Advertisement

Calcium Channel Antagonists

  • Robert J. Gould

Abstract

In 1883, Sidney Ringer described the importance of calcium in cardiac contraction (Ringer, 1883). Since that seminal observation, the importance of calcium as a transducer for coupling of biological signals has become evident. The signal transduction role of calcium is made possible by a large, inward-directed gradient of ionized calcium across the plasma membrane. Cytosolic concentrations of calcium in a resting, nonstimulated cell are some 10,000-fold lower than external concentrations (approximately 10−7 M vs 10−3 M) (Fozzard et al., 1985; Tsien et al., 1984). This extreme gradient is maintained by an intrinsic low permeability of the plasma membrane to calcium, active exchange mechanisms and pumps that remove calcium, sequestration of calcium by intracellular organelles such as mitochondria and the endoplasmic reticulum, and buffering by cytosolic calcium-binding proteins. Elevation of cytosolic calcium contractions to 1–10 μM initiates physiologic responses appropriate to the cell type. In muscle, interaction with troponin C or other calcium-binding regulatory proteins initiates contraction. In neuronal, exocrine, and endocrine tissue, secretion ensues. The diversity of responses initiated, the energy expenditure to maintain low cytosolic levels, and the multiplicity of ways to deplete cytosolic calcium all highlight the biologic importance of this messenger system.

Keywords

Calcium Channel Calcium Antagonist Calcium Channel Antagonist Drug Binding Site Cardiac Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, G.S., Ahn, H.S.,Preziosi, T.J., Battye, R., Boone, S.C., Chou, S.N., Kelly, D.L., Weir, B.K., Crabbe, R.A., Lavik, P.J., Rosenbloom, S.B., Dorsey, F.C., Ingram, C.R., Mellits, D.E., Bertsh, L. A., Boisvert, D.P.J., Hundley, M.B., Johnson, R.K., Strom, J.A. and Transou, C.R.(1983) Cerebral anterial spasm. A controlled trial of nimodipine in patients with subarachonoid hemorrahge. N. Eng. J. Med. 308, 619–624.CrossRefGoogle Scholar
  2. Bartoletti, M. and Labo, G. (1981) Clinical and manometric effects of nifedipine in patients with esophageal achalasia. Gastroenterology 83, 963–969.Google Scholar
  3. Bayer, R. Kaufmann, R., and Mannhold, R. (1975) Inotropic and electrophysiological actions of verapamil and D600 in mammalian myocardium. Naunyn Schmiedebergs Arch. Pharmacol. 290, 69–80.PubMedCrossRefGoogle Scholar
  4. Bellemann, P., Ferry, D., Lubbecke, F., and Glossmann, H. (1981) [3H]- Nitrendipine, a potent calcium antagonist, binds with high affinity to cardiac membranes. Arzneimittelforsch. 31. 2064–2067.Google Scholar
  5. Berridge, M. J. and Irvine, R. F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321.PubMedCrossRefGoogle Scholar
  6. Bolger, G. T., Gengo, P., Klockowski, R., Luchowski, E., Siegl, H., Janis, R. A., Triggle, A. M., and Triggle, D. J. (1983) Characterization of binding of the Ca2+,-channel antagonist, [3H]-nitrendipine, to guinea pig ileal smooth muscle. J. Phantiacol. Exp. Ther. 225, 291–310.Google Scholar
  7. Bolger, G. T., Weissman, B. A., and Skolnick, P. (1985) The behavioral effects of the calcium agonist BAY K 8644 in the mouse: Antagonism by the calcium antagonist nifedipine. Naunyn Schmiedebergs Arch. Pharmacol. 328, 373–377.PubMedCrossRefGoogle Scholar
  8. Bolton, T. B. (1979) Mechanism of action of transmitters and other substances on smooth muscle. Physiol. Rev. 59, 606–718.PubMedGoogle Scholar
  9. Bristow, M. R., McAuley, B., Ginsburg, R., Minobe, W. A., and Baisch, M. (1982) Does [3H] nitrendipine bind to sarcolemmal slow channels? Circulation 66 (II), 95.Google Scholar
  10. Burgess, G. M., Godfrey, P. P., McKinney, J. S., Berridge, M.J., Irvine, R. F., and Putney, Jr., J. W. (1984) The second messenger linking receptor activation to internal Ca release in liver. Nature (Lond.) 309, 63–66.PubMedCrossRefGoogle Scholar
  11. Cauvin, C., Loutzinhiser, R., and Van Breemen, C. (1983) Mechanisms of calcium antagonist-induced vasodilation. Ann. Rev. Pharmacol. Toxicol. 23, 373–396.CrossRefGoogle Scholar
  12. Cerrina, J., Denjean, A., Alexandre, G., Lockhard, A., and Duroux, P. (1981) Inhibition of exercise-induced asthma by a calcium antagonist nifedipine. Am. Rev. Respir. Dis. 123, 156–160.PubMedGoogle Scholar
  13. Cortes, R., Supavilai, P., Karobath, M., and Palacios, J. M. (1983) The effects of lesions in the rat hippocampus suggest the association of calcium channel blocker binding sites with specific neuronal population. Neurosci. Lett. 42, 249–254.PubMedCrossRefGoogle Scholar
  14. Crow, T. J. (1980) Molecular biology of schizophrenia: More than one disease process? Br. Med. J. 280, 66–67.PubMedCrossRefGoogle Scholar
  15. Dangman, K. H. and Hoffman, B. F. (1980) Effects of nifedipine on electrical activity of cardiac cells. Am. J. Cardiol. 46. 1059–1067.PubMedCrossRefGoogle Scholar
  16. Denef, D., Van Neuten, J. M., Leysen, J. E., and Janssen, P. A. J. (1979) Evidence that pimozide is not a partial agonist of dopamine receptors. Life Sci. 25, 217–225.PubMedCrossRefGoogle Scholar
  17. DePover, A., Matlib, M. A., Lee, S. W., Dupe. G. P., Grupp, I. L., Grupp, G., and Schwartz, A. (1982) Specific binding of [3H)-nitrendipine to membranes from coronary arteries and heart in relation to pharmacological effects. Paradoxical stimulation by diltiazem. Biochem. Biophys. Res. Commun. 108, 112–117.CrossRefGoogle Scholar
  18. DePover, A., Lee, S. W„ Matlib, M. A., Whitmer, K., Davis, B. A., Powell, T., and Schwartz, A. (1983) [3H]-Nimodipine specific binding to cardiac myocytes and subcellular fractions. Biochem. Biophys. Res. Commun. 113, 185–191.Google Scholar
  19. Ehara, T. and Daufmann, R. (1978) The voltage- and time-dependent effects of (-)-verapamil on the slow inward current in isolated cat ventricular myocardium. J. Pharmacol. Exp. Ther. 207. 49–55.PubMedGoogle Scholar
  20. Ehlert, F. J., Roeske, W. R., Itoga, E„ and Yamamura, H. I. (1982) The binding of [3H]-nitrendipine to receptors for calcium channel antagonists in the heart, cerebral cortex, and ileum of rats. Life Sci. 30, 2191–2202.PubMedCrossRefGoogle Scholar
  21. Eigenmann, R., Blaber, L., Nakamura, K., Thorens, S., and Haeusler, G. (1981) Tiapamil, a new calcium antagonist. 1. Demonstration of calcium antagonistic activity and related studies. Arzneimittelforsch. 31, 1393–1401.PubMedGoogle Scholar
  22. Emanuel, M. B. (1979) Specific calcium antagonists in the treatment of peripheral vascular disease. Angiology 30, 454–469.PubMedCrossRefGoogle Scholar
  23. Fairhurst, A. S., Thayer, S. A., Colker, J. E., and Beatty, D. A. (1983) A calcium antagonist drug binding site in skeletal muscle sarcoplasmic reticulum: Evidence for a calcium channel. Life Sci. 32, 1331 - 1339.PubMedCrossRefGoogle Scholar
  24. Ferry, D. R. and Glossmann, H. (1982) Evidence for multiple receptor sites within the putative calcium channel. Naunyn Schmiedebergs Arch. Pharmacol. 321, 80–83.PubMedCrossRefGoogle Scholar
  25. Ferry, D. R., Goll, A., and Glossmann, H. (1983) Differential labelling of putative skeletal muscle calcium channels by [3H]nifedipine, (3H)nimodipine and (3H)PN 200 110. Naunyn Schmiedebergs Arch. Pharmacol. 323, 276–277.PubMedCrossRefGoogle Scholar
  26. Fleckenstein, A. (1971) Specific Inhibitors and Promoters of Calcium Action in the Excitation-Contraction Coupling of Heart Muscle and Their Role in the Prevention or Production of Myocardial Lesions, in Calcium and the Heart ( Harris, P. and Opie, L., eds.) Academic, New York.Google Scholar
  27. Fleckenstein, A. (1977) Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol. 17, 149–166.CrossRefGoogle Scholar
  28. Fleckenstein, A. (1981) Fundamental Actions of Calcium Antagonists on Myocardial and Cardiac Pacemaker Cell Membranes, in New Perspectives on Calcium Antagonists ( Weiss, G. B., ed.) American Physiological Society, Bethesda, Maryland.Google Scholar
  29. Fleckenstein, A. (1983) Calcium Antagonism in Heart and Smooth Muscle, Wiley-Interscience, New York.Google Scholar
  30. Fleckenstein, A. (1984) Calcium Antagonism: History and Prospects for a Multifaceted Pharmacodynamic Principle, in Calcium Antagonists and Cardiovascular Disease ( Opie, L. H., ed.) Raven, New York.Google Scholar
  31. Fleckenstein, A. and Grun, G. (1969) Reversible blockade of excitation- contraction coupling in rat’s uterine smooth muscle by means of organic calcium antagonists (Iproveratril, D600, prenylamine). Pflugers Arch. Physiol. 307, R26.Google Scholar
  32. Fleckenstein, A., Tritthart, H., Fleckenstein, B., Herbst, A., and Grun, G. (1969) A new group of competitive Ca antagonists (Iproveratril, D600, prenylamine) with highly potent inhibitory effects on excitation-contraction coupling in mammalian myocardium. Pflugers Arch. 391, R12.Google Scholar
  33. Forman, A., Andersson, K.-E., and Ulmsten, U. (1981) Inhibition of myo-metrial activity by calcium antagonists. Seminars in Perinatology 5, 288–294.PubMedGoogle Scholar
  34. Fossett, M., Jaimovich, E., Delpont, E., and Lazdunski, M. (1983) (3H]Nitrendipine receptors in skeletal muscle. Properties and preferential localization in transverse tubules. J. Biol. Chem. 258, 6086 - 6092.Google Scholar
  35. Fozzard, H. A., Chapman, R. A., and Friedlander, I. R. (1985) Measurement of intracellular calcium ion activity with neutral exchanger ion sensitive microelectrodes. Cell Calcium 6, 57–68.PubMedCrossRefGoogle Scholar
  36. Frangos, II., Zissis, N. P., Leontopoulos, I., Diamantas, N., Tsitouridis, S., Gavril, I., and Tsolis, K. (1978) Double-blind therapeutic evaluation of fluspirilene compared with fluphenazine decanoate in chronic schizophrenics. Acta Psychiatr. Scand. 57, 436–446.PubMedCrossRefGoogle Scholar
  37. Freedman, S. B. and Miller. R. J. (1984) Calcium channel activation: A different type of drug action. Proc. Natl. Acad. Sci. USA 81, 5580–5583.PubMedCrossRefGoogle Scholar
  38. Freedman, S. B., Dawson, G., Villereal, M. L., and Miller, R. J. (1984a) Identification and characterization of voltage sensitive calcium channels in neuronal clonal cell lines. J. Neurosci. 4, 1453–1467.PubMedGoogle Scholar
  39. Freedman, S. B., Miller, R.J., Miller, D. M„ and Tindall, D. R. (1984b) Interactions of maitotoxin with voltage-sensitive calcium channels in cultured neuronal cells. Proc. Natl. Acad. Sci. USA 81, 4582 - 4585.PubMedCrossRefGoogle Scholar
  40. Galizzi, J. P., Fosset, M. and Lazdunski, M. (1984a) [3H] Verapamil binding sites in skeletal muscle transverse tubule membranes. Biochem. Biophys. Res. Commun. 118, 239–245.Google Scholar
  41. Galizzi, J. P., Fosset, M., and Lazdunski, M. (1984b) Properties of receptors for the Ca2+ channel blocker verapamil in transverse-tubule membranes of skeletal muscle. Eur. J. Biochem. 144, 211–215.PubMedCrossRefGoogle Scholar
  42. Garcia, M. L.., Trumble, M.J., Reuben, J. P., and Kaczorowski, G. J. (1984) Characterization of verapamil binding sites in cardiac membrane vesicles. J. Biol. Chem. 259, 15013–15016.PubMedGoogle Scholar
  43. Garcia, M. L., King, V. F., and Kaczorowski, G. (1985) Interaction of diltiazem binding sites with dihydropyridine and verapamil receptors in cardiac sarcolemmal membrane vesicles. Fed. Proc. 44, 715.Google Scholar
  44. Gelmers, H. J. (1983) Nimodipine, a new calcium antagonist, in the prophylactic treatment of migraine. Headache 23, 106–109.PubMedCrossRefGoogle Scholar
  45. Glossmann, H. and Ferry, D. R. (1983) Molecular Approach to the Calcium Channel, in New Calcium Antagonists ( Fleckenstein, A., Hashimoto, K., Herrmann, M., Schwartz, A., and Seipel, L., eds.) Gustav Fischer Verlag, New York.Google Scholar
  46. Glossmann, H., Ferry, D. R., Lubbecke, F., Mewes, R., and Hofmann, F. (1982) Calcium channels: Direct identification with radioligand binding studies. Trends Pharmacol. Sci. 3, 431–437.CrossRefGoogle Scholar
  47. Glossmann, H., Linn, T., Rombusch, M., and Ferry, D. R. (1983) Temperature-dependent regulation of d-cis-[3H]diltiazem binding to Ca2+ channels by 1,4-dihydropyridine channel agonists and antagonists. FEBS Lett. 160, 226–232.PubMedCrossRefGoogle Scholar
  48. Goetz, C. G., Carvey, P. M., Tanner, C. M., and Klawans, H. L. (1984) Neuroleptic-induced dopamine hyposensitivity. Life Sci. 34, 1475– 1479.CrossRefGoogle Scholar
  49. Gould, R. J., Murphy, K. M. M., and Snyder, S. H. (1982a) Autoradiographic visualization of [3H]nitrendipine binding sites in rat brain: Localization to synaptic zones. Eur. J. Pharmacol. 81. 517–519.PubMedCrossRefGoogle Scholar
  50. Gould, R. J., Murphy, K. M. M. and Snyder, S. H. (1982b) [3H]Nitrendipine-labelled calcium channels discriminate inorganic calcium agonists and antagonists. Proc. Natl. Acad. Sci. USA 79, 3656–3660.Google Scholar
  51. Gould, R. J., Murphy, K. M. M., and Snyder, S. H. (1983a) Studies on voltage-operated calcium channels using radioligands. Cold Spring Harbor Sump. Quant. Biol. 48, 355–362.Google Scholar
  52. Gould, R. J., Murphy, K. M. M., Reynold, I. J., and Snyder, S. H. (1983b) Antischizophrenic drugs of the diphenylbutylpiperidine type act as calcium channel antagonists. Proc. Natl. Acad. Sci. USA 80, 5122–5125.PubMedCrossRefGoogle Scholar
  53. Gould, R. J., Murphy, K. M. M., and Snyder, S. H. (1984a) Tissue heterogeneity of calcium channel antagonist binding sites labelled by [3H]nitrendipine. Mol. Pharmacol. 25, 235–241.PubMedGoogle Scholar
  54. Gould, R. J., Murphy, K. M. M., Reynolds, I. J., and Snyder, S. H. (1984b) Calcium channel blockade: Possible explanation for thioridazine’s peripheral side effects. Am. J. Psych. 141, 352–357.Google Scholar
  55. Gould, R. J., Murphy, K. M. M., and Snyder, S. H. (1985) Autoradiographic localization of calcium channel antagonist receptors in rat brain with [3H]nitrendipine. Brain Res. 330, 217–223.PubMedCrossRefGoogle Scholar
  56. Green, F.J., Farmer, B. B., Wiseman, G. L., Jose, M. J. L., and Watanabe, A. M. (1985) Effect of membrane depolarization on binding of 3H- nitrendipine to rat myocytes. Circ. Res. 56, 576–585.PubMedGoogle Scholar
  57. Grover, A. K., Kwan, C. Y., Luchowski, E.E., Daniel, E. E., and Triggle, D. J. (1984) Subcellular distribution of [3H]nitrendipine binding in smooth muscle. J. Biol. Chem. 259, 2223–2226.PubMedGoogle Scholar
  58. Haas, S. and Beckmann, H. (1982) Pimozide versus halopcridol in acute schizophrenia. A double blind controlled study. Pharmacopsychiatria 15, 70–74.PubMedCrossRefGoogle Scholar
  59. Haas, H. and Hartfelder, G. (1962) α-Isopropyl-α-(N-methyl- homoveratryl)-γ-aminopropyl-3,4-dimethoxy-phenylacetonitril, eine Substanz mit Coronargefasserweiternden Eigenschaften. Arzneimittelforsch. 12, 549–558.Google Scholar
  60. Henry, P. D. (1980) Comparative pharmacology of calcium antagonists: Nifedipine, verapamil and diltiazem. Am. J. Cardiol. 46, 1047 - 1058.PubMedCrossRefGoogle Scholar
  61. Hess, P., Lansman, J. B., and Tsien, R. W. (1985) A novel type of cardiac calcium channel in ventricular cells. Nature (Lond.) 316, 443–446.PubMedCrossRefGoogle Scholar
  62. Hoffmeister, F., Benz, U., Heise, H., Krause, P., and Neuser, V. (1982) Behavioral effects of nimodipine in animals. Arzneimitelforsch. 32, 347–360.Google Scholar
  63. Holck, M., Thorens, S., and Haeusler, G. (1982) Characterization of [3H] nifedipine binding sites in rabbit myocardium. Eur. J. Phannacol. 85, 305–315.CrossRefGoogle Scholar
  64. Hulthen, U. L., Landmann, R., Burgisser, E., and Buhler, F. R. (1982) High-affinity binding sites for [3H] verapamil in cardiac membranes. J. Cardiovasc. Pharmacol. 4, S291–S93.PubMedCrossRefGoogle Scholar
  65. Janis, R. A. and Triggle, D. J. (1983) New developments in Ca2+ channel antagonists. J. Med. Chem. 26, 775–785.PubMedCrossRefGoogle Scholar
  66. Janis, R. A., Maurer, S. C., Sarmiento, J. G., Bolger, G. T., and Triggle, D. J. (1982) Binding of [3H] nimodipine to cardiac and smooth muscle membranes. Eur. J. Pharmacol. 82. 191–194.PubMedCrossRefGoogle Scholar
  67. Janis, R. A., Rampe, D„ Sarmiento, J. G., and Triggle, D. J. (1984a) Specific binding of a calcium channel activator, (3H] Bay K 8644, to membranes from cardiac muscle and brain. Biochem. Biophys. Res. Comm. 121, 317–323.PubMedCrossRefGoogle Scholar
  68. Janis, R. A., Sarmiento, J. G., Maurer, S. C., Bolger, G. T.. and Triggle, D. J. (1984b) Characteristics of the binding of [3H] nitrendipine to rabbit ventricular membranes: Modification by other Ca2+ channel- antagonists and the Ca2+ channel antagonist Bav K 8644. J. Pharmacol. Exp. Ther. 221, 8–15.Google Scholar
  69. Kaczorowski, G., King, V. F., and Garcia, M. L. (1985) Characterization of diltiazem binding sites in cardiac sarcolemmal membrane vesicles. Fed. Proc. 44, 169–192. 715.Google Scholar
  70. Kambara, H., Fujimoto, K., Wakabayashi, A., and Kawai, C. (1981) Primary pulmonary hypertension: Beneficial therapv with diltiazem. Am. Heart J. 101, 230–231.PubMedCrossRefGoogle Scholar
  71. Kaplita, P. V. and Triggle, D. J. (1983) Actions of Ca2+ antagonists on the guinea-pig ileal myenteric plexus preparation. Biochem. Pharmacol. 32, 65–68.PubMedCrossRefGoogle Scholar
  72. Karaki, H. and Weiss, G. B. (1984) Calcium channels in smooth muscle. Gastroenterology 87, 960–970.PubMedGoogle Scholar
  73. Kass, R. S. and Tsien, R. W. (1975) Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers. J. Gen. Physiol. 66, 169–192.PubMedCrossRefGoogle Scholar
  74. Kohlhardt, M., Bauer, B., Krause, H., and Fleckenstein, A. (1972) Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibers by the use of specific inhibitors. Pflugers Arch. 335, 309–322.PubMedCrossRefGoogle Scholar
  75. Kuroda, Y., Yoshii, M., Tsunoo, A., Yasumoto, T., and Narahashi, T. (1984) Recording of calcium current in gigaohm scaled neuroblastoma cells and the mechanism of action of maitotoxin. Neurochem. Res. 9, 1172.CrossRefGoogle Scholar
  76. Landmark, K., Sire, S., Thaulow, E., Amlie, J. P., and Nitter-Hauge, S. (1982) Hemodynamic effects of nifedipine and propranolol in patients with hvpertropic obstructive cardiomyopathy, Br. Heart J. 48, 19–26.PubMedCrossRefGoogle Scholar
  77. Lapierre, Y. D. (1978) A controlled study of penfluridol in the treatment of chronic schizophrenia. Am. J. Psychiatry 135, 956–959.PubMedGoogle Scholar
  78. Lee, K. S. and Tsien, R. W. (1983) Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialyzed heart cells. Nature (Lond.) 302, 790–794.PubMedCrossRefGoogle Scholar
  79. Lindner, E. (1960) Phenyl-propyl-diphenyl-propyl-amin, eine neue Substanz mit coronargefasserweiternder Wirkung. Arzneimittelforsch. 10, 569–573.PubMedGoogle Scholar
  80. MacLeod, R. M. and Lamberts, S. W. J. (1978) The biphasic regulation of prolactin secretion by dopamine agonists-antagonists. Endocrinology 103, 200–203.PubMedCrossRefGoogle Scholar
  81. Mannhold, R., Zierden, P., Bayer, R., Rodenkirchen, R., and Steiner, R. (1981) The influence of aromatic substitution on the negative inotropic action of verapamil in the isolated cat papillary muscle. Arzneimittelforsch. 31, 773–780.PubMedGoogle Scholar
  82. Marangos, P. J., Patel, J., Miller, C., and Martino, A. M. (1982) Specific calcium antagonist binding in brain. Life Sci. 31, 1575–1585.PubMedCrossRefGoogle Scholar
  83. Marsh, J. D„ Loh, E., LaChance, D., Barry, W. H., and Smith, T. W. (1983) Relationship of binding of a calcium channel blocker to inhibition of contraction in intact cultured embryonic chick ventricular cells. Circ. Res. 53, 539–543.PubMedGoogle Scholar
  84. Metzger, H., Stern, H. O., Pfitzer, G., and Ruegg. J. C. (1982) Calcium antagonists affect calmodulin-dependent contractility of a skinned smooth muscle. Arzneimittelforsch 32, 1425–1427.PubMedGoogle Scholar
  85. Middlemiss, D. N. and Spedding. M. (1985) A functional correlate for the dihvdropyridine binding site in rat brain. Nature (Lond.) 314, 94–96.PubMedCrossRefGoogle Scholar
  86. Miller, R. J. and Freedman. S. B. (1984) Are dihydropyridine binding sites voltage sensitive calcium channels? Life Sci. 34. 1205–1221.PubMedCrossRefGoogle Scholar
  87. Miller, W. C. and Moore, J. B. (1983) [3H)Nitrendipine binding in uterine smooth muscle. Phannacologist 25, 520.Google Scholar
  88. Miller, D. M., Davin, W. T., and Tindall, D. R. (1985) Effects of maitotoxin on guinea pig ileum contraction partially ameliorated by calcium channel antagonists. Toxicon 23, 34.Google Scholar
  89. Murphy, K. M. M. and Snyder, S. H. (1982) Calcium antagonist receptor binding sites labeled with [3H]nitrendipine. Eur. J. Pharmacol. 77, 201–202.PubMedCrossRefGoogle Scholar
  90. Murphy, K. M. M., Gould, R. J., Largent, B. L., and Snyder, S. H. (1983) A unitarv mechanism of calcium antagonist drug action. Proc. Natl. Acad. Sci. USA 80, 860–864.PubMedCrossRefGoogle Scholar
  91. Murphy, K. M. M., Gould, R. J., and Snyder, S. H. (1984) Regulation of [3H) Nitrendipine Binding: A Single Allosteric Site for Verapamil, Diltiazem and Prenylamine, in Nitrendipine ( Scriabine, A., Vanov,S., and Deck, K., eds.) Urban and Schwarzenberg, Baltimore, Maryland.Google Scholar
  92. Nagao, T., Sato, M., Iwasawa, Y., Takada, T., Ishida, R., Nakajima, H„ and Kiyomoto, A. (1972) Studies on a new 1,5-benzothiazepine derivative (CRD-401). III. Effects of optical isomers of CRD-401 on smooth muscle and other pharmacological properties. Jap. J. Pharmacol. 22, 467–478.PubMedCrossRefGoogle Scholar
  93. Nagao, T., Ikeo, T., and Sato, M. (1977) Influence of calcium ions on responses to diltiazem in coronary arteries. Jap. J. Pharmacol. 27, 330–332.PubMedCrossRefGoogle Scholar
  94. Nakajima, H., Hoshivama, M., Yamashita, K., and Kiyomoto, A. (1975) Effect of diltiazem on electrical and mechanical activity of isolated cardiac ventricular muscle of guinea pig. Jap. J. Pharmacol. 25, 383–392.PubMedCrossRefGoogle Scholar
  95. Narducci, F., Bassotti, G., Gaburri, M., Farroni, F., and Morelli, A. (1985) Nifedipine reduces the colonic motor response to eating in patients with the irritable colon syndrome. Am. J. Gastroenterol. 80, 317–319.PubMedGoogle Scholar
  96. Nowycky, M. C., Fox, A. P., and Tsien, R. W. (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature (Lond.) 316, 440–443.PubMedCrossRefGoogle Scholar
  97. Ohizumi, Y., Kajiwara, A., and Yasumoto, T. (1983) Excitatory effect of the most potent marine toxin, maitotoxin, on the guinea pig vas deferens. J. Pharmacol. Exp. Ther. 227, 199–204.PubMedGoogle Scholar
  98. Pan, M., Janis, R. A., and Triggle, D. J. (1983) Comparison of the equilibrium and kinetic binding characteristics of tritiated Ca2+channel inhibitors, nisoldipine, nitrendipine, and nifedipine.Pharmacologist 25,523.Google Scholar
  99. Quirion, R. (1983) Autoradiographic localization of a calcium channel antagonist, [3H] nitrendipine, binding site in rat brain. Neurosci. Lett. 36, 267–271.PubMedCrossRefGoogle Scholar
  100. Quirion, R., Lafaille, F., and Nair, N. P. V. (1985) Comparative potencies of calcium channel antagonists and antischizophrenic drugs on central and peripheral calcium channel binding sites. J. Pharm. Pharmacol. 37, 437–440.PubMedCrossRefGoogle Scholar
  101. Reuter, H. (1967) The dependence of the slow inward current on external calcium concentration in Purkinje fibers. J. Physiol. (Lond.) 192, 479–492.PubMedGoogle Scholar
  102. Reuter, H. (1968) Slow inactivation of currents in cardiac Purkinje fibers. J. Physiol. (Lond.) 197, 233–253.PubMedGoogle Scholar
  103. Reynolds, I. J., Gould, R. J., and Snyder, S. H. (1983) [3H)Verapamil binding sites in brain and skeletal muscle: Regulation by calcium. Eur. J. Pharmacol. 95, 319–321.Google Scholar
  104. Reynolds, I. J., Snowman, A. M„ and Snyder, S. H. (1985) [3H)Methoxy- verapamil ([3H]D-600) and [3H)desmethoxyverapamiI (([3H]D-888) label multiple receptors in brain and heart. Soc. Neurosci. Abstr. 11, 516.Google Scholar
  105. Rezvani, A., Huidobro-Toro, J. P., and Way, E. L. (1983) Effect of 4-amino- pyridine and verapamil on the inhibitory action of normorphine on the guinea-pig ileum. Eur.J. Pharmacol. 86, 111–115.CrossRefGoogle Scholar
  106. Richter, J. E., Spurling, T. J., Cordova, C. M., and Castell, D. O. (1984) Effects of oral calcium blocker, diltiazem, on esophageal contraction: Studies in volunteers and patients with “nutcracker esophagus.” Dig. Dis. Sci. 29, 649–656.PubMedCrossRefGoogle Scholar
  107. Ringer, S. (1883) A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. (Lond.) 4, 29–42.PubMedGoogle Scholar
  108. Rodeheffer, R. J., Rommer, J. A., Wigley, F., and Smith, G. R. (1983) Controlled double-blind trial of nifedipine in the treatment of Raynaud’s phenomenon. N. Eng. J. Med. 308, 880–883.CrossRefGoogle Scholar
  109. Rosenberger, L. B. and Triggle, D. J. (1978) Calcium, Calcium Translocation and Specific Calcium Antagonists, in Calcium and Drug Action ( Weiss, G. B., ed.) Plenum, New York.Google Scholar
  110. Rupniak, N. M. J., Jenner, P., and Marsden, C. D. (1983) The effect of chronic neuroleptic administration on cerebral dopamine receptor function. Life Sci. 32, 2289–2311.PubMedCrossRefGoogle Scholar
  111. Saida, K. and Van Breemen, C. (1982) Inhibiting effect of diltiazem on intracellular Ca2+ release in vascular smooth muscle. Blood Vessels 20, 105–108.Google Scholar
  112. Saikawa, T., Nagamoto, Y., and Atrita, M. (1977) Electrophysiologic effects of diltiazem, a new slow channel inhibitor, on canine cardiac fibers, Jap. Heart J. 18, 235–245.PubMedCrossRefGoogle Scholar
  113. Sandahl, B., Ulmsten, U., and Anderssen, K. E. (1979) Trial of the calcium antagonist nifedipine in the treatment of primary dysmenorrhoea. Arch. Gynecol. 227, 147–151.PubMedCrossRefGoogle Scholar
  114. Sarmiento, J. G., Janis, R. A., Colvin, R. A., Maurer, S. C., and Triggle, D. J. (1982) Comparison of calcium channels in canine arterial and ventricular myocardium using [3H] nitrendipine binding. Fed. Proc. 41, 1707A.Google Scholar
  115. Sarmiento, J. G., Janis, R. A., Colvin, R. A., Triggle, D. J., and Katz, A.M. (1983) Binding of the calcium channel blocker, nitrendipine to its receptor in purified sarcolemma from canine cardiac ventricle. J. Mol. Cell. Cardiol. 15, 135–137.PubMedCrossRefGoogle Scholar
  116. Sato, M., Nagao, T., Yamaguchi, I.„ Nakajima, H., and Kiyomoto, A. (1971) Pharmacological studies on a new 1,5-benzothiazepine derivative (CRD-401). I. Cardiovascular actions. Arzneimittelforsch 21, 1338–1343.PubMedGoogle Scholar
  117. Schoemaker, 11, and Langer, S. Z. (1985) [3H)Diltiazem binding to calcium channel antagonists recognition sites in rat cerebral cortex. Eur. J. Pharmacol. Ill, 273 - 277.PubMedCrossRefGoogle Scholar
  118. Schoemaker, H., Itoga. E., Boles, R. G., Roeske, W. R., Ehlert, F. W., Kito, S., and Yamamura, H. I. (1983) Temperature Dependence and Kinetics of [3H]Nitrendipine Binding in the Rat Brain, in Nitrendipine ( Scriabine, A., Vanov, S., and Deck, K., eds.) Urban and Schwarzenberg, Baltimore, Maryland.Google Scholar
  119. Schramm, M., Thomas, G., Towart, R., and Frankowiak, G. (1983a) Activation of calcium channels by novel 1,4-dihydropyridines: A new mechanism for positive inotropics or smooth muscle stimulants. Arzneimittelforsch. 33, 1268–1272.PubMedGoogle Scholar
  120. Schramm, M., Thomas, G., Towart, R., and Frankowiak, G. (1983b) Novel dihvdropyridines with positive inotropic action through activation of Ca2+ channels. Nature 303, 535–537.PubMedCrossRefGoogle Scholar
  121. Schumann, H. J., Gorlitz, B. D., and Wagner, J. (1975) Influence of papaverine, D600 and nifedipine on the effects of noradrenaline and calcium on the isolated aorta and mesenteric artery of the rabbit. Naunyn Schmiedebergs Arch. Pharmacol. 289, 409–418.PubMedCrossRefGoogle Scholar
  122. Schwartz, A. and Triggle, D. J. (1984) Cellular action of calcium channel blocking drugs. Ann. Rev. Med. 35, 325–339.PubMedCrossRefGoogle Scholar
  123. Scriabine, A., Vanov, S., and Deck, K., eds. (1984) Nitrendipine. Urban and Schwarzenberg, Baltimore, Maryland.Google Scholar
  124. Schmizu, K., Ohta, T., and Noda, N. (1980) Evidence for greater susceptibility of isolated dog cerebral arteries to Ca antagonists than peripherial arteries. Stroke 11, 261–266.CrossRefGoogle Scholar
  125. Singh, B. N., Collett, J. T., and Chew, C. Y. (1980) New perspectives in the pharmacologic therapy of cardiac arrhythmias. Prog. Cardiovasc. Dis. 22, 243–301.PubMedCrossRefGoogle Scholar
  126. Singh, B. N., Nademanee, K., and Baky, S. H. (1983) Calcium antagonists. Clinical use in the treatment of arrhythmias. Drugs 25, 125–133.PubMedCrossRefGoogle Scholar
  127. Spedding, M. (1982) Assessment of “Ca2+-antagonist” effects of drugs in K+-depolarized smooth muscle. Differentiation of antagonist subgroups. Naunyn Schmiedebergs Arch. Pharmacol. 318, 234–240.PubMedCrossRefGoogle Scholar
  128. Spedding, M. and Berg, C. (1984) Interactions between a “calcium channel agonist,” Bay K 8644, and calcium antagonists differentiate calcium antagonist subgroups in K+-depolarized smooth muscle. Naunyn Schmiedebergs Arch. Phannacol. 328, 69–75.CrossRefGoogle Scholar
  129. Spivack, C., Ocken, S., and Frishman, W. H. (1983) Calcium antagonists. Clinical use in the treatment of systemic hypertension. Drugs 25, 154–177.PubMedCrossRefGoogle Scholar
  130. Starke, K., Spath, I,., and Wichmann, T. (1984) Effects of verapamil, diltiazem and ryosidine on the release of dopamine and acetylcholine in rabbit caudate nucclus slices. Naunyn Schmiedebergs Arch. Pharmacol. 325, 124–130.PubMedCrossRefGoogle Scholar
  131. Stone, P. H., Antman, E. M„ Muller, J. E„ and Braunwald, E. (1980) Calcium channel blacking agents in the treatment of cardiovascular disorders. II. Hemodynamic effects and clinical applications. Ann. Intern. Med. 93, 886–904.PubMedGoogle Scholar
  132. Theroux, P., Taeymans, Y., and Waters, D. D. (1983) Calcium antagonists. Clinical use in the treatment of angina. Drugs 25, 178–195.PubMedCrossRefGoogle Scholar
  133. Thorgeirsson, G. and Rudolph, S. A. (1984) Diltiazem-like effect of thioridazine on the dihydropyridine binding sites of the calcium channel of rat myocardial membranes. Biochem. Biophys. Res. Commun. 121, 657–663.PubMedCrossRefGoogle Scholar
  134. Toll, L. (1982) Calcium antagonists. High-affinity binding and inhibition of calcium transport in a clonal cell line. J. Biol. Chem. 257, 13189–13192.PubMedGoogle Scholar
  135. Triggle, D. J. and Janis, R. A. (1984) Calcium channel antagonists: New perspectives from the radioligand binding assay. Mod. Meth. Pharmacol. 2, 1–28.Google Scholar
  136. Triggle, C. R., Agrawal, D. K., Bolger, G. T., Daniel, E. E., Kwan, C. Y., Luchowski, E. M., and Triggle, D. J. (1982) Calcium channel antagonist binding to isolated vascular smooth muscle membranes. Can. J. Physiol. Phartnacol. 60, 1738–1741.CrossRefGoogle Scholar
  137. Tsien, R. Y„ Pozzan, T., and Rink, T. J. (1984) Measuring and manipulating cytosolic Ca2+ with trapped indicators. Trends Biochem. Sci. 9, 263–266.CrossRefGoogle Scholar
  138. Turner, T. J. and Goldin, S. M. (1985) Calcium channels in rat brain synaptosomes: Identification and pharmacological characterization. High affinity blockade by organic Ca2+ channel blockers. J. Neurosci. 5, 841–849.PubMedGoogle Scholar
  139. Ulmsten, U., Anderssen, K. E., and Wingerup, L. (1980) Treatment of premature labor with the calcium antagonist nifedipine. Arch. Gynecol. 229. 1–5.PubMedCrossRefGoogle Scholar
  140. Van Breeman, C. and Siegel, B. (1980) The mechanism of α-adrenergic activation of the dog coronary artery. Circ. Res. 46, 426–429.Google Scholar
  141. Van Breemen, C., Hwang. O., and Meisheri, K. D. (1981) The mechanism of inhibitory action of diltiazem on vascular smooth muscle contractility. J. Pharmacol. Exp. Ther. 218, 459–463.PubMedGoogle Scholar
  142. Vitek, M. and Trautwein, W. (1971) Slow inward current and action potential in cardiac Purkinje fibers. The effect of Mn ions. Pfleugers Arch. 323, 204–218.CrossRefGoogle Scholar
  143. Weiss, G. B., ed. (1981) New Perspectives on Calcium Antagonists, American Physiological Society, Bethesda, Maryland.Google Scholar
  144. Williams, L. T. and Jones, L. R. (1983) Specific binding of the calcium antagonist, [3H] nitrendipine, to subcellular fractions isolated from canine myocardium—evidence for high affinity binding to ryanodine-sensitive sarcoplasmic reticulum. J. Biol. Chem. 258, 5344–5347.PubMedGoogle Scholar
  145. Williams, L. T. and Tremble, P. (1982) Binding of a calcium antagonist, [3H] nitrendipine, to high affinity sites in bovine aortic smooth muscle and canine cardiac membranes. J. Clin. Invest. 70. 209–212.PubMedCrossRefGoogle Scholar
  146. Wit, A. L. and Ning, W. (1983) Effects of the Slow Channel Blockers Nifedipine and Verapamil on the Electrical Activity of the Sinoatrial and Atrioventricular Nodes, in Calcium Antagonists: The State of The Art and Role in Cardiovascular Disease. ( Hoffman, B. F., ed.) College of Physicians of Philadelphia, Philadelphia, Pennsylvania.Google Scholar
  147. Yamamoto, H. and Van Breemen, C. (1985) Inositol 1,4,5-trisphosphate releases calcium from skinned, cultured smooth muscle cells. Bio- chem. Biophys. Res. Commun. 130, 270–274.CrossRefGoogle Scholar
  148. Yamamura, H. I., Schoemaker, H., Boles, R. G., and Roeske, W. R. (1982) Diltiazem enhancement of [3H] nitrendipine binding to calcium chan¬nel associated drug receptor sites in rat brain synaptosomes. Biochem. Biophys. Res. Commun. 108, 640–646.PubMedCrossRefGoogle Scholar
  149. Zelis, R. and Flaim, S. F. (1982) Calcium blocking drugs for angina pectoris. Ann. Rev. Med. 33, 465–478.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1987

Authors and Affiliations

  • Robert J. Gould

There are no affiliations available

Personalised recommendations