Skip to main content

Contextual Factors

  • Chapter
  • First Online:
Human Factors of Stereoscopic 3D Displays
  • 1044 Accesses

Abstract

This chapter covers two contextual factors that affect stereo viewing: spatio-temporal frequency, and distance scaling of disparity. These factors are considered ‘contextual’ because they partly define the conditions that exist when someone views a stereo display: spatio-temporal frequency involves the distribution of display luminance, and distance scaling of disparity involves visual information about viewing distance and disparity within a cue integration process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blakemore, C. (1970). The range and scope of binocular depth discrimination in man. Journal of Physiology, 211, 599–622.

    Article  Google Scholar 

  • Boydstun, A., Rogers, J., Tripp, L., & Patterson, R. (2009). Stereo depth perception survives significant interocular luminance differences. Journal of the Society for Information Display, 17, 467–471.

    Article  Google Scholar 

  • Cormack, R. H., & Fox, R. (1985a). The computation of retinal disparity. Perception & Psychophysics, 37, 176–178.

    Article  Google Scholar 

  • Cormack, R. H., & Fox, R. (1985b). The computation of disparity and depth in stereograms. Perception & Psychophysics, 38, 375–377.

    Article  Google Scholar 

  • Cormak, R. H. (1984). Stereoscopic depth perception at far viewing distances. Perception & Psychophysics, 35, 423–428.

    Article  Google Scholar 

  • Dobbins, A. C., Jeo, R. M., Fiser, J., & Allman, J. M. (1998). Distance modulation of neural activity in the visual cortex. Science, 281, 552–555.

    Article  Google Scholar 

  • Edwards, M., Pope, D. R., & Schor, C. M. (1999). Orientation tuning of the transient-stereopsis system. Vision Research, 39, 2717–2727.

    Article  Google Scholar 

  • Foley, J. M. (1980). Binocular distance perception. Psychological Review, 87, 411–434.

    Article  Google Scholar 

  • Genovesio, A., & Ferraina, S. (2004). Integration of retinal disparity and fixation-distance related signals: Toward an egocentric coding of distance in the posterior parietal cortex of primates. Journal of Neurophysiology, 91, 2670–2684.

    Article  Google Scholar 

  • Gillam, B., Chambers, D., & Lawergren, B. (1988). The role of vertical disparity in the scaling of stereoscopic depth perception: An empirical and theoretical study. Perception & Psychophysics, 44, 473–483.

    Article  Google Scholar 

  • Gillam, B., & Lawergren, B. (1983). The induced effect, vertical disparity, and stereoscopic theory. Perception & Psychophysics, 34, 121–130.

    Article  Google Scholar 

  • Ono, H., & Comerford, T. (1977). Stereoscopic depth constancy. In W. Epstein (Ed.), Stability and constancy in visual perception: Mechanisms and processes (pp. 91–128). New York: Wiley.

    Google Scholar 

  • Owens, D. A., & Leibowitz, H. W. (1976). Oculomotor adjustments in darkness and the specific distance tendency. Perception & Psychophysics, 20, 2–9.

    Article  Google Scholar 

  • Owens, D. A., & Leibowitz, H. W. (1980). Accommodation, convergence, and distance perception in low illumination. American Journal of Optometry and Physiological Optics, 57, 540–550.

    Article  Google Scholar 

  • Patterson, R. (1990). Spatio-temporal properties of stereoacuity. Optometry and Vision Science, 67, 123–125.

    Article  Google Scholar 

  • Patterson, R. (2007). Human factors of 3D displays. Journal of the Society for Information Display, 15, 861–871.

    Article  Google Scholar 

  • Patterson, R. (2009). Human factors of stereo displays: An update. Journal of the Society for Information Display, 17, 987–996.

    Article  Google Scholar 

  • Patterson, R., Cayko, R., Short, L., Flanagan, R., Moe, L., Taylor, E., et al. (1995). Temporal integration differences between crossed and uncrossed stereoscopic mechanisms. Perception & Psychophysics, 57, 891–897.

    Article  Google Scholar 

  • Patterson, R., & Martin, W. L. (1992). Human stereopsis. Human Factors, 34, 669–692.

    Google Scholar 

  • Patterson, R., Moe, L., & Hewitt, T. (1992). Factors that affect depth perception in stereoscopic displays. Human Factors, 34, 655–667.

    Google Scholar 

  • Patterson, R., Winterbottom, M., & Pierce, B. (2006). Perceptual issues in the use of head-mounted visual displays. Human Factors, 48, 555–564.

    Article  Google Scholar 

  • Richards, W. (2009). Configuration stereopsis: A new look at the depth-disparity relation. Spatial Vision, 22, 91–103.

    Article  Google Scholar 

  • Ritter, M. (1977). Effect of disparity and viewing distance on perceived depth. Perception & Psychophysics, 22, 400–407.

    Article  Google Scholar 

  • Rogers, B. J., & Bradshaw, M. F. (1993). Vertical disparities, differential perspective and binocular stereopsis. Nature, 361, 253–255.

    Article  Google Scholar 

  • Schor, C. M., & Wood, I. (1983). Disparity range for local stereopsis as a function of luminance spatial frequency. Vision Research, 23, 1649–1654.

    Article  Google Scholar 

  • Schor, C. M., Wood, I., & Ogawa, J. (1984). Spatial tuning of static and dynamic local stereopsis. Vision Research, 24, 573–578.

    Article  Google Scholar 

  • Trotter, Y., Celebrini, S., Stricanne, B., Thorpe, S., & Imbert, M. (1996). Neural processing of stereopsis as a function of viewing distance in primate visual cortical area V1. Journal of Neurophysiology, 76, 2872–2885.

    Google Scholar 

  • von Hofsten, C. (1976). The role of convergence in visual space perception. Vision Research, 16, 193–198.

    Article  Google Scholar 

  • Wallach, H., & Zuckerman, C. (1963). The constancy of stereoscopic depth. American Journal of Psychology, 76, 404–410.

    Article  Google Scholar 

  • Westheimer, G. (1986). Spatial interaction in the domain of disparity signals in human stereoscopic vision. Journal of Physiology, 370, 619–629.

    Article  Google Scholar 

  • Westheimer, G., & Levi, D. M. (1987). Depth attraction and repulsion of disparate foveal stimuli. Vision Research, 27, 1361–1368.

    Article  Google Scholar 

  • Wilcox, L. M., & Hess, R. F. (1995). Dmax for stereopsis depends on size, not spatial frequency content. Vision Research, 35, 1061–1069.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Patterson, R.E. (2015). Contextual Factors. In: Human Factors of Stereoscopic 3D Displays. Springer, London. https://doi.org/10.1007/978-1-4471-6651-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6651-1_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6650-4

  • Online ISBN: 978-1-4471-6651-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics