Skip to main content

Role of the Gut Microbiota in Maintaining GI Health: Highlights on Inflammatory Bowel Disease

  • Chapter
  • First Online:
Metabonomics and Gut Microbiota in Nutrition and Disease

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

The human gut harbors trillions of microbes, with an area of at least 300 m2 intestinal tissue in constant contact with this microbial ecological system (Artis, Nat Rev Immunol 8(6):411–420, 2008, Ley et al. Cell 124(4):837–848, 2006). The intestinal epithelium with a number of different cell types shapes the frontier between microbes and the host. Intestinal epithelial cells (IECs) as well as cells of the immune system guard the local interface of microbes and host and actively tolerate selected commensal microbiota while mounting an adequate inflammatory response toward pathogens in the context of infection or disease. Although there is no clear definition of a “normal” intestinal microbiota as such, it is apparent that perturbations of a certain homeostatic system may lead to a dysregulated interaction between microbes and the host intestinal mucosal immune system, resulting in aberrant or disproportionate inflammatory conditions.

The following chapter gives a general introduction to the role of the microbiota in gut health, focuses on aberrations in microbe-host mutualism that are implicated in the etiopathology of inflammatory bowel diseases, and then briefly addresses the possibilities of dietary modulation of intestinal microbiota in the context of inflammatory bowel diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol. 2008;8(6):411–20. Epub 2008/05/13.

    CAS  PubMed  Google Scholar 

  2. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–48. Epub 2006/02/25.

    CAS  PubMed  Google Scholar 

  3. Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, de Vos WM. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol. 2002;68(7):3401–7. Epub 2002/06/29.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature. 2007;449(7164):811–8. Epub 2007/10/19.

    CAS  PubMed  Google Scholar 

  5. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res: Off J Ital Pharmacol Soc. 2013;69(1):52–60. Epub 2012/11/14.

    CAS  Google Scholar 

  6. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54(Pt 5):1469–76.

    CAS  PubMed  Google Scholar 

  7. Berry D, Stecher B, Schintlmeister A, Reichert J, Brugiroux S, Wild B, et al. Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proc Natl Acad Sci U S A. 2013;110(12):4720–5. Epub 2013/03/15.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem. 2009;284(37):24673–7. Epub 2009/06/26.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 2005;307(5717):1955–9. Epub 2005/03/26.

    CAS  PubMed  Google Scholar 

  10. Granato D, Bergonzelli GE, Pridmore RD, Marvin L, Rouvet M, Corthesy-Theulaz IE. Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun. 2004;72(4):2160–9. Epub 2004/03/25.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem. 2003;278(16):14112–20. Epub 2003/02/04.

    CAS  PubMed  Google Scholar 

  12. Clavel T, Charrier C, Braune A, Wenning M, Blaut M, Haller D. Isolation of bacteria from the ileal mucosa of TNFdeltaARE mice and description of Enterorhabdus mucosicola gen. nov., sp. nov. Int J Syst Evol Microbiol. 2009;59(Pt 7):1805–12.

    CAS  PubMed  Google Scholar 

  13. Begon M, Harper JL, Townsend CR. Ecology. Individuals, populations and communities. 3rd ed. Wiley-Blackwell; 1996. Oxford.

    Google Scholar 

  14. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4(6):478–85. Epub 2004/06/03.

    CAS  PubMed  Google Scholar 

  15. Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456(7221):507–10. Epub 2008/11/07.

    CAS  PubMed  Google Scholar 

  16. Tlaskalova-Hogenova H, Sterzl J, Stepankova R, Dlabac V, Veticka V, Rossmann P, et al. Development of immunological capacity under germfree and conventional conditions. Ann N Y Acad Sci. 1983;409:96–113. Epub 1983/06/30.

    CAS  PubMed  Google Scholar 

  17. Moreau MC, Ducluzeau R, Guy-Grand D, Muller MC. Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect Immun. 1978;21(2):532–9. Epub 1978/08/01.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Umesaki Y, Setoyama H, Matsumoto S, Okada Y. Expansion of alpha beta T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology. 1993;79(1):32–7. Epub 1993/05/01.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Duan J, Chung H, Troy E, Kasper DL. Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells. Cell Host Microbe. 2010;7(2):140–50. Epub 2010/02/18.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Williams AM, Probert CS, Stepankova R, Tlaskalova-Hogenova H, Phillips A, Bland PW. Effects of microflora on the neonatal development of gut mucosal T cells and myeloid cells in the mouse. Immunology. 2006;119(4):470–8. Epub 2006/09/26.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 2005;307(5707):254–8. Epub 2005/01/18.

    CAS  PubMed  Google Scholar 

  22. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001;2(4):361–7. Epub 2001/03/29.

    CAS  PubMed  Google Scholar 

  23. Iliev ID, Mileti E, Matteoli G, Chieppa M, Rescigno M. Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol. 2009;2(4):340–50. Epub 2009/04/24.

    CAS  PubMed  Google Scholar 

  24. Siddiqui KR, Powrie F. CD103+ GALT DCs promote Foxp3+ regulatory T cells. Mucosal Immunol. 2008;1 Suppl 1:S34–8. Epub 2008/12/23.

    CAS  PubMed  Google Scholar 

  25. Schulz O, Jaensson E, Persson EK, Liu X, Worbs T, Agace WW, et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med. 2009;206(13):3101–14. Epub 2009/12/17.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K, Low D, et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity. 2013;38(5):970–83. Epub 2013/05/28.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J, Kim SJ, et al. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat Immunol. 2013;8:22. Epub 2013/12/03.

    Google Scholar 

  28. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620–5. Epub 2008/05/30.

    CAS  PubMed  Google Scholar 

  29. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, et al. ATP drives lamina propria T(H)17 cell differentiation. Nature. 2008;455(7214):808–12. Epub 2008/08/22.

    CAS  PubMed  Google Scholar 

  30. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98. Epub 2009/10/20.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677–89. Epub 2009/10/17.

    CAS  PubMed  Google Scholar 

  32. Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ, Nishiyama M, et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol. 2008;9(7):769–76. Epub 2008/06/03.

    CAS  PubMed  Google Scholar 

  33. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41. Epub 2011/01/06.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332(6032):974–7. Epub 2011/04/23.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Chung DR, Kasper DL, Panzo RJ, Chitnis T, Grusby MJ, Sayegh MH, et al. CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. J Immunol. 2003;170(4):1958–63. Epub 2003/02/08.

    CAS  PubMed  Google Scholar 

  36. Gibson 3rd FC, Onderdonk AB, Kasper DL, Tzianabos AO. Cellular mechanism of intraabdominal abscess formation by Bacteroides fragilis. J Immunol. 1998;160(10):5000–6. Epub 1998/05/20.

    CAS  PubMed  Google Scholar 

  37. Bauer H, Horowitz RE, Levenson SM, Popper H. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am J Pathol. 1963;42:471–83. Epub 1963/04/01.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science. 2010;328(5986):1705–9. Epub 2010/06/26.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Durkin HG, Chice SM, Gaetjens E, Bazin H, Tarcsay L, Dukor P. Origin and fate of IgE-bearing lymphocytes. II Modulation of IgE isotype expression on Peyer’s patch cells by feeding with certain bacteria and bacterial cell wall components or by thymectomy. J Immunol. 1989;143(6):1777–83. Epub 1989/09/15.

    CAS  PubMed  Google Scholar 

  40. Segain JP, Raingeard, de la Bletiere D, Bourreille A, Leray V, Gervois N, Rosales C, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut. 2000;47(3):397–403. Epub 2000/08/15.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Saemann MD, Bohmig GA, Osterreicher CH, Burtscher H, Parolini O, Diakos C, et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J: Off Pub Fed Am Soc Experi Biol. 2000;14(15):2380–2. Epub 2000/10/12.

    CAS  Google Scholar 

  42. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–6. Epub 2009/10/30.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Scheppach W, Sommer H, Kirchner T, Paganelli GM, Bartram P, Christl S, et al. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology. 1992;103(1):51–6. Epub 1992/07/01.

    CAS  PubMed  Google Scholar 

  44. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149(7):1578–93. Epub 2012/06/26.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Meyer-Hoffert U, Hornef MW, Henriques-Normark B, Axelsson LG, Midtvedt T, Putsep K, et al. Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut. 2008;57(6):764–71. Epub 2008/02/06.

    CAS  PubMed  Google Scholar 

  46. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A. 2008;105(52):20858–63. Epub 2008/12/17.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol. 2000;1(2):113–8. Epub 2001/03/15.

    CAS  PubMed  Google Scholar 

  48. Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 2006;313(5790):1126–30. Epub 2006/08/26.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol. 2003;4(3):269–73. Epub 2003/01/28.

    CAS  PubMed  Google Scholar 

  50. Kida Y, Shimizu T, Kuwano K. Sodium butyrate up-regulates cathelicidin gene expression via activator protein-1 and histone acetylation at the promoter region in a human lung epithelial cell line, EBC-1. Mol Immunol. 2006;43(12):1972–81. Epub 2006/01/21.

    CAS  PubMed  Google Scholar 

  51. Burger-van Paassen N, Loonen LM, Witte-Bouma J, Korteland-van Male AM, de Bruijn AC, van der Sluis M, et al. Mucin Muc2 deficiency and weaning influences the expression of the innate defense genes Reg3beta, Reg3gamma and angiogenin-4. PLoS ONE. 2012;7(6):e38798. Epub 2012/06/23.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Menard S, Forster V, Lotz M, Gutle D, Duerr CU, Gallo RL, et al. Developmental switch of intestinal antimicrobial peptide expression. J Exp Med. 2008;205(1):183–93. Epub 2008/01/09.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010;11(1):76–83. Epub 2009/10/27.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2(5):328–39. Epub 2007/11/17.

    CAS  PubMed  Google Scholar 

  55. Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S, Ruffie C, et al. Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity. 2005;22(1):31–42. Epub 2005/01/25.

    CAS  PubMed  Google Scholar 

  56. Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 2004;303(5664):1662–5. Epub 2004/03/16.

    CAS  PubMed  Google Scholar 

  57. Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci U S A. 2004;101(7):1981–6. Epub 2004/02/10.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Yanagibashi T, Hosono A, Oyama A, Tsuda M, Hachimura S, Takahashi Y, et al. Bacteroides induce higher IgA production than Lactobacillus by increasing activation-induced cytidine deaminase expression in B cells in murine Peyer’s patches. Biosci Biotechnol Biochem. 2009;73(2):372–7. Epub 2009/02/10.

    CAS  PubMed  Google Scholar 

  59. Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol. 2007;7(3):179–90. Epub 2007/02/24.

    CAS  PubMed  Google Scholar 

  60. Rehman A, Sina C, Gavrilova O, Hasler R, Ott S, Baines JF, et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut. 2011;60(10):1354–62. Epub 2011/03/23.

    CAS  PubMed  Google Scholar 

  61. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278(11):8869–72. Epub 2003/01/16.

    CAS  PubMed  Google Scholar 

  62. Petnicki-Ocwieja T, Hrncir T, Liu YJ, Biswas A, Hudcovic T, Tlaskalova-Hogenova H, et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A. 2009;106(37):15813–8. Epub 2009/10/07.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Li E, Hamm CM, Gulati AS, Sartor RB, Chen H, Wu X, et al. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS ONE. 2012;7(6):e26284.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17(1):179–84. Epub 2010/09/15.

    PubMed  Google Scholar 

  65. Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013;3(4):384–7. Epub 2013/01/03.

    Google Scholar 

  66. Nones K, Knoch B, Dommels YE, Paturi G, Butts C, McNabb WC, et al. Multidrug resistance gene deficient (mdr1a-/-) mice have an altered caecal microbiota that precedes the onset of intestinal inflammation. J Appl Microbiol. 2009;107(2):557–66. Epub 2009/03/24.

    CAS  PubMed  Google Scholar 

  67. Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007;131(1):33–45. Epub 2007/10/10.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Gulati AS, Shanahan MT, Arthur JC, Grossniklaus E, von Furstenberg RJ, Kreuk L, et al. Mouse background strain profoundly influences Paneth cell function and intestinal microbial composition. PLoS ONE. 2012;7(2):e32403. Epub 2012/03/03.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell. 2006;127(2):423–33. Epub 2006/10/24.

    CAS  PubMed  Google Scholar 

  70. Fonager K, Sorensen HT, Olsen J. Change in incidence of Crohn’s disease and ulcerative colitis in Denmark. A study based on the National Registry of Patients, 1981–1992. Int J Epidemiol. 1997;26(5):1003–8.

    CAS  PubMed  Google Scholar 

  71. Loftus CG, Loftus Jr EV, Harmsen WS, Zinsmeister AR, Tremaine WJ, Melton 3rd LJ, et al. Update on the incidence and prevalence of Crohn’s disease and ulcerative colitis in Olmsted County, Minnesota, 1940–2000. Inflamm Bowel Dis. 2007;13(3):254–61. Epub 2007/01/09.

    PubMed  Google Scholar 

  72. Bernstein CN, Blanchard JF, Rawsthorne P, Wajda A. Epidemiology of Crohn’s disease and ulcerative colitis in a central Canadian province: a population-based study. Am J Epidemiol. 1999;149(10):916–24. Epub 1999/05/26.

    CAS  PubMed  Google Scholar 

  73. Loftus Jr EV, Silverstein MD, Sandborn WJ, Tremaine WJ, Harmsen WS, Zinsmeister AR. Crohn’s disease in Olmsted County, Minnesota, 1940–1993: incidence, prevalence, and survival. Gastroenterology. 1998;114(6):1161–8. Epub 1998/06/03.

    PubMed  Google Scholar 

  74. Moum B, Vatn MH, Ekbom A, Aadland E, Fausa O, Lygren I, et al. Incidence of Crohn’s disease in four counties in southeastern Norway, 1990–93. A prospective population-based study. The Inflammatory Bowel South-Eastern Norway (IBSEN) Study Group of Gastroenterologists. Scand J Gastroenterol. 1996;31(4):355–61.

    CAS  PubMed  Google Scholar 

  75. Vind I, Riis L, Jess T, Knudsen E, Pedersen N, Elkjaer M, et al. Increasing incidences of inflammatory bowel disease and decreasing surgery rates in Copenhagen City and County, 2003–2005: a population-based study from the Danish Crohn colitis database. Am J Gastroenterol. 2006;101(6):1274–82. Epub 2006/06/15.

    PubMed  Google Scholar 

  76. Manninen P, Karvonen AL, Huhtala H, Rasmussen M, Collin P. The epidemiology of inflammatory bowel diseases in Finland. Scand J Gastroenterol. 2010;45(9):1063–7. Epub 2010/05/07.

    PubMed  Google Scholar 

  77. Jussila A, Virta LJ, Salomaa V, Maki J, Jula A, Farkkila MA. High and increasing prevalence of inflammatory bowel disease in Finland with a clear North-South difference. J Crohns Colitis. 2012;42(3):482–9. Epub 2012/11/13.

    Google Scholar 

  78. Nerich V, Monnet E, Etienne A, Louafi S, Ramee C, Rican S, et al. Geographical variations of inflammatory bowel disease in France: a study based on national health insurance data. Inflamm Bowel Dis. 2006;12(3):218–26. Epub 2006/03/15.

    PubMed  Google Scholar 

  79. Shivananda S, Lennard-Jones J, Logan R, Fear N, Price A, Carpenter L, et al. Incidence of inflammatory bowel disease across Europe: is there a difference between north and south? Results of the European Collaborative Study on Inflammatory Bowel Disease (EC-IBD). Gut. 1996;39(5):690–7. Epub 1996/11/01.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Ahuja V, Tandon RK. Inflammatory bowel disease in the Asia-Pacific area: a comparison with developed countries and regional differences. J Dig Dis. 2010;11(3):134–47. Epub 2010/06/29.

    PubMed  Google Scholar 

  81. Thia KT, Loftus Jr EV, Sandborn WJ, Yang SK. An update on the epidemiology of inflammatory bowel disease in Asia. Am J Gastroenterol. 2008;103(12):3167–82. Epub 2008/12/18.

    PubMed  Google Scholar 

  82. Probert CS, Jayanthi V, Hughes AO, Thompson JR, Wicks AC, Mayberry JF. Prevalence and family risk of ulcerative colitis and Crohn’s disease: an epidemiological study among Europeans and south Asians in Leicestershire. Gut. 1993;34(11):1547–51. Epub 1993/11/01.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Cheon JH. Genetics of inflammatory bowel diseases: a comparison between Western and Eastern perspectives. J Gastroenterol Hepatol. 2012;27:919–27. Epub 2012/11/30.

    Google Scholar 

  84. Halme L, Paavola-Sakki P, Turunen U, Lappalainen M, Farkkila M, Kontula K. Family and twin studies in inflammatory bowel disease. World J Gastroenterol: WJG. 2006;12(23):3668–72. Epub 2006/06/15.

    PubMed Central  PubMed  Google Scholar 

  85. Halfvarson J, Bodin L, Tysk C, Lindberg E, Jarnerot G. Inflammatory bowel disease in a Swedish twin cohort: a long-term follow-up of concordance and clinical characteristics. Gastroenterology. 2003;124(7):1767–73. Epub 2003/06/14.

    PubMed  Google Scholar 

  86. Orholm M, Binder V, Sorensen TI, Rasmussen LP, Kyvik KO. Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scandinavian J Gastroenterol. 2000;35(10):1075–81. Epub 2000/12/01.

    CAS  Google Scholar 

  87. Thompson NP, Driscoll R, Pounder RE, Wakefield AJ. Genetics versus environment in inflammatory bowel disease: results of a British twin study. BMJ. 1996;312(7023):95–6. Epub 1996/01/13.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Tysk C, Lindberg E, Jarnerot G, Floderus-Myrhed B. Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut. 1988;29(7):990–6. Epub 1988/07/01.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24. Epub 2012/11/07.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3(7):390–407. Epub 2006/07/05.

    CAS  PubMed  Google Scholar 

  91. Clavel T, Haller D. Bacteria- and host-derived mechanisms to control intestinal epithelial cell homeostasis: implications for chronic inflammation. Inflamm Bowel Dis. 2007;13(9):1153–64. Epub 2007/05/04.

    PubMed  Google Scholar 

  92. D’Haens GR, Geboes K, Peeters M, Baert F, Penninckx F, Rutgeerts P. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology. 1998;114(2):262–7. Epub 1998/02/07.

    PubMed  Google Scholar 

  93. Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K. Meyer zum Buschenfelde KH. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin Exp Immunol. 1995;102(3):448–55.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Macpherson A, Khoo UY, Forgacs I, Philpott-Howard J, Bjarnason I. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut. 1996;38(3):365–75. Epub 1996/03/01.

    PubMed Central  CAS  PubMed  Google Scholar 

  95. van der Waaij LA, Kroese FG, Visser A, Nelis GF, Westerveld BD, Jansen PL, et al. Immunoglobulin coating of faecal bacteria in inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2004;16(7):669–74. Epub 2004/06/18.

    PubMed  Google Scholar 

  96. Greenbloom SL, Steinhart AH, Greenberg GR. Combination ciprofloxacin and metronidazole for active Crohn’s disease. Can J Gastroenterol = J canadien de gastroenterologie. 1998;12(1):53–6.

    CAS  Google Scholar 

  97. Rutgeerts P, Van Assche G, Vermeire S, D’Haens G, Baert F, Noman M, et al. Ornidazole for prophylaxis of postoperative Crohn’s disease recurrence: a randomized, double-blind, placebo-controlled trial. Gastroenterology. 2005;128(4):856–61. Epub 2005/04/13.

    CAS  PubMed  Google Scholar 

  98. Arnold GL, Beaves MR, Pryjdun VO, Mook WJ. Preliminary study of ciprofloxacin in active Crohn’s disease. Inflamm Bowel Dis. 2002;8(1):10–5. Epub 2002/02/12.

    PubMed  Google Scholar 

  99. Yang SK, Jung Y, Hong M, Kim H, Ye BD, Lee I, et al. No association between TNFSF15 and IL23R with ulcerative colitis in Koreans. J Hum Genet. 2011;56(3):200–4. Epub 2011/01/14.

    CAS  PubMed  Google Scholar 

  100. Silverberg MS, Duerr RH, Brant SR, Bromfield G, Datta LW, Jani N, et al. Refined genomic localization and ethnic differences observed for the IBD5 association with Crohn’s disease. EJHG. 2007;15(3):328–35. Epub 2007/01/11.

    CAS  PubMed  Google Scholar 

  101. Picornell Y, Mei L, Taylor K, Yang H, Targan SR, Rotter JI. TNFSF15 is an ethnic-specific IBD gene. Inflamm Bowel Dis. 2007;13(11):1333–8. Epub 2007/08/01.

    PubMed Central  PubMed  Google Scholar 

  102. Kenny EE, Pe’er I, Karban A, Ozelius L, Mitchell AA, Ng SM, et al. A genome-wide scan of Ashkenazi Jewish Crohn’s disease suggests novel susceptibility loci. PLoS Genet. 2012;8(3):e1002559. Epub 2012/03/14.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Lees CW, Barrett JC, Parkes M, Satsangi J. New IBD genetics: common pathways with other diseases. Gut. 2011;60(12):1739–53. Epub 2011/02/09.

    CAS  PubMed  Google Scholar 

  104. Muise AM, Walters TD, Glowacka WK, Griffiths AM, Ngan BY, Lan H, et al. Polymorphisms in E-cadherin (CDH1) result in a mis-localised cytoplasmic protein that is associated with Crohn’s disease. Gut. 2009;58(8):1121–7. Epub 2009/04/29.

    CAS  PubMed  Google Scholar 

  105. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40(8):955–62. Epub 2008/07/01.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK, et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet. 2011;43(11):1066–73. Epub 2011/10/11.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Umeno J, Asano K, Matsushita T, Matsumoto T, Kiyohara Y, Iida M, et al. Meta-analysis of published studies identified eight additional common susceptibility loci for Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis. 2011;17(12):2407–15. Epub 2011/02/26.

    PubMed  Google Scholar 

  108. Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell. 2008;134(5):743–56. Epub 2008/09/09.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Spenle C, Hussenet T, Lacroute J, Lefebvre O, Kedinger M, Orend G, et al. Dysregulation of laminins in intestinal inflammation. Pathol Biol. 2012;60(1):41–7. Epub 2011/11/22.

    CAS  PubMed  Google Scholar 

  110. Schmehl K, Florian S, Jacobasch G, Salomon A, Korber J. Deficiency of epithelial basement membrane laminin in ulcerative colitis affected human colonic mucosa. Int J Colorectal Dis. 2000;15(1):39–48. Epub 2000/04/15.

    CAS  PubMed  Google Scholar 

  111. Bertin J, Wang L, Guo Y, Jacobson MD, Poyet JL, Srinivasula SM, et al. CARD11 and CARD14 are novel caspase recruitment domain (CARD)/membrane-associated guanylate kinase (MAGUK) family members that interact with BCL10 and activate NF-kappa B. J Biol Chem. 2001;276(15):11877–82. Epub 2001/03/30.

    CAS  PubMed  Google Scholar 

  112. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599–603. Epub 2001/06/01.

    CAS  PubMed  Google Scholar 

  113. Lesage S, Zouali H, Cezard JP, Colombel JF, Belaiche J, Almer S, et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet. 2002;70(4):845–57. Epub 2002/03/05.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Consortium TWTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78. Epub 2007/06/08.

    Google Scholar 

  115. Wehkamp J, Harder J, Weichenthal M, Schwab M, Schaffeler E, Schlee M, et al. NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut. 2004;53(11):1658–64. Epub 2004/10/14.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 2005;307(5710):731–4. Epub 2005/02/05.

    CAS  PubMed  Google Scholar 

  117. Biswas A, Liu YJ, Hao L, Mizoguchi A, Salzman NH, Bevins CL, et al. Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. Proc Natl Acad Sci U S A. 2010;107(33):14739–44. Epub 2010/08/04.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456(7219):264–8. Epub 2008/10/14.

    CAS  PubMed  Google Scholar 

  119. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol. 2010;11(1):55–62. Epub 2009/11/10.

    CAS  PubMed  Google Scholar 

  120. Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE, et al. Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A. 2005;102(50):18129–34. Epub 2005/12/07.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterology. 2010;139(5):1630–41. 41 e1-2. Epub 2010/07/20.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Glas J, Wagner J, Seiderer J, Olszak T, Wetzke M, Beigel F, et al. PTPN2 gene variants are associated with susceptibility to both Crohn’s disease and ulcerative colitis supporting a common genetic disease background. PLoS ONE. 2012;7(3):e33682. Epub 2012/03/30.

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Scharl M, Mwinyi J, Fischbeck A, Leucht K, Eloranta JJ, Arikkat J, et al. Crohn’s disease-associated polymorphism within the PTPN2 gene affects muramyl-dipeptide-induced cytokine secretion and autophagy. Inflamm Bowel Dis. 2012;18(5):900–12. Epub 2011/10/25.

    PubMed  Google Scholar 

  124. Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet. 2007;39(7):830–2. Epub 2007/06/08.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. McGovern DP, Gardet A, Torkvist L, Goyette P, Essers J, Taylor KD, et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat Genet. 2010;42(4):332–7. Epub 2010/03/17.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. MacMicking JD, Taylor GA, McKinney JD. Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science. 2003;302(5645):654–9. Epub 2003/10/25.

    CAS  PubMed  Google Scholar 

  127. Wiede F, Shields BJ, Chew SH, Kyparissoudis K, van Vliet C, Galic S, et al. T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. J Clin Invest. 2011;121(12):4758–74. Epub 2011/11/15.

    PubMed Central  CAS  PubMed  Google Scholar 

  128. You-Ten KE, Muise ES, Itie A, Michaliszyn E, Wagner J, Jothy S, et al. Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. J Exp Med. 1997;186(5):683–93. Epub 1997/08/29.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Hassan SW, Doody KM, Hardy S, Uetani N, Cournoyer D, Tremblay ML. Increased susceptibility to dextran sulfate sodium induced colitis in the T cell protein tyrosine phosphatase heterozygous mouse. PLoS ONE. 2010;5(1):e8868. Epub 2010/01/30.

    PubMed Central  PubMed  Google Scholar 

  130. Murai M, Turovskaya O, Kim G, Madan R, Karp CL, Cheroutre H, et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol. 2009;10(11):1178–84. Epub 2009/09/29.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75(2):263–74. Epub 1993/10/22.

    CAS  PubMed  Google Scholar 

  132. Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun. 1998;66(11):5224–31. Epub 1998/10/24.

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–3. Epub 2006/10/28.

    CAS  PubMed  Google Scholar 

  134. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–25. Epub 2000/12/15.

    CAS  PubMed  Google Scholar 

  135. Barnich N, Darfeuille-Michaud A. Abnormal CEACAM6 expression in Crohn disease patients favors gut colonization and inflammation by adherent-invasive E. coli. Virulence. 2010;1(4):281–2. Epub 2010/12/24.

    PubMed  Google Scholar 

  136. Carvalho FA, Barnich N, Sivignon A, Darcha C, Chan CH, Stanners CP, et al. Crohn’s disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. J Exp Med. 2009;206(10):2179–89. Epub 2009/09/10.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, et al. Mucosal flora in inflammatory bowel disease. Gastroenterology. 2002;122(1):44–54. Epub 2002/01/10.

    PubMed  Google Scholar 

  138. Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11:7. Epub 2011/01/12.

    PubMed Central  PubMed  Google Scholar 

  139. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55(2):205–11. Epub 2005/09/29.

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Folsch UR, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004;53(5):685–93. Epub 2004/04/15.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139(6):1844–54. e1. Epub 2010/09/08.

    PubMed  Google Scholar 

  142. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5. Epub 2007/08/19.

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Rehman A, Lepage P, Nolte A, Hellmig S, Schreiber S, Ott SJ. Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. J Med Microbiol. 2010;59(Pt 9):1114–22. Epub 2010/06/05.

    CAS  PubMed  Google Scholar 

  144. Lepage P, Hasler R, Spehlmann ME, Rehman A, Zvirbliene A, Begun A, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 2011;141(1):227–36. Epub 2011/05/31.

    PubMed  Google Scholar 

  145. Willing B, Halfvarson J, Dicksved J, Rosenquist M, Jarnerot G, Engstrand L, et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. Inflamm Bowel Dis. 2009;15(5):653–60. Epub 2008/11/22.

    PubMed  Google Scholar 

  146. Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen, van Zanten SJ. Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J Clin Micro. 2006;44(11):4136–41. Epub 2006/09/22.

    CAS  Google Scholar 

  147. Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 2007;1(5):403–18. Epub 2007/11/29.

    CAS  PubMed  Google Scholar 

  148. Mylonaki M, Rayment NB, Rampton DS, Hudspith BN, Brostoff J. Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease. Inflamm Bowel Dis. 2005;11(5):481–7. Epub 2005/05/04.

    PubMed  Google Scholar 

  149. Fujimoto T, Imaeda H, Takahashi K, Kasumi E, Bamba S, Fujiyama Y, et al. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn’s disease. J Gastroenterol Hepatol. 2012. Epub 2012/12/12.

    Google Scholar 

  150. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15(8):1183–9. Epub 2009/02/25.

    CAS  PubMed  Google Scholar 

  151. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105(43):16731–6. Epub 2008/10/22.

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Martinez-Medina M, Aldeguer X, Gonzalez-Huix F, Acero D, Garcia-Gil LJ. Abnormal microbiota composition in the ileocolonic mucosa of Crohn’s disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflamm Bowel Dis. 2006;12(12):1136–45. Epub 2006/11/23.

    PubMed  Google Scholar 

  153. Macfarlane S, Furrie E, Cummings JH, Macfarlane GT. Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin Infect Dis: Off Pub Infect Dis Soc Am. 2004;38(12):1690–9. Epub 2004/07/01.

    Google Scholar 

  154. Jalanka-Tuovinen J, Salonen A, Nikkila J, Immonen O, Kekkonen R, Lahti L, et al. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS ONE. 2011;6(7):e23035. Epub 2011/08/11.

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Loubinoux J, Bronowicki JP, Pereira IA, Mougenel JL, Faou AE. Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol Ecol. 2002;40(2):107–12. Epub 2002/05/01.

    CAS  PubMed  Google Scholar 

  156. Gibson GR, Macfarlane GT, Cummings JH. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut. 1993;34(4):437–9. Epub 1993/04/01.

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Pitcher MC, Beatty ER, Cummings JH. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut. 2000;46(1):64–72. Epub 1999/12/22.

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Muyzer G, Stams AJ. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 2008;6(6):441–54. Epub 2008/05/08.

    CAS  PubMed  Google Scholar 

  159. Roediger WE, Duncan A, Kapaniris O, Millard S. Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology. 1993;104(3):802–9. Epub 1993/03/01.

    CAS  PubMed  Google Scholar 

  160. Wu YC, Wang XJ, Yu L, Chan FK, Cheng AS, Yu J, et al. Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells. PLoS ONE. 2012;7(5):e37572. Epub 2012/06/09.

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Laue H, Denger K, Cook AM. Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl Environ Microbiol. 1997;63(5):2016–21. Epub 1997/05/01.

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature. 2012;487(7405):104–8. Epub 2012/06/23.

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Ishioka T, Kuwabara N, Oohashi Y, Wakabayashi K. Induction of colorectal tumors in rats by sulfated polysaccharides. Crit Rev Toxicol. 1987;17(3):215–44. Epub 1987/01/01.

    CAS  PubMed  Google Scholar 

  164. Ohkusa T. Production of experimental ulcerative colitis in hamsters by dextran sulfate sodium and changes in intestinal microflora. Nihon Shokakibyo Gakkai zasshi: Japan J Gastroenterol. 1985;82(5):1327–36. Epub 1985/05/01.

    CAS  Google Scholar 

  165. Fava F, Danese S. Intestinal microbiota in inflammatory bowel disease: friend of foe? World J Gastroenterol: WJG. 2011;17(5):557–66. Epub 2011/02/26.

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Nagalingam NA, Kao JY, Young VB. Microbial ecology of the murine gut associated with the development of dextran sodium sulfate-induced colitis. Inflamm Bowel Dis. 2011;17(4):917–26. Epub 2011/03/11.

    PubMed Central  PubMed  Google Scholar 

  167. Araki Y, Mukaisho K, Sugihara H, Fujiyama Y, Hattori T. Proteus mirabilis sp intestinal microflora grow in a dextran sulfate sodium-rich environment. Int J Mol Med. 2010;25(2):203–8. Epub 2010/01/01.

    CAS  PubMed  Google Scholar 

  168. Bloom SM, Bijanki VN, Nava GM, Sun L, Malvin NP, Donermeyer DL, et al. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe. 2011;9(5):390–403. Epub 2011/05/18.

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79. Epub 2012/09/28.

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Stephens NS, Siffledeen J, Su X, Murdoch TB, Fedorak RN, Slupsky CM. Urinary NMR metabolomic profiles discriminate inflammatory bowel disease from healthy. J Crohns Colitis. 2013;7(2):e42–8. Epub 2012/05/26.

    PubMed  Google Scholar 

  171. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe. 2007;2(2):119–29. Epub 2007/11/17.

    CAS  PubMed  Google Scholar 

  172. Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 2007;5(10):2177–89. Epub 2007/09/01.

    CAS  PubMed  Google Scholar 

  173. Papa E, Docktor M, Smillie C, Weber S, Preheim SP, Gevers D, et al. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS ONE. 2012;7(6):e39242. Epub 2012/07/07.

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Sokol H, Lepage P, Seksik P, Dore J, Marteau P. Temperature gradient gel electrophoresis of fecal 16S rRNA reveals active Escherichia coli in the microbiota of patients with ulcerative colitis. J Clin Microbiol. 2006;44(9):3172–7. Epub 2006/09/07.

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. Epub 2010/03/06.

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A. 2012;109(2):594–9. Epub 2011/12/21.

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Hansen JJ, Huang Y, Peterson DA, Goeser L, Fan TJ, Chang EB, et al. The colitis-associated transcriptional profile of commensal Bacteroides thetaiotaomicron enhances adaptive immune responses to a bacterial antigen. PLoS ONE. 2012;7(8):e42645. Epub 2012/08/11.

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Patwa LG, Fan TJ, Tchaptchet S, Liu Y, Lussier YA, Sartor RB, et al. Chronic intestinal inflammation induces stress-response genes in commensal Escherichia coli. Gastroenterology. 2011;141(5):1842–51. e1-10. Epub 2011/07/06.

    PubMed Central  CAS  PubMed  Google Scholar 

  179. Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2009;3(2):179–89. Epub 2008/10/31.

    CAS  PubMed  Google Scholar 

  180. Kolmeder CA, de Been M, Nikkila J, Ritamo I, Matto J, Valmu L, et al. Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS ONE. 2012;7(1):e29913. Epub 2012/01/27.

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF, Pan C, et al. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PLoS ONE. 2012;7(11):e49138. Epub 2012/12/05.

    PubMed Central  CAS  PubMed  Google Scholar 

  182. Jansson J, Willing B, Lucio M, Fekete A, Dicksved J, Halfvarson J, et al. Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS ONE. 2009;4(7):e6386. Epub 2009/07/29.

    PubMed Central  PubMed  Google Scholar 

  183. Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res. 2007;6(2):546–51. Epub 2007/02/03.

    CAS  PubMed  Google Scholar 

  184. Duboc H, Rainteau D, Rajca S, Humbert L, Farabos D, Maubert M, et al. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil: Off J Eur Gastrointestin Motility Soc. 2012;24(6):513–20. e246-7. Epub 2012/02/24.

    CAS  Google Scholar 

  185. Wohlgemuth S, Keller S, Kertscher R, Stadion M, Haller D, Kisling S, et al. Intestinal steroid profiles and microbiota composition in colitic mice. Gut Microbes. 2011;2(3):159–66. Epub 2011/08/27.

    PubMed  Google Scholar 

  186. Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 2011;141(5):1773–81. Epub 2011/08/16.

    CAS  PubMed  Google Scholar 

  187. Duboc H, Rajca S, Rainteau D, Benarous D, Maubert MA, Quervain E, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2012;40(18):9308–18. Epub 2012/09/21.

    Google Scholar 

  188. Stenman LK, Holma R, Korpela R. High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids. World J Gastroenterol: WJG. 2012;18(9):923–9. Epub 2012/03/13.

    PubMed Central  CAS  PubMed  Google Scholar 

  189. Suzuki T, Hara H. Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats. Nutr Metab. 2010;7:19. Epub 2010/03/13.

    Google Scholar 

  190. Raimondi F, Santoro P, Barone MV, Pappacoda S, Barretta ML, Nanayakkara M, et al. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation. Am J Physiol Gastrointest Liver Physiol. 2008;294(4):G906–13. Epub 2008/02/02.

    CAS  PubMed  Google Scholar 

  191. Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W, Murzilli S, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut. 2011;60(4):463–72. Epub 2011/01/19.

    CAS  PubMed  Google Scholar 

  192. Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. IJMM. 2008;298(5–6):463–72. Epub 2007/09/28.

    CAS  PubMed  Google Scholar 

  193. Baur P, Martin FP, Gruber L, Bosco N, Brahmbhatt V, Collino S, et al. Metabolic phenotyping of the Crohn’s disease-like IBD etiopathology in the TNF(DeltaARE/WT) mouse model. J Proteome Res. 2011;10(12):5523–35. Epub 2011/10/28.

    CAS  PubMed  Google Scholar 

  194. Fernandez-Banares F, Esteve-Comas M, Mane J, Navarro E, Bertran X, Cabre E, et al. Changes in mucosal fatty acid profile in inflammatorybowel disease and in experimental colitis: a common response to bowel inflammation. Clin Nutr. 1997;16(4):177–83. Epub 1997/08/01.

    CAS  PubMed  Google Scholar 

  195. Bjerrum JT, Nielsen OH, Hao F, Tang H, Nicholson JK, Wang Y, et al. Metabonomics in ulcerative colitis: diagnostics, biomarker identification, and insight into the pathophysiology. J Proteome Res. 2010;9(2):954–62. Epub 2009/10/29.

    CAS  PubMed  Google Scholar 

  196. Bezabeh T, Somorjai RL, Smith IC, Nikulin AE, Dolenko B, Bernstein CN. The use of 1H magnetic resonance spectroscopy in inflammatory bowel diseases: distinguishing ulcerative colitis from Crohn’s disease. Am J Gastroenterol. 2001;96(2):442–8. Epub 2001/03/10.

    CAS  PubMed  Google Scholar 

  197. Balasubramanian K, Kumar S, Singh RR, Sharma U, Ahuja V, Makharia GK, et al. Metabolism of the colonic mucosa in patients with inflammatory bowel diseases: an in vitro proton magnetic resonance spectroscopy study. Magn Reson Imaging. 2009;27(1):79–86. Epub 2008/07/05.

    CAS  PubMed  Google Scholar 

  198. Holub BJ. The nutritional significance, metabolism, and function of myo-inositol and phosphatidylinositol in health and disease. Adv Nutr Res. 1982;4:107–41. Epub 1982/01/01.

    CAS  PubMed  Google Scholar 

  199. Holub BJ. Metabolism and function of myo-inositol and inositol phospholipids. Annu Rev Nutr. 1986;6:563–97. Epub 1986/01/01.

    CAS  PubMed  Google Scholar 

  200. Martin FP, Rezzi S, Philippe D, Tornier L, Messlik A, Holzlwimmer G, et al. Metabolic assessment of gradual development of moderate experimental colitis in IL-10 deficient mice. J Proteome Res. 2009;8(5):2376–87. Epub 2009/03/28.

    CAS  PubMed  Google Scholar 

  201. Murdoch TB, Fu H, MacFarlane S, Sydora BC, Fedorak RN, Slupsky CM. Urinary metabolic profiles of inflammatory bowel disease in interleukin-10 gene-deficient mice. Anal Chem. 2008;80(14):5524–31. Epub 2008/06/19.

    CAS  PubMed  Google Scholar 

  202. Williams HR, Cox IJ, Walker DG, North BV, Patel VM, Marshall SE, et al. Characterization of inflammatory bowel disease with urinary metabolic profiling. Am J Gastroenterol. 2009;104(6):1435–44. Epub 2009/06/06.

    CAS  PubMed  Google Scholar 

  203. Winterkamp S, Weidenhiller M, Otte P, Stolper J, Schwab D, Hahn EG, et al. Urinary excretion of N-methylhistamine as a marker of disease activity in inflammatory bowel disease. Am J Gastroenterol. 2002;97(12):3071–7. Epub 2002/12/21.

    CAS  PubMed  Google Scholar 

  204. Macfarlane S, Macfarlane GT, Cummings JH. Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther. 2006;24(5):701–14. Epub 2006/08/22.

    CAS  PubMed  Google Scholar 

  205. Langlands SJ, Hopkins MJ, Coleman N, Cummings JH. Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut. 2004;53(11):1610–6. Epub 2004/10/14.

    PubMed Central  CAS  PubMed  Google Scholar 

  206. Gibson GR, Beatty ER, Wang X, Cummings JH. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology. 1995;108(4):975–82. Epub 1995/04/01.

    CAS  PubMed  Google Scholar 

  207. Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev. 2004;17(2):259–75. Epub 2004/12/01.

    CAS  PubMed  Google Scholar 

  208. Vulevic J, Drakoularakou A, Yaqoob P, Tzortzis G, Gibson GR. Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. Am J Clin Nutr. 2008;88(5):1438–46. Epub 2008/11/11.

    CAS  PubMed  Google Scholar 

  209. Depeint F, Tzortzis G, Vulevic J, I’Anson K, Gibson GR. Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. Am J Clin Nutr. 2008;87(3):785–91. Epub 2008/03/11.

    CAS  PubMed  Google Scholar 

  210. Hormannsperger G, Clavel T, Haller D. Gut matters: Microbe-host interactions in allergic diseases. J Allergy Clin Immunol. 2012;129(6):1452–9. Epub 2012/02/11.

    PubMed  Google Scholar 

  211. Lindsay JO, Whelan K, Stagg AJ, Gobin P, Al-Hassi HO, Rayment N, et al. Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut. 2006;55(3):348–55. Epub 2005/09/16.

    PubMed Central  CAS  PubMed  Google Scholar 

  212. Welters CF, Heineman E, Thunnissen FB, van den Bogaard AE, Soeters PB, Baeten CG. Effect of dietary inulin supplementation on inflammation of pouch mucosa in patients with an ileal pouch-anal anastomosis. Dis Colon Rectum. 2002;45(5):621–7. Epub 2002/05/11.

    PubMed  Google Scholar 

  213. Lara-Villoslada F, de Haro O, Camuesco D, Comalada M, Velasco J, Zarzuelo A, et al. Short-chain fructooligosaccharides, in spite of being fermented in the upper part of the large intestine, have anti-inflammatory activity in the TNBS model of colitis. Eur J Nutr. 2006;45(7):418–25. Epub 2006/07/28.

    CAS  PubMed  Google Scholar 

  214. Cherbut C, Michel C, Lecannu G. The prebiotic characteristics of fructooligosaccharides are necessary for reduction of TNBS-induced colitis in rats. J Nutr. 2003;133(1):21–7. Epub 2003/01/07.

    CAS  PubMed  Google Scholar 

  215. Camuesco D, Peran L, Comalada M, Nieto A, Di Stasi LC, Rodriguez-Cabezas ME, et al. Preventative effects of lactulose in the trinitrobenzenesulphonic acid model of rat colitis. Inflamm Bowel Dis. 2005;11(3):265–71. Epub 2005/03/01.

    PubMed  Google Scholar 

  216. Rumi G, Tsubouchi R, Okayama M, Kato S, Mozsik G, Takeuchi K. Protective effect of lactulose on dextran sulfate sodium-induced colonic inflammation in rats. Dig Dis Sci. 2004;49(9):1466–72. Epub 2004/10/16.

    CAS  PubMed  Google Scholar 

  217. Hoentjen F, Welling GW, Harmsen HJ, Zhang X, Snart J, Tannock GW, et al. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm Bowel Dis. 2005;11(11):977–85. Epub 2005/10/22.

    PubMed  Google Scholar 

  218. Gopalakrishnan A, Clinthorne JF, Rondini EA, McCaskey SJ, Gurzell EA, Langohr IM, et al. Supplementation with galacto-oligosaccharides increases the percentage of NK cells and reduces colitis severity in Smad3-deficient mice. J Nutr. 2012;142(7):1336–42. Epub 2012/04/13.

    CAS  PubMed  Google Scholar 

  219. Sang LX, Chang B, Zhang WL, Wu XM, Li XH, Jiang M. Remission induction and maintenance effect of probiotics on ulcerative colitis: a meta-analysis. World J Gastroenterol: WJG. 2010;16(15):1908–15. Epub 2010/04/17.

    PubMed Central  PubMed  Google Scholar 

  220. Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut. 2003;52(6):827–33. Epub 2003/05/13.

    PubMed Central  CAS  PubMed  Google Scholar 

  221. Matsumoto S, Hara T, Hori T, Mitsuyama K, Nagaoka M, Tomiyasu N, et al. Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells. Clin Exp Immunol. 2005;140(3):417–26. Epub 2005/06/04.

    PubMed Central  CAS  PubMed  Google Scholar 

  222. Liu Z, Zhang P, Ma Y, Chen H, Zhou Y, Zhang M, et al. Lactobacillus plantarum prevents the development of colitis in IL-10-deficient mouse by reducing the intestinal permeability. Mol Biol Rep. 2011;38(2):1353–61. Epub 2010/06/24.

    CAS  PubMed  Google Scholar 

  223. Peluso I, Fina D, Caruso R, Stolfi C, Caprioli F, Fantini MC, et al. Lactobacillus paracasei subsp. paracasei B21060 suppresses human T-cell proliferation. Infect Immun. 2007;75(4):1730–7. Epub 2007/01/24.

    PubMed Central  CAS  PubMed  Google Scholar 

  224. Oliva S, Di Nardo G, Ferrari F, Mallardo S, Rossi P, Patrizi G, et al. Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment Pharmacol Ther. 2012;35(3):327–34. Epub 2011/12/14.

    CAS  PubMed  Google Scholar 

  225. Zocco MA, Dal Verme LZ, Cremonini F, Piscaglia AC, Nista EC, Candelli M, et al. Efficacy of Lactobacillus GG in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther. 2006;23(11):1567–74. Epub 2006/05/16.

    CAS  PubMed  Google Scholar 

  226. Dieleman LA, Goerres MS, Arends A, Sprengers D, Torrice C, Hoentjen F, et al. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment. Gut. 2003;52(3):370–6. Epub 2003/02/14.

    PubMed Central  CAS  PubMed  Google Scholar 

  227. Osman N, Adawi D, Ahrne S, Jeppsson B, Molin G. Modulation of the effect of dextran sulfate sodium-induced acute colitis by the administration of different probiotic strains of Lactobacillus and Bifidobacterium. Dig Dis Sci. 2004;49(2):320–7. Epub 2004/04/24.

    CAS  PubMed  Google Scholar 

  228. Schultz M, Veltkamp C, Dieleman LA, Grenther WB, Wyrick PB, Tonkonogy SL, et al. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm Bowel Dis. 2002;8(2):71–80. Epub 2002/02/21.

    PubMed  Google Scholar 

  229. Mileti E, Matteoli G, Iliev ID, Rescigno M. Comparison of the immunomodulatory properties of three probiotic strains of Lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS ONE. 2009;4(9):e7056. Epub 2009/09/17.

    PubMed Central  PubMed  Google Scholar 

  230. Steck N, Hoffmann M, Sava IG, Kim SC, Hahne H, Tonkonogy SL, et al. Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology. 2011;141(3):959–71. Epub 2011/06/28.

    CAS  PubMed  Google Scholar 

  231. McCarthy J, O’Mahony L, O’Callaghan L, Sheil B, Vaughan EE, Fitzsimons N, et al. Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance. Gut. 2003;52(7):975–80. Epub 2003/06/13.

    PubMed Central  CAS  PubMed  Google Scholar 

  232. Setoyama H, Imaoka A, Ishikawa H, Umesaki Y. Prevention of gut inflammation by Bifidobacterium in dextran sulfate-treated gnotobiotic mice associated with Bacteroides strains isolated from ulcerative colitis patients. Micro Infect/ Institut Pasteur. 2003;5(2):115–22. Epub 2003/03/26.

    Google Scholar 

  233. Kim N, Kunisawa J, Kweon MN, Eog Ji G, Kiyono H. Oral feeding of Bifidobacterium bifidum (BGN4) prevents CD4(+) CD45RB(high) T cell-mediated inflammatory bowel disease by inhibition of disordered T cell activation. Clin Immunol. 2007;123(1):30–9. Epub 2007/01/16.

    CAS  PubMed  Google Scholar 

  234. Philippe D, Favre L, Foata F, Adolfsson O, Perruisseau-Carrier G, Vidal K, et al. Bifidobacterium lactis attenuates onset of inflammation in a murine model of colitis. World J Gastroenterol: WJG. 2011;17(4):459–69. Epub 2011/01/29.

    PubMed Central  PubMed  Google Scholar 

  235. Ishikawa H, Akedo I, Umesaki Y, Tanaka R, Imaoka A, Otani T. Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis. J Am Coll Nutr. 2003;22(1):56–63. Epub 2003/02/06.

    PubMed  Google Scholar 

  236. Kato K, Mizuno S, Umesaki Y, Ishii Y, Sugitani M, Imaoka A, et al. Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther. 2004;20(10):1133–41. Epub 2004/12/01.

    CAS  PubMed  Google Scholar 

  237. Rembacken BJ, Snelling AM, Hawkey PM, Chalmers DM, Axon AT. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet. 1999;354(9179):635–9. Epub 1999/08/31.

    CAS  PubMed  Google Scholar 

  238. Kruis W, Fric P, Pokrotnieks J, Lukas M, Fixa B, Kascak M, et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut. 2004;53(11):1617–23. Epub 2004/10/14.

    PubMed Central  CAS  PubMed  Google Scholar 

  239. Henker J, Muller S, Laass MW, Schreiner A, Schulze J. Probiotic Escherichia coli Nissle 1917 (EcN) for successful remission maintenance of ulcerative colitis in children and adolescents: an open-label pilot study. Z Gastroenterol. 2008;46(9):874–5. Epub 2008/09/24.

    CAS  PubMed  Google Scholar 

  240. Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W, et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS ONE. 2007;2(12):e1308. Epub 2007/12/13.

    PubMed Central  PubMed  Google Scholar 

  241. Gotteland M, Cruchet S, Verbeke S. Effect of Lactobacillus ingestion on the gastrointestinal mucosal barrier alterations induced by indometacin in humans. Aliment Pharmacol Ther. 2001;15(1):11–7. Epub 2001/01/03.

    CAS  PubMed  Google Scholar 

  242. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091–103. Epub 2009/02/26.

    PubMed Central  CAS  PubMed  Google Scholar 

  243. Hummel S, Veltman K, Cichon C, Sonnenborn U, Schmidt MA. Differential targeting of the E-Cadherin/beta-Catenin complex by gram-positive probiotic lactobacilli improves epithelial barrier function. Appl Environ Microbiol. 2012;78(4):1140–7. Epub 2011/12/20.

    PubMed Central  CAS  PubMed  Google Scholar 

  244. Mimura T, Rizzello F, Helwig U, Poggioli G, Schreiber S, Talbot IC, et al. Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut. 2004;53(1):108–14. Epub 2003/12/20.

    PubMed Central  CAS  PubMed  Google Scholar 

  245. Gionchetti P, Rizzello F, Venturi A, Brigidi P, Matteuzzi D, Bazzocchi G, et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology. 2000;119(2):305–9. Epub 2000/08/10.

    CAS  PubMed  Google Scholar 

  246. Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P, Campieri M, et al. VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol. 2005;100(7):1539–46. Epub 2005/06/30.

    PubMed  Google Scholar 

  247. Sood A, Midha V, Makharia GK, Ahuja V, Singal D, Goswami P, et al. The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. Clin Gastroenterol Hepatol: Off Clin Prac J Am Gastroenterol Assoc. 2009;7(11):1202–9. 9 e1. Epub 2009/07/28.

    Google Scholar 

  248. Miele E, Pascarella F, Giannetti E, Quaglietta L, Baldassano RN, Staiano A. Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am J Gastroenterol. 2009;104(2):437–43. Epub 2009/01/29.

    CAS  PubMed  Google Scholar 

  249. Malchow HA. Crohn’s disease and Escherichia coli. A new approach in therapy to maintain remission of colonic Crohn’s disease? J Clin Gastroenterol. 1997;25(4):653–8.

    CAS  PubMed  Google Scholar 

  250. Chermesh I, Tamir A, Reshef R, Chowers Y, Suissa A, Katz D, et al. Failure of Synbiotic 2000 to prevent postoperative recurrence of Crohn’s disease. Dig Dis Sci. 2007;52(2):385–9. Epub 2007/01/11.

    PubMed  Google Scholar 

  251. Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky B, et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology. 2004;126(2):520–8. Epub 2004/02/06.

    CAS  PubMed  Google Scholar 

  252. Jijon H, Backer J, Diaz H, Yeung H, Thiel D, McKaigney C, et al. DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology. 2004;126(5):1358–73. Epub 2004/05/08.

    CAS  PubMed  Google Scholar 

  253. Hoermannsperger G, Clavel T, Hoffmann M, Reiff C, Kelly D, Loh G, et al. Post-translational inhibition of IP-10 secretion in IEC by probiotic bacteria: impact on chronic inflammation. PLoS ONE. 2009;4(2):e4365. Epub 2009/02/07.

    PubMed  Google Scholar 

  254. von Schillde MA, Hormannsperger G, Weiher M, Alpert CA, Hahne H, Bauerl C, et al. Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe. 2012;11(4):387–96. Epub 2012/04/24.

    Google Scholar 

  255. Ishikawa H, Matsumoto S, Ohashi Y, Imaoka A, Setoyama H, Umesaki Y, et al. Beneficial effects of probiotic bifidobacterium and galacto-oligosaccharide in patients with ulcerative colitis: a randomized controlled study. Digestion. 2011;84(2):128–33. Epub 2011/04/29.

    PubMed  Google Scholar 

  256. Furrie E, Macfarlane S, Kennedy A, Cummings JH, Walsh SV, O’Neil DA, et al. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut. 2005;54(2):242–9. Epub 2005/01/14.

    PubMed Central  CAS  PubMed  Google Scholar 

  257. Guslandi M. Treatment of irritable bowel syndrome with Saccharomyces boulardii. J Clin Gastroenterol. 2011;45(8):740–1. author reply 1-2. Epub 2011/05/11.

    PubMed  Google Scholar 

  258. Guslandi M, Mezzi G, Sorghi M, Testoni PA. Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci. 2000;45(7):1462–4. Epub 2000/08/29.

    CAS  PubMed  Google Scholar 

  259. Summers RW, Elliott DE, Urban Jr JF, Thompson RA, Weinstock JV. Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology. 2005;128(4):825–32. Epub 2005/04/13.

    PubMed  Google Scholar 

  260. Dalmasso G, Cottrez F, Imbert V, Lagadec P, Peyron JF, Rampal P, et al. Saccharomyces boulardii inhibits inflammatory bowel disease by trapping T cells in mesenteric lymph nodes. Gastroenterology. 2006;131(6):1812–25. Epub 2006/11/08.

    CAS  PubMed  Google Scholar 

  261. Kullberg MC, Pearce EJ, Hieny SE, Sher A, Berzofsky JA. Infection with Schistosoma mansoni alters Th1/Th2 cytokine responses to a non-parasite antigen. J Immunol. 1992;148(10):3264–70. Epub 1992/05/15.

    CAS  PubMed  Google Scholar 

  262. Pearlman E, Kazura JW, Hazlett Jr FE, Boom WH. Modulation of murine cytokine responses to mycobacterial antigens by helminth-induced T helper 2 cell responses. J Immunol. 1993;151(9):4857–64. Epub 1993/11/01.

    CAS  PubMed  Google Scholar 

  263. Watanabe O, Ando T, Ishiguro K, Takahashi H, Ishikawa D, Miyake N, et al. Enteral nutrition decreases hospitalization rate in patients with Crohn’s disease. J Gastroenterol Hepatol. 2010;25 Suppl 1:S134–7. Epub 2010/07/14.

    PubMed  Google Scholar 

  264. Yamamoto T, Nakahigashi M, Saniabadi AR. Review article: diet and inflammatory bowel disease–epidemiology and treatment. Aliment Pharmacol Ther. 2009;30(2):99–112. Epub 2009/05/15.

    CAS  PubMed  Google Scholar 

  265. Yamamoto T, Shiraki M, Nakahigashi M, Umegae S, Matsumoto K. Enteral nutrition to suppress postoperative Crohn’s disease recurrence: a five-year prospective cohort study. Int J Colorectal Dis. 2012;65(10):866–73. Epub 2012/09/28.

    Google Scholar 

  266. Day AS, Whitten KE, Lemberg DA, Clarkson C, Vitug-Sales M, Jackson R, et al. Exclusive enteral feeding as primary therapy for Crohn’s disease in Australian children and adolescents: a feasible and effective approach. J Gastroenterol Hepatol. 2006;21(10):1609–14. Epub 2006/08/25.

    PubMed  Google Scholar 

  267. Leach ST, Mitchell HM, Eng WR, Zhang L, Day AS. Sustained modulation of intestinal bacteria by exclusive enteral nutrition used to treat children with Crohn’s disease. Aliment Pharmacol Ther. 2008;28(6):724–33. Epub 2009/01/16.

    CAS  PubMed  Google Scholar 

  268. Hunter JO. Is diet a factor in the pathogenesis of IBD? Inflamm Bowel Dis. 2008;14 Suppl 2:S35–6. Epub 2008/09/26.

    PubMed  Google Scholar 

  269. Kajiura T, Takeda T, Sakata S, Sakamoto M, Hashimoto M, Suzuki H, et al. Change of intestinal microbiota with elemental diet and its impact on therapeutic effects in a murine model of chronic colitis. Dig Dis Sci. 2009;54(9):1892–900. Epub 2008/12/06.

    CAS  PubMed  Google Scholar 

  270. Pereira SP, Cassell TB, Engelman JL, Sladen GE, Murphy GM, Dowling RH. Plasma arachidonic acid-rich phospholipids in Crohn’s disease: response to treatment. Clin Sci (Lond). 1996;91(4):509–12. Epub 1996/10/01.

    CAS  Google Scholar 

  271. Zoli G, Care M, Parazza M, Spano C, Biagi PL, Bernardi M, et al. A randomized controlled study comparing elemental diet and steroid treatment in Crohn’s disease. Aliment Pharmacol Ther. 1997;11(4):735–40. Epub 1997/08/01.

    CAS  PubMed  Google Scholar 

  272. Hanai H, Iida T, Takeuchi K, Arai H, Arai O, Abe J, et al. Nutritional therapy versus 6-mercaptopurine as maintenance therapy in patients with Crohn’s disease. Digest Liver Dis: Off J Ital Soc Gastroenterol Ital Assoc Stud Liver. 2012;44(8):649–54. Epub 2012/05/01.

    CAS  Google Scholar 

  273. Gorard DA, Hunt JB, Payne-James JJ, Palmer KR, Rees RG, Clark ML, et al. Initial response and subsequent course of Crohn’s disease treated with elemental diet or prednisolone. Gut. 1993;34(9):1198–202. Epub 1993/09/01.

    PubMed Central  CAS  PubMed  Google Scholar 

  274. Zachos M, Tondeur M, Griffiths AM. Enteral nutritional therapy for induction of remission in Crohn's disease. Cochrane Database Syst Rev. 2007(1):CD000542. Epub 2007/01/27.

    Google Scholar 

  275. Wagner SJ, Schmidt A, Effenberger MJ, Gruber L, Danier J, Haller D. Semisynthetic diet ameliorates Crohn’s disease-like ileitis in TNFDeltaARE/WT mice through antigen-independent mechanisms of gluten. Inflamm Bowel Dis. 2013;19(6):1285–94. Epub 2013/04/10.

    PubMed  Google Scholar 

  276. Newnham ED. Does gluten cause gastrointestinal symptoms in subjects without coeliac disease? J Gastroenterol Hepatol. 2011;26 Suppl 3:132–4. Epub 2011/04/02.

    CAS  PubMed  Google Scholar 

  277. Esaki M, Matsumoto T, Nakamura S, Yada S, Fujisawa K, Jo Y, et al. Factors affecting recurrence in patients with Crohn’s disease under nutritional therapy. Dis Colon Rectum. 2006;49(10 Suppl):S68–74. Epub 2006/11/16.

    PubMed  Google Scholar 

  278. Gentschew L, Ferguson LR. Role of nutrition and microbiota in susceptibility to inflammatory bowel diseases. Mol Nutr Food Res. 2012;56(4):524–35. Epub 2012/04/13.

    CAS  PubMed  Google Scholar 

  279. Gruber L, Lichti P, Rath E, Haller D. Nutrigenomics and nutrigenetics in inflammatory bowel diseases. J Clin Gastroenterol. 2012;46(9):735–47. Epub 2012/09/04.

    CAS  PubMed  Google Scholar 

  280. Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol. 2011;106(4):563–73. Epub 2011/04/07.

    CAS  PubMed  Google Scholar 

  281. Miller B, Fervers F, Rohbeck R, Strohmeyer G. [Sugar consumption in patients with Crohn’s disease]. Verhandlungen der Deutschen Gesellschaft fur Innere Medizin. 1976;82 Pt 1:922–4. Epub 1976/01/01. Zuckerkonsum bei Patienten mit Morbus Crohn.

    Google Scholar 

  282. Mayberry JF, Rhodes J, Newcombe RG. Increased sugar consumption in Crohn’s disease. Digestion. 1980;20(5):323–6. Epub 1980/01/01.

    CAS  PubMed  Google Scholar 

  283. Sonnenberg A. Geographic and temporal variations of sugar and margarine consumption in relation to Crohn’s disease. Digestion. 1988;41(3):161–71. Epub 1988/01/01.

    CAS  PubMed  Google Scholar 

  284. Shoda R, Matsueda K, Yamato S, Umeda N. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan. Am J Clin Nutr. 1996;63(5):741–5. Epub 1996/05/01.

    CAS  PubMed  Google Scholar 

  285. Chan SS, Luben R, Olsen A, Tjonneland A, Kaaks R, Teucher B, et al. Body mass index and the risk for Crohn’s disease and ulcerative colitis: data from a European prospective cohort study (The IBD in EPIC Study). Am J Gastroenterol. 2013;108(4):575–82. Epub 2013/01/16.

    PubMed  Google Scholar 

  286. Teixeira LG, Leonel AJ, Aguilar EC, Batista NV, Alves AC, Coimbra CC, et al. The combination of high-fat diet-induced obesity and chronic ulcerative colitis reciprocally exacerbates adipose tissue and colon inflammation. Lipids Health Dis. 2011;10:204. Epub 2011/11/15.

    PubMed Central  PubMed  Google Scholar 

  287. Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE. 2012;7(10):e47713. Epub 2012/10/24.

    PubMed Central  CAS  PubMed  Google Scholar 

  288. Gruber L, Kisling S, Lichti P, Martin FP, May S, Klingenspor M, et al. High fat diet accelerates pathogenesis of murine Crohn’s disease-like ileitis independently of obesity. PLoS ONE. 2013;8(8):e71661. Epub 2013/08/27.

    PubMed Central  CAS  PubMed  Google Scholar 

  289. Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, Magness S, et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE. 2010;5(8):e12191. Epub 2010/09/03.

    PubMed Central  PubMed  Google Scholar 

  290. Erdelyi I, Levenkova N, Lin EY, Pinto JT, Lipkin M, Quimby FW, et al. Western-style diets induce oxidative stress and dysregulate immune responses in the colon in a mouse model of sporadic colon cancer. J Nutr. 2009;139(11):2072–8. Epub 2009/09/18.

    PubMed Central  CAS  PubMed  Google Scholar 

  291. Lam YY, Ha CW, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS ONE. 2012;7(3):e34233. Epub 2012/03/30.

    PubMed Central  CAS  PubMed  Google Scholar 

  292. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137(5):1716–24. e1-2. Epub 2009/08/27.

    PubMed Central  CAS  PubMed  Google Scholar 

  293. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. Epub 2013/12/18.

    PubMed Central  CAS  PubMed  Google Scholar 

  294. Werner T, Wagner SJ, Martinez I, Walter J, Chang JS, Clavel T, et al. Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut. 2011;60(3):325–33. Epub 2010/11/16.

    CAS  PubMed  Google Scholar 

  295. Den Hond E, Hiele M, Evenepoel P, Peeters M, Ghoos Y, Rutgeerts P. In vivo butyrate metabolism and colonic permeability in extensive ulcerative colitis. Gastroenterology. 1998;115(3):584–90. Epub 1998/08/28.

    Google Scholar 

  296. Roediger WE. The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet. 1980;2(8197):712–5. Epub 1980/10/04.

    CAS  PubMed  Google Scholar 

  297. Ahmad MS, Krishnan S, Ramakrishna BS, Mathan M, Pulimood AB, Murthy SN. Butyrate and glucose metabolism by colonocytes in experimental colitis in mice. Gut. 2000;46(4):493–9. Epub 2000/03/15.

    PubMed Central  CAS  PubMed  Google Scholar 

  298. Ritzhaupt A, Wood IS, Ellis A, Hosie KB, Shirazi-Beechey SP. Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport L-lactate as well as butyrate. J Physiol. 1998;513(Pt 3):719–32. Epub 1998/11/24.

    PubMed Central  CAS  PubMed  Google Scholar 

  299. Thibault R, De Coppet P, Daly K, Bourreille A, Cuff M, Bonnet C, et al. Down-regulation of the monocarboxylate transporter 1 is involved in butyrate deficiency during intestinal inflammation. Gastroenterology. 2007;133(6):1916–27. Epub 2007/12/07.

    CAS  PubMed  Google Scholar 

  300. Annese V, Valvano MR, Palmieri O, Latiano A, Bossa F, Andriulli A. Multidrug resistance 1 gene in inflammatory bowel disease: a meta-analysis. World J Gastroenterol: WJG. 2006;12(23):3636–44. Epub 2006/06/15.

    PubMed Central  CAS  PubMed  Google Scholar 

  301. Onnie CM, Fisher SA, Pattni R, Sanderson J, Forbes A, Lewis CM, et al. Associations of allelic variants of the multidrug resistance gene (ABCB1 or MDR1) and inflammatory bowel disease and their effects on disease behavior: a case-control and meta-analysis study. Inflamm Bowel Dis. 2006;12(4):263–71. Epub 2006/04/25.

    PubMed  Google Scholar 

  302. Annese V, Rogai F, Settesoldi A, Bagnoli S. PPARgamma in inflammatory bowel disease. PPAR Res. 2012;2012:620839. Epub 2012/09/22.

    PubMed Central  PubMed  Google Scholar 

  303. Simmons JD, Mullighan C, Welsh KI, Jewell DP. Vitamin D receptor gene polymorphism: association with Crohn’s disease susceptibility. Gut. 2000;47(2):211–4. Epub 2000/07/18.

    PubMed Central  CAS  PubMed  Google Scholar 

  304. Wu GD. Is there a role for PPAR gamma in IBD? Yes, no, maybe. Gastroenterology. 2003;124(5):1538–42. Epub 2003/05/06.

    PubMed  Google Scholar 

  305. Zucchelli M, Torkvist L, Bresso F, Halfvarson J, Hellquist A, Anedda F, et al. PepT1 oligopeptide transporter (SLC15A1) gene polymorphism in inflammatory bowel disease. Inflamm Bowel Dis. 2009;15(10):1562–9. Epub 2009/05/23.

    PubMed  Google Scholar 

  306. Dalmasso G, Nguyen HT, Ingersoll SA, Ayyadurai S, Laroui H, Charania MA, et al. The PepT1-NOD2 signaling pathway aggravates induced colitis in mice. Gastroenterology. 2011;141(4):1334–45. Epub 2011/07/19.

    PubMed Central  CAS  PubMed  Google Scholar 

  307. Merlin D, Si-Tahar M, Sitaraman SV, Eastburn K, Williams I, Liu X, et al. Colonic epithelial hPepT1 expression occurs in inflammatory bowel disease: transport of bacterial peptides influences expression of MHC class 1 molecules. Gastroenterology. 2001;120(7):1666–79. Epub 2001/05/29.

    CAS  PubMed  Google Scholar 

  308. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15. Epub 2013/01/18.

    PubMed  Google Scholar 

  309. Anderson JL, Edney RJ, Whelan K. Systematic review: faecal microbiota transplantation in the management of inflammatory bowel disease. Aliment Pharmacol Ther. 2012;36(6):503–16. Epub 2012/07/26.

    CAS  PubMed  Google Scholar 

  310. Damman CJ, Miller SI, Surawicz CM, Zisman TL. The microbiome and inflammatory bowel disease: is there a therapeutic role for fecal microbiota transplantation? Am J Gastroenterol. 2012;107(10):1452–9. Epub 2012/10/05.

    PubMed  Google Scholar 

  311. Kunde S, Pham A, Bonczyk S, Crumb T, Duba M, Conrad Jr H, et al. Safety, tolerability, and clinical response after fecal transplantation in children and young adults with ulcerative colitis. J Pediatr Gastroenterol Nutr. 2013;56(6):597–601. Epub 2013/04/02.

    PubMed  Google Scholar 

  312. Angelberger S, Reinisch W, Makristathis A, Lichtenberger C, Dejaco C, Papay P, et al. Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am J Gastroenterol. 2013;108(10):1620–30. Epub 2013/09/26.

    CAS  PubMed  Google Scholar 

  313. Balish E, Warner T. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am J Pathol. 2002;160(6):2253–7. Epub 2002/06/12.

    PubMed Central  CAS  PubMed  Google Scholar 

  314. Madsen KL, Doyle JS, Tavernini MM, Jewell LD, Rennie RP, Fedorak RN. Antibiotic therapy attenuates colitis in interleukin 10 gene-deficient mice. Gastroenterology. 2000;118(6):1094–105. Epub 2000/06/02.

    CAS  PubMed  Google Scholar 

  315. Hoentjen F, Harmsen HJ, Braat H, Torrice CD, Mann BA, Sartor RB, et al. Antibiotics with a selective aerobic or anaerobic spectrum have different therapeutic activities in various regions of the colon in interleukin 10 gene deficient mice. Gut. 2003;52(12):1721–7. Epub 2003/11/25.

    PubMed Central  CAS  PubMed  Google Scholar 

  316. Tamagawa H, Hiroi T, Mizushima T, Ito T, Matsuda H, Kiyono H. Therapeutic effects of roxithromycin in interleukin-10-deficient colitis. Inflamm Bowel Dis. 2007;13(5):547–56. Epub 2007/01/25.

    PubMed  Google Scholar 

  317. Schultz M, Tonkonogy SL, Sellon RK, Veltkamp C, Godfrey VL, Kwon J, et al. IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. Am J Physiol. 1999;276(6 Pt 1):G1461–72. Epub 1999/06/11.

    CAS  PubMed  Google Scholar 

  318. Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180(6):2359–64. Epub 1994/12/01.

    CAS  PubMed  Google Scholar 

  319. Dianda L, Hanby AM, Wright NA, Sebesteny A, Hayday AC, Owen MJ. T cell receptor-alpha beta-deficient mice fail to develop colitis in the absence of a microbial environment. Am J Pathol. 1997;150(1):91–7. Epub 1997/01/01.

    PubMed Central  CAS  PubMed  Google Scholar 

  320. Bamias G, Okazawa A, Rivera-Nieves J, Arseneau KO, De La Rue SA, Pizarro TT, et al. Commensal bacteria exacerbate intestinal inflammation but are not essential for the development of murine ileitis. J Immunol. 2007;178(3):1809–18. Epub 2007/01/24.

    CAS  PubMed  Google Scholar 

  321. Bamias G, Marini M, Moskaluk CA, Odashima M, Ross WG, Rivera-Nieves J, et al. Down-regulation of intestinal lymphocyte activation and Th1 cytokine production by antibiotic therapy in a murine model of Crohn’s disease. J Immunol. 2002;169(9):5308–14. Epub 2002/10/23.

    PubMed  Google Scholar 

  322. Habtezion A, Toivola DM, Butcher EC, Omary MB. Keratin-8-deficient mice develop chronic spontaneous Th2 colitis amenable to antibiotic treatment. J Cell Sci. 2005;118(Pt 9):1971–80. Epub 2005/04/21.

    CAS  PubMed  Google Scholar 

  323. Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J Immunol. 1998;161(10):5733–44. Epub 1998/11/20.

    CAS  PubMed  Google Scholar 

  324. Kang SS, Bloom SM, Norian LA, Geske MJ, Flavell RA, Stappenbeck TS, et al. An antibiotic-responsive mouse model of fulminant ulcerative colitis. PLoS Med. 2008;5(3):e41. Epub 2008/03/06.

    PubMed Central  PubMed  Google Scholar 

  325. Deng L, Zhou JF, Sellers RS, Li JF, Nguyen AV, Wang Y, et al. A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol. 2010;176(2):952–67. Epub 2010/01/01.

    PubMed Central  CAS  PubMed  Google Scholar 

  326. Morrissey PJ, Charrier K. Induction of wasting disease in SCID mice by the transfer of normal CD4+/CD45RBhi T cells and the regulation of this autoreactivity by CD4+/CD45RBlo T cells. Res Immunol. 1994;145(5):357–62. Epub 1994/06/01.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Haller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Gruber, L., Haller, D. (2015). Role of the Gut Microbiota in Maintaining GI Health: Highlights on Inflammatory Bowel Disease. In: Kochhar, S., Martin, FP. (eds) Metabonomics and Gut Microbiota in Nutrition and Disease. Molecular and Integrative Toxicology. Springer, London. https://doi.org/10.1007/978-1-4471-6539-2_13

Download citation

Publish with us

Policies and ethics