Skip to main content

Abstract

A reporter once asked, “isn’t it true that human gene therapy would not have been possible without the development of polymerase chain reaction?” The investigator said no. Afterward, the investigator realized that the reporter was partially correct. The power of PCR technology (Mullis and Faloona, 1987; Saiki et al., 1988) has allowed some remarkable accomplishments, e.g., the detection of one marked cell in a million unmarked cells (Crescenzi et al., 1988), direct gene isolation and sequencing from bulk cellular DNA (Engelke et al., 1988), the analysis of DNA from a single human sperm (Honghua et al., 1988), and, perhaps, aspects of the development of human gene therapy. We must acknowledge that PCR was essential to the first human gene therapy experiments, not conceptually, but because only PCR permitted the unambiguous detection of gene-engineered cells from biological specimens and this technical ability was key to approval of the first gene therapy protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebersold P, Kasid A, Rosenberg SA (1990): Selection of gene-marked tumor infiltrating lymphocytes from post-treatment biopsies: A case study. Human Gene Ther 1:373–384.

    Article  CAS  Google Scholar 

  • Anderson WF (1992): Human gene therapy. Science 256:808–813.

    Article  PubMed  CAS  Google Scholar 

  • Armentano D, Yu SF, Kantoff PW, von Ruden T, Anderson WF, Gilboa E (1987): Effects of internal viral sequences on the utility of retroviral vectors. J Virol 61:1647–1650.

    PubMed  CAS  Google Scholar 

  • Bell J, Ratner L (1989): Specificity of polymerase chain amplification reactions for human immunodeficiency virus type 1 DNA sequences. AIDS Res Human Retrovirus 5:87–95.

    Article  CAS  Google Scholar 

  • Bender MA, Palmer TD, Gelinas RE, Miller AD (1987): Evidence that the packaging signal of Moloney leukemia virus extends into the gag region. J Virol 61:1639–1646.

    PubMed  CAS  Google Scholar 

  • Blaese RM (1990): The ADA human gene therapy clinical protocol. Human Gene Ther 1:327–329.

    Article  Google Scholar 

  • Chelly JJ, Kaplan JC, Maire P, Gautron S, Kahn A (1988): Transcription of the dystrophin gene in human muscle and non-muscle tissues. Nature (London) 333:858–860.

    Article  CAS  Google Scholar 

  • Crescenzi M, Seto M, Herzig GP, Weiss PD, Griffith RC, Korsmeyer SJ (1988): Thermostable DNA polymerase chain amplification of t(14;18) chromosomal breakpoints and detection of minimal residual disease. Proc Natl Acad Sci USA 85: 4869–4873.

    Article  PubMed  CAS  Google Scholar 

  • Cornetta K, Morgan RA, Anderson WF (1991): Safety issues related to retroviral-mediated gene transfer in humans. Human Gene Ther 2:5–14.

    Article  CAS  Google Scholar 

  • Cornetta K, Nguyen N, Morgan RA, Muenchau DD, Hartley JW, Blaesa RM, Anderson WF (1993): Infection of human cells with marine amphrotropic replication competent retrovirus. Human Gene Ther 4:579–588.

    Article  CAS  Google Scholar 

  • Eglitis MA, Anderson WF (1988): Retroviral vectors for introduction of genes into mammalian cells. Biotechniques 6:608–614.

    PubMed  CAS  Google Scholar 

  • Eglitis MA, Kantoff P, Gilboa E, Anderson WF (1985): Gene expression in mice after high efficiency retroviral-mediated gene transfer. Science 230:1395–1398.

    Article  PubMed  CAS  Google Scholar 

  • Engelke DR, Hoener PA, Collins FS (1988): Direct sequencing of enzymatically amplified human genomic DNA. Proc Natl Acad Sci USA 85:544–548.

    Article  PubMed  CAS  Google Scholar 

  • Guatelli JC, Gingeras TR, Richman DD (1989): Nucleic acid amplification in vitro: Detection of sequences with low copy numbers and applications to diagnosis of human immunodeficiency virus type 1 infection. Clin Microbiol Rev 2:217–226.

    PubMed  CAS  Google Scholar 

  • Hock RA, Miller AD, Osborne WRA (1989): Expression of human adenosine deaminase from various strong promoters after gene transfer into human hematopoietic cell lines. Blood 74:876–881.

    PubMed  CAS  Google Scholar 

  • Honghua L, Gyllensten UB, Cui X, Saiki RK, Erlich HA, Arnheim N (1988): Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature (London) 335:414–417.

    Article  Google Scholar 

  • Miller AD, Buttimore C (1986): Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cel Biol 6:2895–2902.

    CAS  Google Scholar 

  • Morgan RA, Anderson WF (1993): Human gene therapy. Ann Rev Biochem 62:191–217.

    Article  PubMed  CAS  Google Scholar 

  • Morgan RA, Cornetta K, Anderson WF (1990): Application of polymerase chain reaction in retroviral mediated gene transfer and the analysis of gene marked human TIL cells. Human Gene Ther 2:135–150.

    Article  Google Scholar 

  • Mullis KB, Faloona FA (1987): Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350.

    Article  PubMed  CAS  Google Scholar 

  • Palmer TD, Rosman GJ, Osborne WR, Miller AD (1991): Genetically modified skin fibroblasts persist long after transplantations but gradually inactivate introduced genes. Proc Natl Acad Sci USA 88:1330–1334.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA et al. (1989): Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. New England J Med 319:1676–1680.

    Article  Google Scholar 

  • Rosenberg SA (1990): TNF/TIL human gene therapy clinical protocol. Human Gene Ther 1:443–462.

    Article  Google Scholar 

  • Rosenberg SA, Aebersold P, Kasid A, Morgan RA, Cornetta K, Karson E, Lotze MT, Yang JC, Toplain S, Moen R, Culver K, Blaese M, Anderson WF (1990): Gene transfer in humans: Immunotherapy of patients with advanced melanoma using tumor infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 323: 570–578.

    Article  PubMed  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988): Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morgan, R.A., Anderson, W.F. (1994). Gene Therapy. In: Mullis, K.B., Ferré, F., Gibbs, R.A. (eds) The Polymerase Chain Reaction. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0257-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0257-8_30

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3750-7

  • Online ISBN: 978-1-4612-0257-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics