Skip to main content

Prospects for Epithelial Gene Therapy

  • Chapter
DNA Damage and Repair in Human Tissues

Part of the book series: Basic Life Sciences ((BLSC,volume 53))

Abstract

There is considerable excitement about the possibility of somatic cell gene therapy, that is, the introduction and expression of defined genes into cells for the purpose of providing a needed gene product. Most current research on gene therapy has been focused on the use of marrow stem cells as a therapeutic vehicle (Belmont et al., 1986). Inherited hematological disorders, such as severe combined immunodeficiency caused by adenosine deaminase deficiency, are diseases that might be amenable to this form of therapy (Kellems et al., 1985). A possible approach would be through genetic transfer of a recombinant adenosine deaminase gene into autologous marrow stem cells, transplantation of the transformed cells into the patient, and establishment of a population of stem cells that give rise to immunologically competent lymphoid cells. Although many questions need to be answered before we know the efficacy of such therapy, the National Institute of Health has issued guidelines for its use, and clinical trials have already begun (Culliton, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belmont, J., Tigges, J. Chang S. Expression of human adenosine deaminase in murine hematopoietic progenitor cells following retroviral transfer, Nature. 322: 385 (1986)

    Article  PubMed  CAS  Google Scholar 

  • Blue, M-L, Williams, D. L. Zucker, S. Ali Khan, S. and Blum, C. B. Apolipoprotein E synthesis in human kidney, adrenal gland, and liver. Proc. Natl. Acad. Sci. USA 80: 283 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Culliton, B. News & Comment, Gene Transfer Test: so far so good. Science. 244: 913, 1325 and 1430 (1989).

    CAS  Google Scholar 

  • Fenjves, E. S., Gordon, D. A., Pershing, L. K., Williams, D. L. and Taichman, L. B. Systemic distribution of apolipoprotein E secreted by grafts of epidermal keratinocytes: implication for epidermal function and gene therapy, Proc. Natl. Acad. Sci. USA (in press, 1989).

    Google Scholar 

  • Gallico, G., O’Connor N., Compton, C., Kehinde, I. and Green, H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Enal. J. of Med. 311: 448 (1984).

    Article  Google Scholar 

  • Gordon, D. A., Fenjves, E. S., Williams, D. L., and Taichman, L. B. Synthesis and secretion of apolipoprotein E by cultured human keratinocytes. J. Invest. Dermatol. 92: 96 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Gorman, C., Moffat, L., Howard, B. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell Biol. 2: 1044 (1982).

    PubMed  CAS  Google Scholar 

  • Holbrook, K. and Hennings, H. Phenotypic expression of epidermal cells in vitro: a review, J. Invest. Dermatol. 81: 11s (1983).

    Article  PubMed  CAS  Google Scholar 

  • Kellems, R., Yeung, C. and Ignolia D., Adenosine deaminase deficiency and severe combined immunodeficiency, Trends Genet. 1: 278 (1985).

    Article  CAS  Google Scholar 

  • Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227: 680 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.I., and Taichman, L. B., Transient expression of a transfected gene in cultured epidermal keratinocytes: implications for future studies, J. Invest. Dermatol. 92: 267 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Mahley, R. W. and Innerarity, T. L. Apolipoproteins: Structure and function. Biochim. Biophys. Acta. 737: 197, (1983).

    PubMed  CAS  Google Scholar 

  • Morgan, J., Barrandon, Y., Green, H. and Mulligan, R. Expression of an exogenous growth hormone gene by transplantable human epidermal cells, Science. 237: 1476 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Rheinwald, J. G. Serial cultivation of normal human epidermal keratinocytes, Methods Cell Biol. 21A: 229 (1975).

    Google Scholar 

  • Rheinwald, J. G. and Beckett, M. Tumorigenic keratinocytes lines requiring anchorage and fibroblast support cultured from human squamous cell carcinomas. Cancer Res. 41: 1657, (1981).

    PubMed  CAS  Google Scholar 

  • Rheinwald, J. G. and Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 6: 317 (1975).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Fenjves, E.S., Lee, J.I., Garlick, J.A., Gordon, D.A., Williams, D.L., Taichman, L.B. (1990). Prospects for Epithelial Gene Therapy. In: Sutherland, B.M., Woodhead, A.D. (eds) DNA Damage and Repair in Human Tissues. Basic Life Sciences, vol 53. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0637-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0637-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7903-7

  • Online ISBN: 978-1-4613-0637-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics