Skip to main content

Calculated Electronic Structures and Schottky Barrier Heights of (111) NiSi2/Si A- and B-Type Interfaces

  • Chapter
Metallization and Metal-Semiconductor Interfaces

Part of the book series: NATO ASI Series ((NSSB,volume 195))

Abstract

In recent years it has been proved possible to predict the valence-band offsets of lattice-matched semiconductor heterojunctions1,2 to an accuracy of about 0.1 eV using density functional theory in the local approximation (LDA). We have investigated whether, for well-characterised metal-semiconductor interfaces, the Schottky-barrier heights can be calculated with similar accuracy. In this paper we report on our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.G. Van de Walle and R.M. Martin, Phys. Rev. B35, 8154 (1987).

    Article  Google Scholar 

  2. N.E. Christensen, Phys. Rev. B37, 4528 (1988).

    Article  ADS  Google Scholar 

  3. L.J. Sham and W. Kohn, Phys. Rev. 145, 561 (1966); J.P. Perdew, R.P. Parr, M. Levy, and J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).

    Google Scholar 

  4. R.T. Tung, Phys. Rev. Lett. 52, 462 (1984); J. Vac. Sci. Technol. B2, 465 (1984).

    Google Scholar 

  5. C. Tejedor, F. Flores, and E. Louis, J. Phys. C 10, 2163 (1977).

    ADS  Google Scholar 

  6. J. Tersoff, Phys. Rev. Lett. 52, 465 (1984).

    Article  ADS  Google Scholar 

  7. M. Cardona and N.E. Christensen, Phys. Rev. B35, 6182 (1987).

    Article  ADS  Google Scholar 

  8. G.P. Das, P. Blochl, N.E. Christensen and O.K. Andersen, to be published. 9D. Cherns, G.R. Anstis, J.L. Hutchinson, and J.C.H. Spence, Phil. Mag. A46, 849 (1982).

    Article  Google Scholar 

  9. E. Vlieg, A.E.M.J. Fischer, J.F. van der Veen, B.N. Dev, and G. Materlik, Surf. Sci. 17, 36 (1986); J. Zegenhagen, K.-G. Huang, W.M. Gibson, B.D. Hunt, and L.J. Schowalter, Phys. Rev., to be published. Note that these two works show opposite trend in the magnitude of the interface contraction for A- and B-type NiSi2/Si interfaces, which is presumably due to different thicknesses of the samples used. However, the average value of the contraction can be taken to be ≈ 0.1 Å for both A— and B-type structures within the experimental error.

    Google Scholar 

  10. O.K. Andersen, Z. Pawlowska, and O. Jepsen, Phys. Rev. 34, 5253 (1986).

    Article  ADS  Google Scholar 

  11. P. Blöchl, Ph. D. Thesis (University of Stuttgart, 1988) unpublished; and P. Blöchl and O.K. Andersen, to be published.

    Google Scholar 

  12. U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972); D.M. Ceperley and B.L. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Google Scholar 

  13. P. Blöchl, G.P. Das, O.K. Andersen, and N.E. Christensen, unpublished.

    Google Scholar 

  14. We have also performed some calculations with a basis of , s-, p- and d-LMTOs on all atomic and empty sites. This reduces the bulk values of E-g, and E° by about 0.2 eV. But the zeroth order band offset = - E°, as well as the interface dipole remain unchanged.

    Google Scholar 

  15. O. Jepsen and O.K. Andersen, Phys. Rev. B 29, 5965 (1984); O.K Andersen, P. Blochl, and O. Jepsen, Bull. Am. Phys. Soc. 33, 804 (1988).

    Google Scholar 

  16. D. Glotzel, B. Segall and O.K. Andersen, Solid State Comm. 36, 403 (1980); W.R.L. Lambrecht, N.E. Christensen, and P. Blochl, Phys. Rev. 36, 2493 (1987). We repeated these bulk calculations for obtaining Ejj, and E° relative to the ASA zero.

    Google Scholar 

  17. D.R. Hamann, Phys. Rev. Lett. 60, 313 (1988).

    Article  ADS  Google Scholar 

  18. P.J. van Hoek, W. Ravenek, and E.J. Baerends, Phys. Rev. Lett. 60, 1743 (1988).

    Article  ADS  Google Scholar 

  19. O.K. Andersen and N.E. Christensen, unpublished.

    Google Scholar 

  20. A. Baldereschi, S Baroni and R. Resta, Phys. Rev. Lett. 61, 734 (1988).

    Article  ADS  Google Scholar 

  21. W. Lambrecht, B. Segall and O.K. Andersen, to be published; and W. Lambrecht, B. Segall and, Phys. Rev. Lett. 61, 1764 (1988).

    Article  ADS  Google Scholar 

  22. D.M. Bylander and L. Kleinman, Phys. Rev. Lett. 59, 2091 (1987).

    Article  ADS  Google Scholar 

  23. W.A. Harrison, Phys. Rev. B31, 2121 (1985); ibid. B37, 864 (1988)

    Google Scholar 

  24. The fact that our estimate of Ep—Ey for the B—interface is now negative, and apparently unphysical, does not mean that the supercell charge density has holes in the valence band, but simply that the energy of the highest valence-band state of the (8+6)-supercell lies below Ey for the semi-infinite system, and below Ep. In terms of the thickness L = 5.9 a0 m of the’m’-layer Si-slab of the supercell (in our case m = 6 ), an estimate of this energy-lowering due to confinement is (7r/L)2 Ry « 0.1 eV. The order of magnitude is thus reasonable.

    Google Scholar 

  25. This correction amounts essentially to shifting the energies, C, of the Si and E s-orbitals upwards by respectively 0.22 and 1.88 eV.

    Google Scholar 

  26. W. Lambrecht, B. Segall and O.K. Andersen, to be published; and W. Lambrecht, B. Segall and, Phys. Rev. Lett. 61, 1764 (1988).

    Article  ADS  Google Scholar 

  27. M.S. Hybertsen and S.G. Louie,Phys.Rev. B34, 5390 (1986) S.B. Zhang, D.T. Tomanek, S.G. Louie, M.L. Cohen and M.S. Hybertsen, Sol. St. Comm. 66, 585 (1988).

    Google Scholar 

  28. G.-X. Qian, R.M. Martin, and D.J. Chadi, Phys. Rev. B37, 1303 (1988).

    Article  ADS  Google Scholar 

  29. Note that the GW calculations of the valence band maximum in GaAs differ, depending on the approximation in which it is treated; eg a recent calculation [ R. Godby, M. Schluter and L.J. Sham, Phys. Rev. 37, 10159, (1988) ] yields AEY = E V G W - E V L D A = +0.13 eV, while the calculation of Zhang et al in Ref. 28 gives AEV»-0.15eV. For Si, on the other hand, the GW calculations of Godby et.al. and of Hybertsen and Louie (Ref. 28) give identical results viz. AEY = + 0. 0 7 eV.

    Google Scholar 

  30. O. Jepsen, J. Madsen, and O.K. Andersen, Phys. Rev. B26, 2790 (1982); Y.K. Vekilov, V.D. Verner, and M.B. Samsonova, Sov. Phys. Usp. 30, 172 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Das, G.P., Blöchl, P., Christensen, N.E., Andersen, O.K. (1989). Calculated Electronic Structures and Schottky Barrier Heights of (111) NiSi2/Si A- and B-Type Interfaces. In: Batra, I.P. (eds) Metallization and Metal-Semiconductor Interfaces. NATO ASI Series, vol 195. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0795-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0795-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8086-6

  • Online ISBN: 978-1-4613-0795-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics