI arrays, Proc. IEEE Int. Phoenix Conf. on Computers and Commun., pp. 460–468 (1985).

    Google Scholar 

  23. G. Gentile, M. G. Sami and M. Terzoli, Design of switches for selfreconfiguring VLSI array structures, Microprocessing and Microprogramming, vol. 14, pp. 99–108 (1984).

    Article  Google Scholar 

  24. V. N. Doniants, S. Iori, M. Pellegrino, E. I. Pi’il and R. Stefanelli, Faulttolerant reconfigurable processing arrays using bi-directional switches, Microprocessing and Microprogramming, vol. 14, pp. 109–115 (1984).

    Article  Google Scholar 

  25. V. N. Donaints, V. G. Lazarev, M. G. Sami and R. Stefanelli, Reconfiguration of VLSI arrays: a technique for increased flexibility and reliability, Microprocessing and Microprogramming, vol. 16, pp. 101–106 (1985)

    Article  Google Scholar 

  26. A. Antola, R. Negrini and N. Scarabottolo, An approach to fault-tolerance in architectures for discrete Fourier transforms, Microprocessing and Microprogramming, vol. 18, pp. 275–288 (1986).

    Article  Google Scholar 

  27. R. Negrini, M. Sami and R. Stefanelli, Fault tolerance techniques for array structures used in supercomputing, IEEE Computer, pp. 78–87 (Feb 1986).

    Google Scholar 

  28. F. Lombardi, M. G. Sami and R. Stefanelli, Reconfiguration of VLSI arrays: an index mapping approach, Proc. IEEE CompEuro, pp. 60–65 (1987).

    Google Scholar 

  29. F. Lombardi, D. Sciuto and R. Stefanelli, Functional reconfiguration in fixedsize VLSI arrays, Proc. IEEE Int. Symp. Circuits and Systems, pp. 386–389 (1987).

    Google Scholar 

  30. C.-L. Wey and F. Lombardi, On the repair of redundant RAM’s, IEEE Trans. Comp. Aided Design, vol. CAD-6, pp. 222–231 (1987).

    Google Scholar 

  31. F. Lombardi and D. Sciuto, Algorithms for delay-bound reconfiguration of arrays, in Wafer Scale Integration, G. Saucier and J. Tritile (Eds), pp. 197–206 (1986).

    Google Scholar 

  32. J. A. B. Fortes and C. S. Raghavendra, Gracefully degradable processor arrays, IEEE Trans. Computers, vol. C-34, pp. 1033–1044 (1985).

    Article  Google Scholar 

  33. S.-Y. Kuo and W. K. Fuchs, Efficient spare allocation for reconfigurable arrays, IEEE Design and Test, pp. 24–31 (Jan 1987).

    Google Scholar 

  34. M. Tarr, D. Boudreau and R. Murphy, Defect analysis speeds test and repair of redundant memories, Electronics, pp. 175–179, (Jan 12, 1984).

    Google Scholar 

  35. J. D. Day, A fault-driven comprehensive redundancy algorithm, IEEE Design and Test, vol. 2, pp. 35–44 (June 1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tewksbury, S.K. (1989). Formal Models of Reconfiguration. In: Wafer-Level Integrated Systems. The Kluwer International Series in Engineering and Computer Science, vol 70. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1625-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1625-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8898-5

  • Online ISBN: 978-1-4613-1625-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics