Skip to main content

Dependence of Reaction Pathways and Product Distribution on the Oxidation State of Palladium Catalysts for the Reactions of Olefinic and Aromatic Substrates with Molecular Oxygen

  • Chapter
Oxygen Complexes and Oxygen Activation by Transition Metals

Abstract

Palladium chemistry dominates the catalytic liquid phase oxidation of unsaturated hydrocarbons both in the breadth of commercial processes and in the large number of synthetic applications. Recent work has shown the potential for new routes via oxygen activation chemistry. Control of the oxidation state of Pd catalysts can provide new routes to ally lie oxidation products. Routes to industrially important a,β-unsaturated alcohols, esters and acids occur via both Pd(IV) and Pd(0) intermediates. High oxidation state palladium complexes are implicated in selective catalytic aromatic ring oxidations, while Pd(II) intermediates give rise to oxidative coupling, and low oxidation state species are responsible for benzylic oxidations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. M. Henry, “Palladium Catalyzed Oxidation of Hydrocarbons”, D. Reidel Publishing Company, Boston, (1980).

    Google Scholar 

  2. P. M. Maitlis, “The Organic Chemistry of Palladium, Vol. II Catalytic Reactions”, Academic Press, New York, (1971).

    Google Scholar 

  3. S. Otsuka, A. Nakamura and Y. Tatsuno, Chem. Commun. 836 (1967).

    Google Scholar 

  4. S. Otsuka, A. Nakamura and Y. Tatsuno, J. Amer. Chem. Soc., 91: 6994 (1969).

    Article  CAS  Google Scholar 

  5. J. J. Levison and S. D. Robinson, J. Chem. Soc. A., 762 (1971)

    Google Scholar 

  6. R. A. Sheldon and J. A. Van Doom, J. Organometal. Chem., 94:115 (1975).

    Article  CAS  Google Scholar 

  7. F. Igersheim and H. Mimoun, Nov. J. Chim., 4:711 (1980).

    CAS  Google Scholar 

  8. M. Roussel and H. Mimoun, J. Org. Chem. 45:5381 (1980).

    Article  Google Scholar 

  9. M. Andrews and K. Kelley, J. Amer. Chem. Soc., 103:2894 (1981).

    Article  CAS  Google Scholar 

  10. J. D. Solar, F. Mares, and S. E. Diamond, Catal. Rev. Sci. Eng., 27:1 (1985).

    CAS  Google Scholar 

  11. J. E. Lyons, “Applied Industrial Catalyst - Vol. 3” B.E. Leach, Ed., Academic Press, New York, 1984, p. 134.

    Google Scholar 

  12. E. Stern, Catal. Rev., 1:73 (1968).

    Article  Google Scholar 

  13. J. E. Lyons, “Homogeneous and Heterogeneous Catalysis” Yu. Yermakov and V. Likholobov, Eds., VNU Science Press, Utrecht, The Netherlands, (1986) pp 117–138.

    Google Scholar 

  14. A. D. Ketley and J. Braatz, Chem. Commun., 169 (1968).

    Google Scholar 

  15. S. Winstein, J. McCaskie, H.-B. Lee and P. M. Henry, J. Am.Chem. Soc., 98:6913 (1978).

    Article  Google Scholar 

  16. I. P. Stolyarov, M. N. Vargaftik, O. M. Nefedov and I. I. Moiseev, Kinetika i Kataliz, 23:376 (1982).

    CAS  Google Scholar 

  17. W. Swodenk and G. Scharfe, U.S. Patent 3,925,452 (1975).

    Google Scholar 

  18. B. M. Trost and P. J. Metzner, J. Am. Chem. Soc., 102:3572 (1980).

    Article  CAS  Google Scholar 

  19. L. Saussine, J.-P. Laloz and H. Mimoun, French Patent 2,450,802 (1980).

    Google Scholar 

  20. T. Seiyama, N. Yamazoe, J. Hojo and M. Hayakawa, J. Catal., 739 (1974).

    Google Scholar 

  21. K. Fujimoto and T. Kunugi, J. Jgn. Petrol. Inst., 17:739 (1974).

    CAS  Google Scholar 

  22. R. David and J. Estienne, U.S. Patent 3,624,147 (1971).

    Google Scholar 

  23. J. A. Hinnenkamp, U.S. Patent 4,435,598 (1984).

    Google Scholar 

  24. P. M. Henry, J. Org. Chem., 36:1886 (1971).

    Article  CAS  Google Scholar 

  25. L. Eberson and L. Gomez-Gonzalez, Act. Chem. Scand., 27:1162 (1973); 27:1249 (1973); 27:1253 (1973).

    Google Scholar 

  26. L. Eberson and L. Jonsson, Act. Chem. Scand., 28:597 (1974); 28:771 (1974); 30:361 (1976).

    Article  Google Scholar 

  27. L. Eberson and L. Jonsson, Act. Chem. Scand., 28:771 (1974); Liebigs Ann. Chem., 233 (1977).

    Article  CAS  Google Scholar 

  28. L. M. Stock, K. Tse, L. J. Vorvick and S. A. Walstrum, J. Org. Chem., 46:1759 (1981).

    Article  Google Scholar 

  29. R. Van Helden and G. Verberg, Rec. Trav. Chim., 84:1263 (1965).

    Article  Google Scholar 

  30. M. O. Unger and R. A. Fouty, J. Org. Chem., 34:18 (1969).

    Article  CAS  Google Scholar 

  31. F. R. S. Clark, R. O. C. Norman, C. B. Thomas and J. S. Willson, J.C.S. Perkin I, 1289 (1974).

    Google Scholar 

  32. H. Iataaki and H. Yoshimoto, J. Org. Chem., 38:76 (1973).

    Article  Google Scholar 

  33. H. Itatani and H. Yoshimoto, Chem. Ind., 674 (1971).

    Google Scholar 

  34. A. I. Rudenkov, G. U. Mennenga, L. N. Rachkovskaya, K. I. Matveev and I. V. Kozhevnikov, Kinet. i Katal., 18:915 (1977).

    CAS  Google Scholar 

  35. Y. Itahara, Chem. Ind., 330 (1982).

    Google Scholar 

  36. V.H.-J. Arpe and L. Hornig, Erdol und Kohle, 23:79 (1970).

    Google Scholar 

  37. I. V. Kozhenikov and K. I. Matveev, Applied Catalysis, 5:135 (1985).

    Article  Google Scholar 

  38. D. R. Bryant, J. E. McKeon and B. C. Ream, Tetrahedron Lett., 3371 (1968); J. Org. Chem., 33:4123 (1968).

    CAS  Google Scholar 

  39. M. K. Starchevskii, M. N. Vargaftik and I. I. Moiseev, Kinetika i Kataliz, 20:1163 (1979).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Lyons, J.E. (1988). Dependence of Reaction Pathways and Product Distribution on the Oxidation State of Palladium Catalysts for the Reactions of Olefinic and Aromatic Substrates with Molecular Oxygen. In: Martell, A.E., Sawyer, D.T. (eds) Oxygen Complexes and Oxygen Activation by Transition Metals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0955-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0955-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8263-1

  • Online ISBN: 978-1-4613-0955-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics