Skip to main content

Abstract

Nuclear Magnetic Resonance (NMR) in condensed matter was discovered more than three decades. Since then, it has proven to be a fundamental and invaluable tool in the fields of chemistry and physics. Only within the past few years has NMR been directly applied to the field of medicine. One application has resulted in the development of anatomical imaging (MRI); the impact of which has been compared to the development of the x-ray.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman JJH, Grove TH, Wong GG, Gadian DG, Radda GK (1980) Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature 83:167–170.

    Article  Google Scholar 

  2. Arnold D, Balerizuk D, Segebarth C, Hollander J den and Luyten P (1987) Intracellular pH of human gliomas in vivo measured by volume — selective phosphorus magnetic resonance spectroscopy. Neurology 37(Suppl 1):251.

    Google Scholar 

  3. Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Biochem, 7:4030–4034.

    Article  Google Scholar 

  4. Barany M, Chung YC, Arus C, Rustan T and Frey W (1985) Increased glycerol-3-phosphorylcholine in post-mortem Alzheimer’s brain. Lancet 1:517.

    Article  Google Scholar 

  5. Benson DF, Kuhl DF, Hawkins RA, ME Phelps, Cummings JL and Tsai SY (1983) The fluorodeoxyglucose 18-F scan in Alzheimer’s disease and multi-infarct dementia. Arch Neurol 40:711–714.

    Google Scholar 

  6. Boller F, Mizutani R, Roesman U, Gambetti P (1980) Parkinson disease, dementia and Alzheimer disease: Clinicopathologic correlations. Ann Neurol 7:329–355.

    Article  Google Scholar 

  7. Bottomley PA, Hart HR, Edelstein WA, Schenck JF, Smith LS, Leve W, Mueller O, and Redington R (1984) Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 Tesla. Radiology, 150:441–446.

    Google Scholar 

  8. Bottomley PA, Drayer BF, Smith IS (1986) Non-invasive investigation of cerebral energy metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet 1059–1062.

    Google Scholar 

  9. Bruce R, Levine SR, Welch KMA (1987) A comparative study of brain regions in younger and older normal subjects during in vivo 31P NMR spectroscopy. Soc Mag Res Med 2:535.

    Google Scholar 

  10. Buell SJ, Coleman ED (1979) Dendritic growth in the aged human brain and failure of growth in senile dementia. Science 206:854–856.

    Article  Google Scholar 

  11. Buell SJ, Coleman FD (1981) Quantitative evidence for selective dendritic growth in normal human aging but not in senile dementia. Brain Res 241:23–41.

    Article  Google Scholar 

  12. Cady EB, Dawson, MJ, Hope PL, Tofts PS, Costello D, Delpy DT, Reynolds EOR and Wilkie DR (1983) Non-invasive investigation of cerebral energy metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet, 1059–1062, May.

    Google Scholar 

  13. Chance B, Nakase Y, Bond M, Leigh J Jr. and McDonald G (1978) Detection of 31F nuclear magnetic resonance signals in brain by in vivo and freeze-trapped assays. Froc. National Academy of Science, USA, 75(10):4925–4929.

    Article  Google Scholar 

  14. Chopp M, Helpern JA, Ewing JR, Welch KMA (1984) Anoxia followed by hyperoxia. In vivo 31F NMR of cat brain. Mag Res Image 2:329–333.

    Article  Google Scholar 

  15. Chopp M, Frinak S, Walton DR, Smith MB, Welch KMA (1987) Intracellular acidosis during and after cerebral ischemia: An in-vivo NMR study of hyperglycemia. Stroke 18:(5), In press.

    Google Scholar 

  16. Dawson RMC (1985) Enzymic pathways of phospholipid metabolism in the nervous system. In: Eichberg J (ed). rhospholipids in nervous tissues. New York, John Wiley & Sons, pp. 45–78.

    Google Scholar 

  17. Foster NL, Chase TN, Mansi L, Brooks R, Fedio P, Patronas NJ and DiChiro G (1984) Cortical abnormalities in Alzheimer’s Disease. Ann Neurol 16:649–654.

    Article  Google Scholar 

  18. Frackowiak RSJ, Pozzilli C, Legg NJ, DuBoulay, Marshall J, Lenzi GL and Jones T (1981) Regional cerebral oxygen supply and utilization in dementia: A clinical and physiological study with oxygen-15 and positron tomography. Brain 104:753–778.

    Article  Google Scholar 

  19. Gadian DG (1982) Nuclear magnetic resonance and its applications to living systems, New York, Oxford University Press.

    Google Scholar 

  20. Geddes JW, Managhen DT, Cotman CW (1985) Plasticity of hippocampal circuitry in Alzheimer’s disease. Science 230:1179–1180.

    Article  Google Scholar 

  21. Hachinski VC, Iliff ID, Zilhka E, DuBoulay GH, McAllister VL, Marshall J, Russell RW and Symon L (1975) Cerebral blood flow in dementia. Arch Neurol 32:632–637.

    Google Scholar 

  22. Hakim RM, Mathieson G (1979) Dementia in Parkinson’s disease: A neuropathological study. Neurol 29:1209–1214.

    Google Scholar 

  23. Hakim AM, Pokrupa RP, Villanvea J, Diksic M, Evans AC, Thompson CJ, Meyer E, Yamamoto YL, Feindel WH (1987) The effect of spontaneous reperfusion on metabolic function in early human cerebral infarcts. Ann Neurol, 21:279–289.

    Article  Google Scholar 

  24. Hart HR, Edelstein WA, Schenck JF, Smith IS, Hardy GJ and Bottomley PA (1984). Anatomy and metabolism of the normal human brain by magnetic resonance at 1.5 Tesla. Radiology 160:763–766.

    Google Scholar 

  25. Hoehn MM, Yahr MD (1967) Parkinsonism: Onset, progression and mortality. Neurol 17:952–960.

    Google Scholar 

  26. Hope PL, Cady EB, Tofts PS, Hamilton PA, Costello AM, Delpy DT, Chu A, Reynolds EO and Wilkie DR (1984) Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. Lancet ii:366–370.

    Article  Google Scholar 

  27. Kraig RPK, Pulsinelli WA, Plum F (1985) Behavior of brain bicarbonate ions during complete ischemia. J Cereb Blood Flow & Metabol; 5(Suppl 1): S227–S228.

    Google Scholar 

  28. Ruhl DE, Metter EJ, Riege WH (1984) Patterns of local cerebral glucose utilization determined in Parkinson’s disease by the [18F] fluorodeoxyglucose method. Ann Neurol 15:419–424.

    Article  Google Scholar 

  29. Lehninger AL (1975) Biochemistry: The molecular basis of cell structure and function (2nd ed) New York, Worth Publishers, Inc., p. 411.

    Google Scholar 

  30. Levy DE, Duffy TE (1977) Cerebral energy metabolism during transient ischemia and recovery in the gerbil. J Neurochem; 28:63–70.

    Article  Google Scholar 

  31. Liston EH, LaRue A (1983) Clinical differentiation of primary degenerative and multi-infarct dementia: A critical review of the evidence. Part II: Pathological studies. Biol Psychiat 18:1467–1484.

    Google Scholar 

  32. Lotz PR, Ballinger WE Jr, quisling RG (1986) Subcortical arteriosclerotic encephalopathy: CT spectrum and pathologic correlation. Am J Radiol 147:1209–1214.

    Google Scholar 

  33. Lowry OH, Passoneau JV, Haselberger FX, Schulz DW (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem; 239:18–30.

    Google Scholar 

  34. McCormick WF, Schochet SS Jr (1976) Atlas of cerebrovascular disease. Philadelphia. W.B. Saunders.

    Google Scholar 

  35. McKhann G, Drachman D, Folstein M, Katzman R, Price D and Stadlan E (1984) Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of the Department of Health and Human Services Task Force on Alzheimer’s disease. Neurol 34:939–944.

    Google Scholar 

  36. Mabe H, Blomquist P, Siesjo BK (1983) Intracellular pH in the brain following transient ischemia. J Cereb Blood Flow & Metabol; 3:109–114.

    Article  Google Scholar 

  37. Metter EJ, Mazziota JC, Itabashi HH, Mankovich NJ, Phelps ME, Kuhl DE (1985) Comparison of glucose metabolism, x-ray CT and postmortem data in patients with multiple cerebral infarcts. Neurology 35:1695–1701.

    Google Scholar 

  38. Miatto O, Gonzalez RG, Guonanno F, Growdon JH (1986) In vitro 31P NMR spectroscopy detects altered phospholipid metabolism in Alzheimer’s disease. Can J Neurol Sci 13:535–539.

    Google Scholar 

  39. Myers RE, Yamaguchi M (1976) Effect of serum glucose concentration on brain response to circulatory arrest. J Neuropath Exp Neurol 35:301.

    Article  Google Scholar 

  40. Norwood WI, Ingwall JS, Norwood CR, and Fossel ET (1983) Developmental changes in creatine kinase metabolism in rat brain. J. Am. Physiol. Soc. 244:C205–C205C210.

    Google Scholar 

  41. Oberhansli RD, Bore PJ, Rampling RP, Hilton-Jones D, Hans LJ, Radda GK (1986) Biochemical investigation of human tumors in-vivo with phosphorus 31 magnetic resonance spectra. Lancet, p. 8–11.

    Google Scholar 

  42. Panchalingam K, Post JFM, Pettegrew JW (1987) Evidence for increased aluminum binding ligands in Alzheimer’s disease: A 31p-27Al NMR study. Neurol 37:224.

    Google Scholar 

  43. Paschen W, Takahashi K, Mies G, Csiba L (1985) Pattern of metabolic disturbances following temporary middle cerebral occlusion in cats. J Cereb Blood Flow and Metabol 5(suppl 1): S303–S304.

    Google Scholar 

  44. Petroff OAC, Prichard JW, Behar KL, Alger JR, den Hollander JA, Shulman RG (1985) Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology; 35:781–788.

    Google Scholar 

  45. Pettegrew JW, Minshew NJ, Diehl J, Smith T, Kopp SJ and Glonek T (1983) Anatomical considerations for interpreting topical 31P NMR. Lancet ii, 913.

    Article  Google Scholar 

  46. Pettegrew JW, Minshew NJ, Cohen MM, Kopp SJ, Glonek T (1984) 31P NMR changes in Alzheimer’s and Huntington’s disease brain. Neurology 34(Suppl 1):281.

    Google Scholar 

  47. Pettegrew JW, Kopp SJ, Dodok NJ, Minshew NJ, Feliksik JM and Glonek T (1986) Chemical characterization of a prominent phosphomonoester resonance from mammalian brain. 31P and 1H NMR analysis at 4.7 and 14.1 Tesla. J Mag Res 67:443–450.

    Google Scholar 

  48. Pettegrew JW, Kopp SJ, Minshew NJ, Glonek T, Feliksik JM, Tow JP and Cohen MM (1987) 31P nuclear magnetic resonance studies of phosphoglyceride metabolism in developing and degenerating brain: Preliminary observations. J Neuropathol Exp Neuro 46:419–430.

    Article  Google Scholar 

  49. Pettegrew JW, Moossy J, Withers G (1988) 31P nuclear magnetic resonance studies in Alzheimer’s brain. J Neuropathol Exp Neurol 47:235–248.

    Article  Google Scholar 

  50. Plum F, Cooper AJL, Kraig RP, Petito CK, Pulsinelli WA (1985) Glial cells: the silent partners of the working brain. J Cereb Blood Flow and Metabol 5(Suppl 1) S1–S4.

    Google Scholar 

  51. Prichard JW, Alger JR, Behar KL, Petroff OAC, Shulman RG (1983) Cerebral metabolic studies in vivo by 31P NMR. Proc Nat Acad Sci USA 80:2748–2751.

    Article  Google Scholar 

  52. Radda GK (1984) Clinical studied by 31P NMR spectroscopy. Plenary lecture, Society of Magnetic Resonance in Medicine. 3rd Annual Meeting, Aug. 13–17, New York, 1984.

    Google Scholar 

  53. Radda GK (1986) The use of NMR spectroscopy for the understanding of disease. Science, 223:640–645.

    Article  Google Scholar 

  54. Roberts GKM, Wade-Jardetzky N, Jardetzky D (1981) Intracellular pH measurements by 31P nuclear magnetic resonance. Influence of factors other than pH on 31P chemical shifts. Bicchem. 20:5589–5394.

    Google Scholar 

  55. Scheibel AB (1977) Dendritic changes in senile and presenile dementias. In: Katzman R (ed). Congenital and acquired cognitive disorders. Based on the proceedings of the 57th Annual Meeting on the Association for Research in Nervous and Mental Diseases. Research publication Vol. 57, New York, Raven Press, pp. 107–123.

    Google Scholar 

  56. Siesjo B (1978) In: Brain Energy & Metabolism, John Wiley & Sons (Eds.), pp. 178–183.

    Google Scholar 

  57. Siesjo B (1981) Cerebral damage in the brain: A speculative synthesis. J Cereb Blood Flow & Metabol, 1:155–185.

    Article  Google Scholar 

  58. Smith ML, von Hanwehr R, Siesjo BK (1986) Changes in extra and intracellular pH in the brain during and following ischemia in hyperglycemia and in moderately hypoglycemic rats. J Cereb Blood Flow & Metabol, 6:574–583.

    Article  Google Scholar 

  59. SPSS Inc. (1983) SPSSX: User’s Guide, New York MoGraw-Hill Book Company, pp. 623–646.

    Google Scholar 

  60. Syrota A, Castaing M, Rougemond D, Berridge M, Baron JC, Bousser MG, Pocidalo JJ (1983) Tissue acid-base balance and oxygen metabolism in human cerebral infarction studied with positron emission tomography. Ann Neurol, 14:419–428.

    Article  Google Scholar 

  61. Ihulborn KR, du Boulay GH, Duchen IK, Radda G (1982) A 31P nuclear magnetic resonance in vivo study of cerebral ischemia in the gerbil. J Cereb Blood Flow & Metabol, 2:299–306.

    Article  Google Scholar 

  62. Ujike T, Terashi A, Soeda S, Kitamura S, Ktao T and IIo M (1985) Cerebral blood flow and metabolism in multi-infarct dementia. J Cereb Blood Flow Metab 5:S149–S150.

    Google Scholar 

  63. Wayne J, Demeester G, Leusen I (1970) Effects of carbon dioxide, bicarbonate, and pH on lactate and pyruvate in the brain of rats. Pflugers Arch, 314:292–311.

    Article  Google Scholar 

  64. Welch KMA, Helpern JA, Ewing JR (1984) Cerebral energy metabolism in stroke patients obtained by the use of 31P Topical Magnetic Resonance (TMR). Soc. of Mag. Reson. in Med., 3rd Annual Meeting, New York, August.

    Google Scholar 

  65. Welch KMA, Helpern JA, Chopp M, Robertson W and Ewing JR (1985a) In vivo 31P NMR of normal adult Human brain. Neurology, 35(1):135.

    Google Scholar 

  66. Welch KMA, Helpern JA, Robertson WM, Ewing JR (1985b) 31P topical magnetic resonance measurement of high energy phosphates in normal and infarcted brain. Stroke, 16:151.

    Google Scholar 

  67. Welch KMA, Barkley GL (1986) Biochemistry and pharmacology of cerebral ischemia. In: Barnett HJM, Mohr JP, Stein BM, Yatsu FM (eds). Stroke: Pathophysiology, diagnosis and management, Vol 1 New York, Churchill Livingstone, pp. 75–90.

    Google Scholar 

  68. Welsh FA, Ginsberg Md, Wieder W, Budd WW (1980) Deleterious effect of glucose pre-treatment on recovery on diffuse cerebral ischemia in the rat. II. Regional metabolite levels. Stroke 11:355–363.

    Article  Google Scholar 

  69. Younkin DP, Delivoria-Papadopoulos M, Wagerle LC, Chance B (1985) In vivo 31P NMR spectroscopy in neonatal neurologic disorders. In: Cerebrovascular Diseases, F. Plum and W. Pulsinelli (Eds.) Raven Press, New York, pp. 149–159.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Welch, K.M.A. (1990). 31P in vivo Spectroscopy of Adult Human Brain. In: Pettegrew, J.W. (eds) NMR: Principles and Applications to Biomedical Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3300-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3300-8_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7957-0

  • Online ISBN: 978-1-4612-3300-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics