Solid State 31P and 27Al NMR Studies of Model Membranes and Mammalian Brain: Possible Implications for Alzheimer’s Disease

  • J. W. Pettegrew
  • K. Panchalingam


Aluminum is the third most abundant element in the earth’s crust (just over 8% (w/w) of the earth’s crust) following oxygen (46.6%) and silicon (27.7%). Aluminum bonds to oxygen and silicon in aluminosilicate granites and clays (Bailar et al 1984; Cotton et al 1972; Smith 1971; Ganrot 1986). In spite of this large environmental abundance, and even though aluminum is capable of binding to many structures and substances in organisms, only small amounts of aluminum are ordinarily present in living plants and animals. This suggests the existence of molecular barriers to the absorption and tissue deposition of aluminum and/or efficient physiological mechanisms for its removal from living organisms. At neutral pH, aluminum minerals are extremely insoluble, and concentrations of dissolved aluminum are, therefore, low in both surface and subsoil water. The solubility of aluminum increases at lower pH values in the presence of calcium which has a buffering effect that facilitates aluminum dissolution (Ganrot 1986).


Magic Angle Spin Solid State Nuclear Magnetic Resonance Chemical Shift Anisotropy Rapid Rotation Chemical Shift Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akutsu H, Seelig J (1981) Interaction of metal ions with phosphatidylcholine bilayer membranes. Biochemistry, 7366–73737366–7373.CrossRefGoogle Scholar
  2. 2.
    Alfrey AC, LeGendre GR and Kaehny WD (1976) The dialysis encephalopathy syndrome. Possible aluminum intoxication. N. Engl. J. Med. 294: 184–188.CrossRefGoogle Scholar
  3. 3.
    Alfrey AC, Hegg A and Craswell P (1980) Metabolism and toxicity of aluminum in renal failure. Am. J. Clin. Nutr. 33:1509–1516.Google Scholar
  4. 4.
    Alfrey AC (1981) Aluminum and Tin. In: Bronner F., Coburn J.W. eds. Disorders of mineral metabolism. Vol. 1. Trace Minerals. New York: Academic Press, 353–368.Google Scholar
  5. 5.
    Arieff AI, Cooper JD, Armstrong D and Lazarowitz VC (1979) Dementia, renal failure and brain aluminum. Ann. Intern. Med. 90:741–747.Google Scholar
  6. 6.
    Bailar JC, Jr., Mbeller T., Kleinberg J., Guss C, Castellion ME and Metz C (1984) In: Chemistry, Second Edition. Academic Press, 964–968.Google Scholar
  7. 7.
    Barany M, Yen-Chung C, Arus C, Rustan T and Frey W (1985) Increased glycerol 3-phosphorylcholine in post-mortem Alzheimer’s brain (Letter) Lancet i:517.CrossRefGoogle Scholar
  8. 8.
    Bloom WL and Flinchum D (1960) Osteomalacia with pseudofractures caused by ingestion of aluminum hydroxide. J. Am. Med. Assoc., 174:1327–1330.Google Scholar
  9. 9.
    Candy JM, Klinowski J, Perry PH, et al (1986) Aluminosilicates and senile plaque formation In Alzheimer’s disease. Lancet, 354–356.Google Scholar
  10. 10.
    Cochran M, Coates J and Neon S (1984) The competitive equilibrium between aluminum and ferric ions for the binding sites of transferrin. FEBS Letters, 176:129–132.CrossRefGoogle Scholar
  11. 11.
    Cotton FA and Wilkinson G (1972) Advanced inorganic chemistry. A Comprehensive text. Interscience, 260–282.Google Scholar
  12. 12.
    Cournot-Witmer G, Zingraff J, Piachott JJ, Escaig F, Lefwerre R, Boumati P, Bourdeau A, Garabedian M, Galle P, Bourdou R, Ornecke T and Balsan S (1981) Aluminum localization in bone from hemodialysized patients: Relationship to matrix mineralization. Kidney Int. 20:375–385.CrossRefGoogle Scholar
  13. 13.
    Crapper DR, Krishnan SS and Dalton AJ (1973) Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science (Wash.) 180:511–513.CrossRefGoogle Scholar
  14. 14.
    Crapper DR and Tomko GS (1975) Neuronal correlates of an encephalopathy induced by aluminum neurofibrillary degeneration. Brain Research 97:253–264.CrossRefGoogle Scholar
  15. 15.
    Crapper DR, Krishnan SS and Quittkat S (1976) Aluminum, Neurofibrillary degeneration and Alzheimer’s disease. Brain 99:67–80.CrossRefGoogle Scholar
  16. 16.
    Crapper DR, Quittkat S, Krishnan SS, Dalton AJ and De Boni U (1980) Intranuclear aluminum content in Alzheimer’s disease, Dialysis encephalopathy and experimental aluminum encephalopathy. Acta. Neuropath. (Berlin) 50:19–24.CrossRefGoogle Scholar
  17. 17.
    Cullis PR, Verkleij AJ (1979) Modulation of membrane structure by Ca2+ and dibucaine as detected by 31P NMR. Biochim. Biophys. Acta 552:546–551.CrossRefGoogle Scholar
  18. 18.
    Dawson RMC (1985) Enzymatic pathways of phospholipid metabolism in the nervous system. In: Eichberg J. ed. Phospholipids in Nervous Tissues. John Wiley and Sons (New York) 45–78.Google Scholar
  19. 19.
    Duckett S and Galle P (1976) Mise en evidence de l’aluminum dans les plaques de la maladie d’Alzheimer: etudie a la microsonde de Castaing. C.R. Acad. Sc. (Paris) 393–395.Google Scholar
  20. 20.
    Eichhorn GL, Butzow JJ, Clark P, et al (1980) Metal ion-nucleic acid interactions aging and Alzheimer’s disease. In: Inorganic Chemistry in Biology and Medicine. American Chemical Society, 75–88.Google Scholar
  21. 21.
    Finnegan MM, Rettig SJ and Orvig C (1986) A neutral water-soluble aluminum complex of neurological interest. J. Am. Chem. Soc. 108:5033–5035.CrossRefGoogle Scholar
  22. 22.
    Ganrot PO (1986) Metabolism and possible health effects of aluminum. Environ. Health. Perspect. 65:363–441.Google Scholar
  23. 23.
    Gdowski JW, Brown GG, Lsvine SR, Smith M, Helpern J, Bueri J, Gorell J and Welch KMA (1988) Patterns of phospholipid metabolism differ between Alzheimer’s and Molti-infarct dementia. Neurology (Cleveland) 38(Suppl 1): 268.Google Scholar
  24. 24.
    Gormican A, (1970), Inorganic elements in foods used in hospital menus. J. Am. Diet. Assoc. 56:397–403.Google Scholar
  25. 25.
    Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM and Binder LI, (1986), Abnormal phosphorylation of the microtubule associated protein tau in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA, 83:4913–4917.CrossRefGoogle Scholar
  26. 26.
    Hamilton EI, Minski MJ and Cleary JJ (1972/1973) The concentration and distribution of some stable elements In healthy human tissues from the United Kingdom. An Environmental Study. Sci. Total Environ. 1:341–371.CrossRefGoogle Scholar
  27. 27.
    Iqbal K, Grundke-Iqbal I, Zaidi T, et al (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet, 421–426.Google Scholar
  28. 28.
    Johnson GVW and Jope RS (1986) Aluminum increases cyclic AMP in rat cerebral cortex in vivo. Life Sci. 39:1301–1305.CrossRefGoogle Scholar
  29. 29.
    Joshi JG, Fleming J and Zimmerman A (1985) Ferritin and aluminum binding. 13th World Congress of Neurol. Hamburg, 05.07.03.Google Scholar
  30. 30.
    Karlik SJ, Eichhorn GL, Lewis FN and Crapper DR, (1980), Interaction of aluminum species with deoxyribonucleic acid. Biochemistry 19:5991–5998.CrossRefGoogle Scholar
  31. 31.
    Karlik SJ, Eichhorn GL, Crapper DR and McLachlan DR (1980) Molecular interactions of aluminum with ENA. Neurotoxicology, 1:83–88.32.Google Scholar
  32. 32.
    Karlik SJ, Elgavish GA, Pillai BP and Eichhorn GL (1982) Aluminum-27 NMR studies of Al (III)-phosphate complexes in aqueous solution. J. Magn. Reson. 49:164–167.Google Scholar
  33. 33.
    Kehoe RA, Cholak J and Story RV (1940) A spectrochemical study of the normal ranges of concentration of certain trace metals in biological materials. J. Nutr. 19:579–592.Google Scholar
  34. 34.
    Koivistoinen P (1982) Mineral element composition of Finnish foods: N, K, Ca, Mg, P, S, Fe, Cu, Mn, Zn, Mo, Co, Ni, Cr, F, Se, Si, Rb, Al, B, Br, Hg, As, Cd, Pb, and ash. Acta. Agric. Scand. (Suppl.) 22:1–171, Almqyist and Wiksell, Uppsala, Sweden.Google Scholar
  35. 35.
    Lione A (1983) The prophylactic reduction of aluminum intake. Food Chem. Toxicol., 21:103–109.CrossRefGoogle Scholar
  36. 36.
    Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RW and Beyreuther K (1985) Neuronal origin of a cerebral amyloid: Neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood results. EMBO Journal 4:2757–2763.Google Scholar
  37. 37.
    McDermott JR, Smith AI, Ward MK and Parkinson IS (1978) Brain-aluminum concentration In dialysis dementia. Lancet i:901–903.CrossRefGoogle Scholar
  38. 38.
    McDermott JR, Smith AI, Iqbal K and Wisniewski HM (1979) Brain aluminum in aging and Alzheimer’s disease. Neurology, 29:809–814.Google Scholar
  39. 39.
    Mehring M (1976) High resolution NMR spectroscopy in solids. Springer-Verlag (New York) 38.Google Scholar
  40. 40.
    Miatto O, Gonzalez G, Buonanno FS, Blumberg H, Selkoe DJ and Growdon JH (1986) 31-phosphorus nuclear magnetic resonance studies in dementia. Neurology, 36(Suppl 1) 105.Google Scholar
  41. 41.
    Pelech SL, Audubert F and Vance DE (1985) Regulation of phosphatidylcholine biosynthesis in mammalian systems. In: Horrocks LA, Kanfer JN and Porcellati G eds. Phospholipids in the nervous system, Vol. 2. Raven Press (New York) 247–258.Google Scholar
  42. 42.
    Perl D and Brody A (1980) Alzheimer’s disease: X-ray spectrometric Evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science (Washington) 208:297–299.CrossRefGoogle Scholar
  43. 43.
    Pettegrew JW, Minshew NJ, Cohen MM, Kopp SJ and Glonek T (1984) P-31 NMR Changes in Alzheimer’s and Huntington’s Disease Brain. Neurology (Minneapolis); 34(Suppl 1) 281.Google Scholar
  44. 44.
    Bettegrew JW, Kopp SJ, Minshew NJ, Glonek T, Feliksik JM, Tow JP and Cohen MM (1987a) 31P Nuclear magnetic resonance studies of phosphoglyceride metabolism in developing and degenerating brain: Preliminary Observations. J. Neuropath. Exp. Neurol, 46:419–430.CrossRefGoogle Scholar
  45. 45.
    Bettegrew JW, Withers G, Banchalingam K and Post JEM (1987b) 31P Nuclear magnetic resonance (NMR) spectroscopy of brain in aging and alzheimer’s disease, J. Neurol. Transm [Suppl] 24:261–268.Google Scholar
  46. 46.
    Pettegrew JW, Mbossy J, Withers G, McKeag D and Panchalingam K, (1988) 31P nuclear magnetic resonance study of the brain in Alzheimer’s disease. J. Neuropath. Exp. Neurol. 47:235–248.CrossRefGoogle Scholar
  47. 47.
    Seddon JM, Cevc G, Kaye RD and Marsh D (1984) X-ray diffraction Study of the polymorphism of hydrated diacyl-and diallylphosphatidyl-ethanolamines. Biochemistry 23:2634–2644.CrossRefGoogle Scholar
  48. 48.
    Smith RW (1971) Relations among equilibrium and nonequilibrium aqueous species of aluminum hydroxo complexes. In: Nonequilibrium Systems in Natural Water Chemistry (Adv. Chem. Ser. 106) Washington, D.C.: American Chemical Society, 250–279.CrossRefGoogle Scholar
  49. 49.
    Sorenson JRJ, Campbell IR, Tepper IB and Lingg RD (1974) Aluminum in the environment and human health. Environ. Health Perspect, 8:3, 95.Google Scholar
  50. 50.
    Thayer AM and Kohler SJ (1981) Phosphorus-31 nuclear magnetic resonance spectra characteristic of hexagonal and isotropic phospholipid phases generated from phosphatidylethanolamine in the bilayer phase, Biochemistry 20:6834–6841.CrossRefGoogle Scholar
  51. 51.
    Tipton IH and Cook MJ (1963) Trace elements in human tissues. Part II. Adult subjects from the United States. Health Phys. 9:103–145.CrossRefGoogle Scholar
  52. 52.
    Trapp GA, Miner GD, Zimmerman RL, Master AR and Heston LL (1978) Aluminum levels in brain in Alzheimer’s disease. Biol Psych 13:709–718.Google Scholar
  53. 53.
    Trapp GA (1980) Studies of aluminum interaction with enzymes and proteins-the inhibition of hexokinase. Neurotoxicology 1:89–100.Google Scholar
  54. 54.
    Trapp GA (1983) Plasma aluminum Ss bound to transferrin. Life Sci. 33: 311–316.CrossRefGoogle Scholar
  55. 55.
    Van Wazer JR (1961) Phosphorus and its compounds. Interscience (New York) Vol. I Chemistry 486–491.Google Scholar
  56. 56.
    Van Wazer JR (1961) Phosphorus and its compounds. Interscience (New York) Vol. I Chemistry 421–429.Google Scholar
  57. 57.
    Vierstra R and Haug A (1978) The effect of Al3+ on physical properties of membrane lipids in thermoplasma acidophilium. Biochem. Biophys. Res. Commun. 84:138–143.CrossRefGoogle Scholar
  58. 58.
    Yoshimasu F, Yasui M Yoshida H, et al (1985) Aluminum in Alzheimer’s disease in Japan and parkinsonism-dementia in Guam. XII World Congress of Neurology, Abstract 15.07.02.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • J. W. Pettegrew
  • K. Panchalingam

There are no affiliations available

Personalised recommendations