Skip to main content

Metallization, Bonding, and Energetics of Ordered Phases of Al on Si(111)

  • Chapter
Metallization and Metal-Semiconductor Interfaces

Part of the book series: NATO ASI Series ((NSSB,volume 195))

Abstract

Many models have been proposed for understanding the pinning of the Fermi energy (Ef) at the metal-semiconductor interfaces1-3. Each of these models is based on the general assumption that Ef is pinned in response to the presence of surface states. Bardeen1 originally suggested that the surface states were intrinsic to the semiconductor surface, while Heine2 proposed that the pinning was due to the tails of the metal wavefunctions decaying into the gap of the semiconductor. Since Schottky barriers are known to be developed at submonolayer coverages and many times the first adsorbed metal atoms remove the intrinsic surface states, neither model provides a universal picture of the Schottky barrier formation. Phillips4 has pointed out that a complete picture of the Schottky barrier formation would require a description of the microscopic bonding at the metal-semiconductor interface. For each metalsemiconductor system, the surfaces states pinning Ef will depend on the bonding at the interface. Batra and Ciraci5 recentiy suggested that the nature of the pinning states can also change as a function of metal coverage. Their study5 of the pseudomorphic growth of Al -Ge(001) showed that at low coverage ( 1/2 monolayer (ML)) the Ge dangling bond is saturated by the formation of a strong Al-Ge chemisorption bond. At higher coverages (1 ML), the Al overlayer relaxed outward, resulting in a weakening of the chemisorption bond and an increased quasi 2D metallic character of the Al overlayer. In light of these interesting results, we have investigated the change in the bonding properties at the Si(l 11)-A1 interface as a function of Al coverage and adatom geometry. We find that the Al adatom geometry is critically dependent on the coverage, being four-fold coordinated at 1/3 ML and evolving to single-fold on-top site configuration at 1 ML. The resulting geometries reflect the strong covalent bonding between Si and Al at each coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bardeen, Phys. Rev. 71, 717(1947).

    Article  ADS  Google Scholar 

  2. V. Heine, Phys. Rev. A138, 1689(1965).

    Article  ADS  Google Scholar 

  3. J. C. Inkson, J. Phys. C5, 2599(1972).

    ADS  Google Scholar 

  4. J. C. Phillips, J. Vac. Sci. Technol. 11. 947n 1974^

    Article  ADS  Google Scholar 

  5. I. P. Batra and S. Ciraci, Phys. Rev. B33, 4312(1986)

    Article  ADS  Google Scholar 

  6. K. D. Gronwald and M. Henzler, Surf. Sci. 117, 180(1982).

    Article  ADS  Google Scholar 

  7. J. J. Lander and J. Morrison, Surf Sci. 2, 553(1964).

    Article  ADS  Google Scholar 

  8. F. K. Legoues, W. Krakow, and P. S. Ho, Phil. Mag. A53, 833(1986).

    Article  Google Scholar 

  9. R. J. Hamers (in preparation).

    Google Scholar 

  10. G. Margaritondo, J. E. Rowe, and S. B. Christman, Phys. Rev. B14, 5396(1976).

    Article  ADS  Google Scholar 

  11. J. E. Rowe, G. Margaritondo, and S. B. Christman, Phys. Rev. B15, 2195(1977).

    Google Scholar 

  12. K. L. I. Kobayashi, F. Gerker, J. Barth, and C. Kunz, Solid State Commun. 39, 851( 1981).

    Article  ADS  Google Scholar 

  13. G. V. Hansson, R. Z. Bachrach, and R. S. Bauer, Phys. Rev. Lett. 46, 1033(1981); see also G. V. Hansson, J. M. Nicholls, P. Martensson, and R. I. G. Urhberg, Surf. Sci. 168, 105(1986); in addition see also T. Konoshita, S. Kono, and T. Sagawa, Phys. Rev.B32, 2714(1985).

    Google Scholar 

  14. M. K. Kelly, E. Colavita, G. Margaritondo, J. Anderson, L. Pagagno, D. J. Frankel,, Phys. Rev. B32, 2693(1985).

    Article  ADS  Google Scholar 

  15. J. M. Nicholls, B. Reihl, and J. E. Northrup, Phys. Rev. B35, 4137(1987); see also R. I. G, Uhrberg, G. V. Hansson, J. M. Nicholls, P. E. S. Persson, and S. A. Flodstrom, Phys. Rev. B31, 3805(1985).

    Google Scholar 

  16. S. G. Louie and M. L. Cohen, Phys. Rev. B13, 2461(1976).

    Article  ADS  Google Scholar 

  17. J. R. Chelikowsky, Phys. Rev. B13, 3618(1977).

    Google Scholar 

  18. H. I. Zhang and M. Schluter, Phys. Rev. B18, 1923(1978).

    Article  ADS  Google Scholar 

  19. G. Platero, J. A. Verges, and F. Flores, Surf. Sci. 168, 100(1986).

    Article  ADS  Google Scholar 

  20. J. E. Northurp, Phys. Rev. Lett. 53, 683(1984).

    Article  ADS  Google Scholar 

  21. B. N. Dev, S. M. Mohapatra, K. C. Mishra, W. M. Gibson, and T. P. Das, Phys. Rev. B36, 2666(1987).

    Article  ADS  Google Scholar 

  22. J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C12, 4409(1979); K. C. Pandey, Phys. Rev. Lett. 49, 223(1982)., I. P. Batra and F. Herman, J. Vac. Sci. Technol. Al, 1080(1983).23.G. B. Bachelet, D. R. Hamann, and M. Schluter, Phys. Rev. B26, 4199(1982).

    Google Scholar 

  23. G. B. Bachelet, D. R. Hamann, and M. Schluter, Phys. Rev. B26, 4199(1982).

    Article  ADS  Google Scholar 

  24. E. Wigner, Phys. Rev. 46, 1002(1934).

    Article  ADS  MATH  Google Scholar 

  25. L. H. Yang, C. Y. Fong, and I. P. Batra, see this workshop.

    Google Scholar 

  26. J. S. Nelson, I. P. Batra, and C. Y. Fong, J. Vac. Sci. Technol. A6, 743(1988).

    ADS  Google Scholar 

  27. I. P. Batra, S. Ciraci, G. P. Srivastava, J. S. Nelson, C. Y. Fong, Phys. Rev. B34, 8246(1986).

    Article  ADS  Google Scholar 

  28. M. Lannoo, Proc. Workshop on Metallization and Metal-Semiconductor Interfaces (Garching, Aug. 22-26, 1988), Plenum, New York, I.P. Batra, Editor.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Nelson, J.S., Batra, I.P. (1989). Metallization, Bonding, and Energetics of Ordered Phases of Al on Si(111). In: Batra, I.P. (eds) Metallization and Metal-Semiconductor Interfaces. NATO ASI Series, vol 195. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0795-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0795-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8086-6

  • Online ISBN: 978-1-4613-0795-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics