Skip to main content

Solid State 31P and 27Al NMR Studies of Model Membranes and Mammalian Brain: Possible Implications for Alzheimer’s Disease

  • Chapter
NMR: Principles and Applications to Biomedical Research

Abstract

Aluminum is the third most abundant element in the earth’s crust (just over 8% (w/w) of the earth’s crust) following oxygen (46.6%) and silicon (27.7%). Aluminum bonds to oxygen and silicon in aluminosilicate granites and clays (Bailar et al 1984; Cotton et al 1972; Smith 1971; Ganrot 1986). In spite of this large environmental abundance, and even though aluminum is capable of binding to many structures and substances in organisms, only small amounts of aluminum are ordinarily present in living plants and animals. This suggests the existence of molecular barriers to the absorption and tissue deposition of aluminum and/or efficient physiological mechanisms for its removal from living organisms. At neutral pH, aluminum minerals are extremely insoluble, and concentrations of dissolved aluminum are, therefore, low in both surface and subsoil water. The solubility of aluminum increases at lower pH values in the presence of calcium which has a buffering effect that facilitates aluminum dissolution (Ganrot 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu H, Seelig J (1981) Interaction of metal ions with phosphatidylcholine bilayer membranes. Biochemistry, 7366–73737366–7373.

    Article  Google Scholar 

  2. Alfrey AC, LeGendre GR and Kaehny WD (1976) The dialysis encephalopathy syndrome. Possible aluminum intoxication. N. Engl. J. Med. 294: 184–188.

    Article  Google Scholar 

  3. Alfrey AC, Hegg A and Craswell P (1980) Metabolism and toxicity of aluminum in renal failure. Am. J. Clin. Nutr. 33:1509–1516.

    Google Scholar 

  4. Alfrey AC (1981) Aluminum and Tin. In: Bronner F., Coburn J.W. eds. Disorders of mineral metabolism. Vol. 1. Trace Minerals. New York: Academic Press, 353–368.

    Google Scholar 

  5. Arieff AI, Cooper JD, Armstrong D and Lazarowitz VC (1979) Dementia, renal failure and brain aluminum. Ann. Intern. Med. 90:741–747.

    Google Scholar 

  6. Bailar JC, Jr., Mbeller T., Kleinberg J., Guss C, Castellion ME and Metz C (1984) In: Chemistry, Second Edition. Academic Press, 964–968.

    Google Scholar 

  7. Barany M, Yen-Chung C, Arus C, Rustan T and Frey W (1985) Increased glycerol 3-phosphorylcholine in post-mortem Alzheimer’s brain (Letter) Lancet i:517.

    Article  Google Scholar 

  8. Bloom WL and Flinchum D (1960) Osteomalacia with pseudofractures caused by ingestion of aluminum hydroxide. J. Am. Med. Assoc., 174:1327–1330.

    Google Scholar 

  9. Candy JM, Klinowski J, Perry PH, et al (1986) Aluminosilicates and senile plaque formation In Alzheimer’s disease. Lancet, 354–356.

    Google Scholar 

  10. Cochran M, Coates J and Neon S (1984) The competitive equilibrium between aluminum and ferric ions for the binding sites of transferrin. FEBS Letters, 176:129–132.

    Article  Google Scholar 

  11. Cotton FA and Wilkinson G (1972) Advanced inorganic chemistry. A Comprehensive text. Interscience, 260–282.

    Google Scholar 

  12. Cournot-Witmer G, Zingraff J, Piachott JJ, Escaig F, Lefwerre R, Boumati P, Bourdeau A, Garabedian M, Galle P, Bourdou R, Ornecke T and Balsan S (1981) Aluminum localization in bone from hemodialysized patients: Relationship to matrix mineralization. Kidney Int. 20:375–385.

    Article  Google Scholar 

  13. Crapper DR, Krishnan SS and Dalton AJ (1973) Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science (Wash.) 180:511–513.

    Article  Google Scholar 

  14. Crapper DR and Tomko GS (1975) Neuronal correlates of an encephalopathy induced by aluminum neurofibrillary degeneration. Brain Research 97:253–264.

    Article  Google Scholar 

  15. Crapper DR, Krishnan SS and Quittkat S (1976) Aluminum, Neurofibrillary degeneration and Alzheimer’s disease. Brain 99:67–80.

    Article  Google Scholar 

  16. Crapper DR, Quittkat S, Krishnan SS, Dalton AJ and De Boni U (1980) Intranuclear aluminum content in Alzheimer’s disease, Dialysis encephalopathy and experimental aluminum encephalopathy. Acta. Neuropath. (Berlin) 50:19–24.

    Article  Google Scholar 

  17. Cullis PR, Verkleij AJ (1979) Modulation of membrane structure by Ca2+ and dibucaine as detected by 31P NMR. Biochim. Biophys. Acta 552:546–551.

    Article  Google Scholar 

  18. Dawson RMC (1985) Enzymatic pathways of phospholipid metabolism in the nervous system. In: Eichberg J. ed. Phospholipids in Nervous Tissues. John Wiley and Sons (New York) 45–78.

    Google Scholar 

  19. Duckett S and Galle P (1976) Mise en evidence de l’aluminum dans les plaques de la maladie d’Alzheimer: etudie a la microsonde de Castaing. C.R. Acad. Sc. (Paris) 393–395.

    Google Scholar 

  20. Eichhorn GL, Butzow JJ, Clark P, et al (1980) Metal ion-nucleic acid interactions aging and Alzheimer’s disease. In: Inorganic Chemistry in Biology and Medicine. American Chemical Society, 75–88.

    Google Scholar 

  21. Finnegan MM, Rettig SJ and Orvig C (1986) A neutral water-soluble aluminum complex of neurological interest. J. Am. Chem. Soc. 108:5033–5035.

    Article  Google Scholar 

  22. Ganrot PO (1986) Metabolism and possible health effects of aluminum. Environ. Health. Perspect. 65:363–441.

    Google Scholar 

  23. Gdowski JW, Brown GG, Lsvine SR, Smith M, Helpern J, Bueri J, Gorell J and Welch KMA (1988) Patterns of phospholipid metabolism differ between Alzheimer’s and Molti-infarct dementia. Neurology (Cleveland) 38(Suppl 1): 268.

    Google Scholar 

  24. Gormican A, (1970), Inorganic elements in foods used in hospital menus. J. Am. Diet. Assoc. 56:397–403.

    Google Scholar 

  25. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM and Binder LI, (1986), Abnormal phosphorylation of the microtubule associated protein tau in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA, 83:4913–4917.

    Article  Google Scholar 

  26. Hamilton EI, Minski MJ and Cleary JJ (1972/1973) The concentration and distribution of some stable elements In healthy human tissues from the United Kingdom. An Environmental Study. Sci. Total Environ. 1:341–371.

    Article  Google Scholar 

  27. Iqbal K, Grundke-Iqbal I, Zaidi T, et al (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet, 421–426.

    Google Scholar 

  28. Johnson GVW and Jope RS (1986) Aluminum increases cyclic AMP in rat cerebral cortex in vivo. Life Sci. 39:1301–1305.

    Article  Google Scholar 

  29. Joshi JG, Fleming J and Zimmerman A (1985) Ferritin and aluminum binding. 13th World Congress of Neurol. Hamburg, 05.07.03.

    Google Scholar 

  30. Karlik SJ, Eichhorn GL, Lewis FN and Crapper DR, (1980), Interaction of aluminum species with deoxyribonucleic acid. Biochemistry 19:5991–5998.

    Article  Google Scholar 

  31. Karlik SJ, Eichhorn GL, Crapper DR and McLachlan DR (1980) Molecular interactions of aluminum with ENA. Neurotoxicology, 1:83–88.32.

    Google Scholar 

  32. Karlik SJ, Elgavish GA, Pillai BP and Eichhorn GL (1982) Aluminum-27 NMR studies of Al (III)-phosphate complexes in aqueous solution. J. Magn. Reson. 49:164–167.

    Google Scholar 

  33. Kehoe RA, Cholak J and Story RV (1940) A spectrochemical study of the normal ranges of concentration of certain trace metals in biological materials. J. Nutr. 19:579–592.

    Google Scholar 

  34. Koivistoinen P (1982) Mineral element composition of Finnish foods: N, K, Ca, Mg, P, S, Fe, Cu, Mn, Zn, Mo, Co, Ni, Cr, F, Se, Si, Rb, Al, B, Br, Hg, As, Cd, Pb, and ash. Acta. Agric. Scand. (Suppl.) 22:1–171, Almqyist and Wiksell, Uppsala, Sweden.

    Google Scholar 

  35. Lione A (1983) The prophylactic reduction of aluminum intake. Food Chem. Toxicol., 21:103–109.

    Article  Google Scholar 

  36. Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RW and Beyreuther K (1985) Neuronal origin of a cerebral amyloid: Neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood results. EMBO Journal 4:2757–2763.

    Google Scholar 

  37. McDermott JR, Smith AI, Ward MK and Parkinson IS (1978) Brain-aluminum concentration In dialysis dementia. Lancet i:901–903.

    Article  Google Scholar 

  38. McDermott JR, Smith AI, Iqbal K and Wisniewski HM (1979) Brain aluminum in aging and Alzheimer’s disease. Neurology, 29:809–814.

    Google Scholar 

  39. Mehring M (1976) High resolution NMR spectroscopy in solids. Springer-Verlag (New York) 38.

    Google Scholar 

  40. Miatto O, Gonzalez G, Buonanno FS, Blumberg H, Selkoe DJ and Growdon JH (1986) 31-phosphorus nuclear magnetic resonance studies in dementia. Neurology, 36(Suppl 1) 105.

    Google Scholar 

  41. Pelech SL, Audubert F and Vance DE (1985) Regulation of phosphatidylcholine biosynthesis in mammalian systems. In: Horrocks LA, Kanfer JN and Porcellati G eds. Phospholipids in the nervous system, Vol. 2. Raven Press (New York) 247–258.

    Google Scholar 

  42. Perl D and Brody A (1980) Alzheimer’s disease: X-ray spectrometric Evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science (Washington) 208:297–299.

    Article  Google Scholar 

  43. Pettegrew JW, Minshew NJ, Cohen MM, Kopp SJ and Glonek T (1984) P-31 NMR Changes in Alzheimer’s and Huntington’s Disease Brain. Neurology (Minneapolis); 34(Suppl 1) 281.

    Google Scholar 

  44. Bettegrew JW, Kopp SJ, Minshew NJ, Glonek T, Feliksik JM, Tow JP and Cohen MM (1987a) 31P Nuclear magnetic resonance studies of phosphoglyceride metabolism in developing and degenerating brain: Preliminary Observations. J. Neuropath. Exp. Neurol, 46:419–430.

    Article  Google Scholar 

  45. Bettegrew JW, Withers G, Banchalingam K and Post JEM (1987b) 31P Nuclear magnetic resonance (NMR) spectroscopy of brain in aging and alzheimer’s disease, J. Neurol. Transm [Suppl] 24:261–268.

    Google Scholar 

  46. Pettegrew JW, Mbossy J, Withers G, McKeag D and Panchalingam K, (1988) 31P nuclear magnetic resonance study of the brain in Alzheimer’s disease. J. Neuropath. Exp. Neurol. 47:235–248.

    Article  Google Scholar 

  47. Seddon JM, Cevc G, Kaye RD and Marsh D (1984) X-ray diffraction Study of the polymorphism of hydrated diacyl-and diallylphosphatidyl-ethanolamines. Biochemistry 23:2634–2644.

    Article  Google Scholar 

  48. Smith RW (1971) Relations among equilibrium and nonequilibrium aqueous species of aluminum hydroxo complexes. In: Nonequilibrium Systems in Natural Water Chemistry (Adv. Chem. Ser. 106) Washington, D.C.: American Chemical Society, 250–279.

    Chapter  Google Scholar 

  49. Sorenson JRJ, Campbell IR, Tepper IB and Lingg RD (1974) Aluminum in the environment and human health. Environ. Health Perspect, 8:3, 95.

    Google Scholar 

  50. Thayer AM and Kohler SJ (1981) Phosphorus-31 nuclear magnetic resonance spectra characteristic of hexagonal and isotropic phospholipid phases generated from phosphatidylethanolamine in the bilayer phase, Biochemistry 20:6834–6841.

    Article  Google Scholar 

  51. Tipton IH and Cook MJ (1963) Trace elements in human tissues. Part II. Adult subjects from the United States. Health Phys. 9:103–145.

    Article  Google Scholar 

  52. Trapp GA, Miner GD, Zimmerman RL, Master AR and Heston LL (1978) Aluminum levels in brain in Alzheimer’s disease. Biol Psych 13:709–718.

    Google Scholar 

  53. Trapp GA (1980) Studies of aluminum interaction with enzymes and proteins-the inhibition of hexokinase. Neurotoxicology 1:89–100.

    Google Scholar 

  54. Trapp GA (1983) Plasma aluminum Ss bound to transferrin. Life Sci. 33: 311–316.

    Article  Google Scholar 

  55. Van Wazer JR (1961) Phosphorus and its compounds. Interscience (New York) Vol. I Chemistry 486–491.

    Google Scholar 

  56. Van Wazer JR (1961) Phosphorus and its compounds. Interscience (New York) Vol. I Chemistry 421–429.

    Google Scholar 

  57. Vierstra R and Haug A (1978) The effect of Al3+ on physical properties of membrane lipids in thermoplasma acidophilium. Biochem. Biophys. Res. Commun. 84:138–143.

    Article  Google Scholar 

  58. Yoshimasu F, Yasui M Yoshida H, et al (1985) Aluminum in Alzheimer’s disease in Japan and parkinsonism-dementia in Guam. XII World Congress of Neurology, Abstract 15.07.02.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Pettegrew, J.W., Panchalingam, K. (1990). Solid State 31P and 27Al NMR Studies of Model Membranes and Mammalian Brain: Possible Implications for Alzheimer’s Disease. In: Pettegrew, J.W. (eds) NMR: Principles and Applications to Biomedical Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3300-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3300-8_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7957-0

  • Online ISBN: 978-1-4612-3300-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics