Skip to main content

Quantitative Methods for Studying Landscape Boundaries

  • Chapter
Landscape Boundaries

Part of the book series: Ecological Studies ((ECOLSTUD,volume 92))

Abstract

The resurgence of interest in ecotones has come at a technologically opportune time. New equipment and methods that have evolved over the past decade have greatly increased our ability to quantitatively study ecotones. This ability is essential to the development and testing of scientific theories pertaining to ecotones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen TEH, Starr TB (1982) Hierarchy: perspectives for ecological complexity. University of Chicago Press, Chicago, Illinois

    Google Scholar 

  • Beals EW (1969) Vegetational change along altitudinal gradients. Science 165:981–985

    Article  PubMed  CAS  Google Scholar 

  • Berry JK (1987) Computer-assisted map analysis: potential and pitfalls. Photogrammetric Eng and Remote Sensing 53:1405–1410

    Google Scholar 

  • Bjelm L (1980) Geologic interpretation of SIR data from a peat deposit in northern Sweden. Lund Institute of Technology, Department of Engineering Geology, Lund, Sweden

    Google Scholar 

  • Brunt JW, Conley W (1990) Behavior of a multivariate algorithm for ecological edge detection. Ecol Modelling 49:179–203

    Article  Google Scholar 

  • Burrough PA (1983) Multiscale sources of spatial variation in soil: I. The application of fractal concepts to nested levels of soil variation. J Soil Sci 84:577–97

    Google Scholar 

  • Burrough PA (1986) Principles of geographical information systems for land resources assessment. Oxford University Press, Oxford, UK

    Google Scholar 

  • Clark CA, Cate RB, Trenchard MH, Boatright JA, Bizzell RM (1986) Mapping and classifying large ecological units. BioScience 36:476–478

    Google Scholar 

  • Cliff AD, Haggett P, Ord JK, Bassett KA, Davies RB (1975) Elements of spatial structure: a quantitative approach. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Curtis JT (1959) The vegetation of Wisconsin. University of Wisconsin Press, Madison

    Google Scholar 

  • EPPL7 (1987) EPPL7 users guide. Version 7, Release 1.1. Minnesota State Planning Agency, St. Paul

    Google Scholar 

  • ERDAS (1987) ERDAS users guide. ERDAS, Inc., Atlanta, Georgia

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape Ecology. John Wiley & Sons, New York

    Google Scholar 

  • Gosz JR, Dahm CN, Risser PG (1988) Long-path FTIR measurement of atmospheric trace gas concentrations. Ecology 69:1326–1330

    Article  CAS  Google Scholar 

  • Goward SN, Tucker CJ, Dye DG (1986) North American vegetation patterns observed with meteorological satellite data. In Dyer MI, Crossley DA, Jr (eds) Coupling of ecological studies with remote sensing: potentials at four biosphere reserves in the United States. U.S. Man and the Biosphere Program, Department of State, Washington, D.C., USA, pp 96–115

    Google Scholar 

  • Gullion GW (1984) Managing northern forests for wildlife. The Ruffed Grouse Society, Corapolis, Pennsylvania, USA

    Google Scholar 

  • Hall FG, Strebel DE, Goetz SJ, Sellers PJ (1988) Linking knowledge among spatial and temporal scales: vegetation, atmosphere, climate, and remote sensing. Landscape Ecology 2:3–22

    Article  Google Scholar 

  • Hansen AJ, di Castri F, Naiman RJ (1988) Ecotones: what and why? Biology International Special Issue 17:9–45

    Google Scholar 

  • Hobbs ER (1986) Characterizing the boundary between California annual grassland and Coastal sage scrub with differential profiles. Vegetatio 65:115–126

    Article  Google Scholar 

  • Holland MM (compiler) (1988) SCOPE/MAB technical consultations on landscape boundaries. Biology International Special Issue 17:46–104

    Google Scholar 

  • Johnson LB, Johnston CA, Pastor J (1988) Raster and vector data in ecological research applications. GIS/LIS ′88 Proc. San Antonio, Texas, USA

    Google Scholar 

  • Johnston CA (1984) Mapping Wisconsin’s wetlands. Wisconsin Natural Resources 8:4–6

    Google Scholar 

  • Johnston CA, Bonde JP (1989) Quantitative analysis of ecotones using a geographic information system. Photogrammetric Eng and Remote Sensing 55:1643–1647

    Google Scholar 

  • Johnston CA, Detenbeck NE, Bonde JP, Niemi GJ (1988) Geographic information systems for cumulative impact assessment. Photogrammetric Eng and Remote Sensing 54:1609–1615

    Google Scholar 

  • Johnston CA, Naiman RJ (1987) Boundary dynamics at the aquatic-terrestrial interface: the influence of beaver and geomorphology. Landscape Ecol 1:47–57

    Article  Google Scholar 

  • Johnston CA, Naiman RJ (1990) The use of a geographic information system to analyze long-term landscape alteration by beaver. Landscape Ecol 4:5–19

    Article  Google Scholar 

  • Krige D (1966) Two-dimensional weighted moving average trend surfaces for ore evaluation. In Proceedings of the Symposium on Mathematical Statistics and Computer Applications in Ore Valuation. Johannesburg, South Africa, pp 13–38

    Google Scholar 

  • Krummel JR, Gardner RH, Sugihara G, O’Neill RV, Coleman PR (1987) Landscape patterns in a disturbed environment. Oikos 48:321–324

    Article  Google Scholar 

  • Ludwig JA, Cornelius JM (1987) Locating discontinuities along ecological gradients. Ecology 68:448–450

    Article  Google Scholar 

  • Matheron G (1971) The theory of regionalized variables and its applications. Les Cahiers du centre de morphologie mathematique de Fontainebleu. Ecole Nationale Superieure des Mines, Paris, France

    Google Scholar 

  • Matson PA, Harriss RC (1988) Prospects for aircraft-based gas exchange measurements in ecosystem studies. Ecology 69:1318–1325

    Article  Google Scholar 

  • Milne BT, Johnston KM, Forman RTT (1989) Scale-dependent proximity of wildlife habitat in a spatially-neutral Bayesian model. Landscape Ecol 2:101–110

    Article  Google Scholar 

  • Mladenoff D (1987) Dynamics of nitrogen mineralization and nitrification in hemlock and hardwood treefall gaps. Ecology 68:1171–1180

    Article  Google Scholar 

  • Mohler RRJ, Wells GL, Hallum CR, Trenchard MH (1986) Monitoring vegetation of drought environments. BioScience 36:478–483

    Google Scholar 

  • Naiman RJ, Décamps H, Pastor J, Johnston CA (1988) Potential importance of boundaries to fluvial ecosystems. J N Amer Benthol Soc 7:289–306

    Article  Google Scholar 

  • Nellis MD, Briggs JM (1989) The effect of spatial scale on Konza landscape classification using textural analysis. Landscape Ecol 2:93–100

    Article  Google Scholar 

  • Nwadialo BE, Hole FD (1988) A statistical procedure for partitioning soil transects. Soil Sci 145:58–62

    Article  Google Scholar 

  • Odum EP (1971) Fundamentals of ecology 3rd ed. W. B. Saunders, Philadelphia, Pennsylvania

    Google Scholar 

  • Omernik JM (1987) Ecoregions of the conterminous United States. Annals Assoc Amer Geog 77:118–125

    Article  Google Scholar 

  • O’Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of the ecosystem. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Osborne LL, Wiley MJ (1988) Empirical relationships between land use/cover and stream water quality in an agricultural watershed. J Environ Manage 26:9–27

    Google Scholar 

  • Pastor J, Aber JD, McClaugherty CA, Melillo J (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65:256–268

    Article  CAS  Google Scholar 

  • Pastor J, Broschart M (1990) The spatial pattern of a northern conifer—hardwood landscape. Landscape Ecol 4:55–68

    Article  Google Scholar 

  • Perry MJ (1986) Assessing marine primary production from space. BioScience 36:461–467

    Article  Google Scholar 

  • Pinay G, Décamps H, Chauvet E, Fustec E (1990) Functions of ecotones in fluvial systems. In Naiman RJ, Décamps H (eds) The Ecology and management of aquatic—terrestrial ecotones. Man and the Biosphere Series, Vol. 4. UNESCO, Paris

    Google Scholar 

  • Ripley BD (1981) Spatial statistics, series in probability and mathematical statistics. John Wiley, New York

    Google Scholar 

  • Rock BN, Vogelmann JE, Williams DL, Vogelmann AF, Hoshizaki T (1986) Remote detection of forest damage. BioScience 36:439–445

    Article  Google Scholar 

  • Roller NEG, Colwell JE (1986) Coarse-resolution satellite data for ecological surveys. BioScience 36:468–475

    Article  Google Scholar 

  • Sharpe DM, Stearns FW, Burgess RL, Johnson WC (1981) Spatio-temporal patterns of forest ecosystems in man-dominated landscapes of the eastern United States. In Tjallingii SP, de Veer A A (eds) Perspectives on landscape ecology. Centre for Agricultural Publication and Documentation, Wageningen, The Netherlands, pp 109–116

    Google Scholar 

  • Shih SF, Doolittle JA (1984) Using radar to investigate organic soil thickness in the Florida Everglades. J Soil Sci Soc Amer 48:651–656

    Article  Google Scholar 

  • Sokal R, Oden NL (1978) Spatial autocorrelation in biology. I. Methodology. Biol J Linnean Soc 10:199–228

    Article  Google Scholar 

  • Stenseth NC (1977) On the importance of spatiotemporal heterogeneity for the population dynamics of rodents: toward a theoretical foundation of rodent control. Oikos 29:545–552

    Article  Google Scholar 

  • Telfer ES (1984) Circumpolar distribution and habitat requirements of moose (Alces alces). In Olson R, Hastings R, Geddes F (eds) Northern ecology and resource management. University of Alberta Press, Edmonton, Alberta, Canada, pp 145–182

    Google Scholar 

  • Tucker CJ, Holben BN, Goff TE (1984) Intensive forest clearing in Rondonia, Brazil as detected by satellite remote sensing. Remote Sens Environ 15:255–261

    Article  Google Scholar 

  • Tucker CJ, Townshend JRG, Goff TE (1985) African land-over classification using satellite data. Science 227:369–375

    Article  PubMed  CAS  Google Scholar 

  • Turner MG (1987) Spatial simulation of landscape changes in Georgia: a comparison of 3 transition models. Landscape Ecol 1:29–36

    Article  Google Scholar 

  • Turner SJ, O’Neill RV, Conley W, Conley MR, Humphries HC (1991) Pattern and scale: statistics for landscape ecology. In Turner MG, Gardner RH (eds) Quantitative methods in landscape ecology. Springer-Verlag, New York, pp 17–49

    Google Scholar 

  • Ulriksen P (1980) Investigation of peat thickness with radar. Professional Paper of the Lund Institute of Technology, Department of Engineering Geology, Lund, Sweden

    Google Scholar 

  • Urban DL, O’Neill RV, Shugart HH (1987) Landscape ecology: a hierarchical perspective can help scientists understand spatial patterns. BioScience 37:119–127

    Article  Google Scholar 

  • Walther EG, Pitchford AM, Olhoeft GR (1986) A strategy for detecting subsurface organic contaminants. In the Proceedings of the NWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water— Prevention, Detection and Restoration, Houston, Texas November 12–14 1986, pp 357–381

    Google Scholar 

  • Waring RH, Aber JD, Melillo JM, Moore B III (1988) Precursors of change in terrestrial ecosystems. BioScience 36:433–438

    Article  Google Scholar 

  • Webster R (1973) Automatic soil-boundary location from transect data. Math Geol 5:27–37

    Article  Google Scholar 

  • Webster R, Wong IFT (1969) A numerical procedure for testing soil boundaries interpreted from air photographs. Photogrammetria 24:59–72

    Article  Google Scholar 

  • Whittaker RH (1956) Vegetation of the Great Smoky Mountains. Ecol Monogr 26:1–80

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Wierenga PJ, Hendrickx JMH, Nash MH, Ludwig JA, Daugherty LA (1987) Variation of soil and vegetation with distance along a transect in the Chihuahuan Desert. J Arid Environ 13:53–63

    Google Scholar 

  • Young TN, Eby JR, Allen HL, Hewitt MJ III, Dixon KR (1988) Wildlife habitat analysis using Landsat and radiotelemetry in a GIS with application to spotted owl preference for old growth. In GIS ′87, Proceedings of the 2nd Annual International GIS Conference, San Francisco, California. October 26–30 1987, pp 595–600

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Johnston, C.A., Pastor, J., Pinay, G. (1992). Quantitative Methods for Studying Landscape Boundaries. In: Hansen, A.J., di Castri, F. (eds) Landscape Boundaries. Ecological Studies, vol 92. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2804-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2804-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7677-7

  • Online ISBN: 978-1-4612-2804-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics