Skip to main content

Risk Factors for Levodopa-Induced Dyskinesia

  • Chapter
  • First Online:
Levodopa-Induced Dyskinesia in Parkinson's Disease

Abstract

Levodopa-induced dyskinesia (LID) is a disabling motor complication of chronic dopaminergic therapy in patients with Parkinson’s disease (PD). The most important risk factor for LID is levodopa therapy: longer treatment duration and high daily levodopa dose. Longer duration of PD, more severe disease, and younger age at PD onset are also significant risk factors. However, there is a profound interindividual difference in the susceptibility to LID; thus, discoveries from recent genetic association studies are worth reviewing although they are limited because of small sample size, lack of replication, and poor pathophysiological backgrounds. Three major suggestions from the studies are as follows: first, a DRD2 gene haplotype with the functional consequence of a low generalized activity on the presynaptic D2 receptor may be associated with high risk of dyskinesia; second, a DRD3 variant with low receptor-binding affinity may be associated with the diphasic form of dyskinesia; and third, a COMT low-activity allele may be associated with earlier onset of dyskinesia. Further investigations on other genes regarding dopaminergic and nondopaminergic modulators in the basal ganglia would enhance our understanding of LID susceptibility as well as reveal the possible mechanism of it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrag A, Quinn N. Dyskinesia and motor fluctuations in Parkinson’s disease. A community-based study. Brain. 2000;123:2297–305.

    PubMed  Google Scholar 

  2. Van Gerpen JA, Kumar N, Bower JH, Weigand S, Ahlskog JE. Levodopa-associated dyskinesia risk among Parkinson disease patients in Olmsted County, Minnesota, 1976–1990. Arch Neurol. 2006;63(2):205–9.

    PubMed  Google Scholar 

  3. Parkinson Study Group. Impact of deprenyl and tocopherol treatment on Parkinson’s disease in DATATOP patients requiring levodopa. Ann Neurol. 1996;39:37–45.

    Google Scholar 

  4. Block G, Liss C, Reines S, Irr J, Nibbelink D. Comparison of immediate-release and controlled release carbidopa/levodopa in Parkinson’s disease. A multicenter 5-year study. Eur Neurol. 1997;37:23–7.

    PubMed  CAS  Google Scholar 

  5. Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesia and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16(3):448–58.

    PubMed  CAS  Google Scholar 

  6. Kostić VS, Marinković J, Svetel M, Stefanova E, Przedborski S. The effect of stage of Parkinson’s disease at the onset of levodopa therapy on development of motor complications. Eur J Neurol. 2002;9(1):9–14.

    PubMed  Google Scholar 

  7. Fahn S. The spectrum of levodopa-induced dyskinesia. Ann Neurol. 2000;47 Suppl 1:S2–11.

    PubMed  CAS  Google Scholar 

  8. Pearce RKB, Heikkila M, Lindern IB, Jenner P. L-dopa induces dyskinesia in normal monkeys: behavioral and pharmacokinetic observations. Psychopharmacology (Berl). 2001;156:402–9.

    CAS  Google Scholar 

  9. Togasaki DM, Tan L, Protell P, Di Monte DA, Quik M, Langston JW. Levodopa induces dyskinesia in normal squirrel monkeys. Ann Neurol. 2001;50:254–7.

    PubMed  CAS  Google Scholar 

  10. Picconi B, Paillé V, Ghiglieri V, Bagetta V, Barone I, Lindgren HS, Bernardi G, Angela Cenci M, Calabresi P. l-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation. Neurobiol Dis. 2008;29(2):327–35.

    PubMed  CAS  Google Scholar 

  11. Benbir G, Ozekmekçi S, Apaydin H, Delil S, Erginöz E. A hospital-based study: risk factors in development of motor complications in 555 Parkinson’s patients on levodopa therapy. Clin Neurol Neurosurg. 2006;108(8):726–32.

    PubMed  Google Scholar 

  12. Hauser RA, McDermott MP, Messing S. Factors associated with the development of motor fluctuations and dyskinesia in Parkinson disease. Arch Neurol. 2006;63(12):1756–60.

    PubMed  Google Scholar 

  13. Fahn S. Parkinson’s disease, the effect of levodopa, and the ELLDOPA trial. Arch Neurol. 1999;56:529–35.

    PubMed  CAS  Google Scholar 

  14. Warren Olanow C, Kieburtz K, Rascol O, Poewe W, Schapira AH, Emre M, Nissinen H, Leinonen M, Stocchi F, Stalevo Reduction in Dyskinesia Evaluation in Parkinson’s Disease (STRIDE-PD) Investigators. Factors predictive of the development of Levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov Disord. 2013;28(8):1064–71.

    PubMed  CAS  Google Scholar 

  15. Hassin-Baer S, Molchadski I, Cohen OS, Nitzan Z, Efrati L, Tunkel O, Kozlova E, Korczyn AD. Gender effect on time to levodopa-induced dyskinesia. J Neurol. 2011;258(11):2048–53.

    PubMed  CAS  Google Scholar 

  16. Martinelli P, Contin M, Scaglione C, Riva R, Albani F, Baruzzi A. Levodopa pharmacokinetics and dyskinesia: are there sex-related differences? Neurol Sci. 2003;24(3):192–3.

    PubMed  CAS  Google Scholar 

  17. Arabia G, Zappia M, Bosco D, Crescibene L, Bagalà A, Bastone L, Caracciolo M, Scornaienghi M, Quattrone A. Body weight, levodopa pharmacokinetics and dyskinesia in Parkinson’s disease. Neurol Sci. 2002;23 Suppl 2:S53–4.

    PubMed  Google Scholar 

  18. Zappia M, Crescibene L, Arabia G, Nicoletti G, Bagalà A, Bastone L, Caracciolo M, Bonavita S, Di Costanzo A, Scornaienchi M, Gambardella A, Quattrone A. Body weight influences pharmacokinetics of levodopa in Parkinson’s disease. Clin Neuropharmacol. 2002;25(2):79–82.

    PubMed  CAS  Google Scholar 

  19. Sharma JC, Ross IN, Rascol O, Brooks D. Relationship between weight, levodopa and dyskinesia: the significance of levodopa dose per kilogram body weight. Eur J Neurol. 2008;15(5):493–6.

    PubMed  CAS  Google Scholar 

  20. Kitagawa M, Tashiro K. Low-dose levodopa therapy in Japanese patients with Parkinson’s disease: a retrospective study. Intern Med. 2005;44(9):939–43.

    PubMed  CAS  Google Scholar 

  21. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med. 2000;342(20):1484–91.

    PubMed  CAS  Google Scholar 

  22. Parkinson Study Group. Pramipexole vs levodopa as initial treatment for Parkinson disease: a randomized controlled trial. Parkinson Study Group. JAMA. 2000;284(15):1931–8.

    Google Scholar 

  23. Bracco F, Battaglia A, Chouza C, Dupont E, Gershanik O, Marti Masso JF, Montastruc JL, PKDS009 Study Group. The long-acting dopamine receptor agonist cabergoline in early Parkinson’s disease: final results of a 5-year, double-blind, levodopa-controlled study. CNS Drugs. 2004;18(11):733–46.

    PubMed  CAS  Google Scholar 

  24. Oertel WH, Wolters E, Sampaio C, Gimenez-Roldan S, Bergamasco B, Dujardin M, Grosset DG, Arnold G, Leenders KL, Hundemer HP, Lledó A, Wood A, Frewer P, Schwarz J. Pergolide versus levodopa monotherapy in early Parkinson’s disease patients: the PELMOPET study. Mov Disord. 2006;21(3):343–53.

    PubMed  Google Scholar 

  25. Parkinson Study Group CALM Cohort Investigators. Long-term effect of initiating pramipexole vs levodopa in early Parkinson disease. Arch Neurol. 2009;66(5):563–70.

    Google Scholar 

  26. Hauser RA, Rascol O, Korczyn AD, Jon Stoessl A, Watts RL, Poewe W, De Deyn PP, Lang AE. Ten-year follow-up of Parkinson’s disease patients randomized to initial therapy with ropinirole or levodopa. Mov Disord. 2007;22(16):2409–17.

    PubMed  Google Scholar 

  27. Katzenschlager R, Head J, Schrag A, Ben-Shlomo Y, Evans A, Lees AJ, Parkinson’s Disease Research Group of the United Kingdom. Fourteen-year final report of the randomized PDRG-UK trial comparing three treatments in PD. Neurology. 2008;71(7):474–80.

    PubMed  CAS  Google Scholar 

  28. Kumar N, Van Gerpen JA, Bower JH, Ahlskog JE. Levodopa-dyskinesia incidence by age of Parkinson’s disease onset. Mov Disord. 2005;20(3):342–4.

    PubMed  Google Scholar 

  29. Lee JY, Cho J, Lee EK, Park SS, Jeon BS. Differential genetic susceptibility in diphasic and peak-dose dyskinesia in Parkinson’s disease. Mov Disord. 2011;26(1):73–9.

    PubMed  Google Scholar 

  30. Sossi V, de la Fuente-Fernández R, Schulzer M, Adams J, Stoessl J. Age-related differences in levodopa dynamics in Parkinson’s: implications for motor complications. Brain. 2006;129:1050–8.

    PubMed  Google Scholar 

  31. Storch A, Wolz M, Beuthien-Baumann B, Löhle M, Herting B, Schwanebeck U, Oehme L, van den Hoff J, Perick M, Grählert X, Kotzerke J, Reichmann H. Effects of dopaminergic treatment on striatal dopamine turnover in de novo Parkinson disease. Neurology. 2013;80(19):1754–61.

    PubMed  CAS  Google Scholar 

  32. Sossi V, de la Fuente-Fernández R, Schulzer M, Troiano AR, Ruth TJ, Stoessl AJ. Dopamine transporter relation to dopamine turnover in Parkinson’s disease: a positron emission tomography study. Ann Neurol. 2007;62(5):468–74.

    PubMed  Google Scholar 

  33. Cerasa A, Salsone M, Morelli M, Pugliese P, Arabia G, Gioia CM, Novellino F, Quattrone A. Age at onset influences neurodegenerative processes underlying PD with levodopa-induced dyskinesia. Parkinsonism Relat Disord. 2013;19(10):883–8.

    PubMed  Google Scholar 

  34. Lee JY, Lee EK, Park SS, Lim JY, Kim HJ, Kim JS, Jeon BS. Association of DRD3 and GRIN2B with impulse control and related behaviors in Parkinson’s disease. Mov Disord. 2009;24(12):1803–10.

    PubMed  Google Scholar 

  35. Brotchie JM. Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord. 2005;20:919–31.

    PubMed  Google Scholar 

  36. Huang W, Payne TJ, Ma JZ, Beuten J, Dupont RT, Inohara N, Li MD. Significant association of ANKK1 and detection of a functional polymorphism with nicotine dependence in an African–American sample. Neuropsychopharmacology. 2009;34(2):319–30.

    PubMed  CAS  Google Scholar 

  37. Bontempi S, Fiorentini C, Busi C, Guerra N, Spano P, Missale C. Identification and characterization of two nuclear factor-kB sites in the regulatory region of the dopamine D2 receptor. Endocrinology. 2007;148(5):2563–70.

    PubMed  CAS  Google Scholar 

  38. Thompson J, Thomas N, Singleton A, Piggott M, Lloyd S, Perry EK, Morris CM, Perry RH, Ferrier IN, Court JA. D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics. 1997;7(6):479–84.

    PubMed  CAS  Google Scholar 

  39. Pohjalainen T, Rinne JO, Någren K, Lehikoinen P, Anttila K, Syvälahti EK, Hietala J. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry. 1998;3(3):256–60.

    PubMed  CAS  Google Scholar 

  40. Ritchie T, Noble EP. Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochem Res. 2003;28(1):73–82.

    PubMed  CAS  Google Scholar 

  41. Laakso A, Pohjalainen T, Bergman J, Kajander J, Haaparanta M, Solin O, Syvälahti E, Hietala J. The A1 allele of the human D2 dopamine receptor gene is associated with increased activity of striatal l-amino acid decarboxylase in healthy subjects. Pharmacogenet Genomics. 2005;15(6):387–91.

    PubMed  CAS  Google Scholar 

  42. Wang J, Liu ZL, Chen B. Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology. 2001;56(12):1757–9.

    PubMed  CAS  Google Scholar 

  43. Rieck M, Schumacher-Schuh AF, Altmann V, Francisconi CL, Fagundes PT, Monte TL, Callegari-Jacques SM, Rieder CR, Hutz MH. DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson’s disease patients. Pharmacogenomics. 2012;13(15):1701–10.

    PubMed  CAS  Google Scholar 

  44. Zhang Y, Bertolino A, Fazio L, Blasi G, Rampino A, Romano R, Lee ML, Xiao T, Papp A, Wang D, Sadée W. Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc Natl Acad Sci U S A. 2007;104(51):20552–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Hirvonen MM, Laakso A, Nagren K, Rinne JO, Pohjalainen T, Hietala J. C957T polymorphism of the dopamine D2 receptor (DRD2) gene affects striatal DRD2 availability in vivo. Mol Psychiatry. 2004;9(12):1060–1.

    PubMed  CAS  Google Scholar 

  46. Hirvonen MM, Laakso A, Nagren K, Rinne JO, Pohjalainen T, Hietala J. C957T polymorphism of dopamine D2 receptor gene affects striatal DRD2 in vivo availability by changing the receptor affinity. Synapse. 2009;63(10):907–12.

    PubMed  CAS  Google Scholar 

  47. Zappia M, Annesi G, Nicoletti G, Arabia G, Annesi F, Messina D, Pugliese P, Spadafora P, Tarantino P, Carrideo S, Civitelli D, De Marco EV, Cirò-Candiano IC, Gambardella A, Quattrone A. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesia in Parkinson disease: an exploratory study. Arch Neurol. 2005;62(4):601–5.

    PubMed  Google Scholar 

  48. Oliveri RL, Annesi G, Zappia M, Civitelli D, Montesanti R, Branca D, Nicoletti G, Spadafora P, Pasqua AA, Cittadella R, Andreoli V, Gambardella A, Aguglia U, Quattrone A. Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesia in PD. Neurology. 1999;53(7):1425–30.

    PubMed  CAS  Google Scholar 

  49. Strong JA, Dalvi A, Revilla FJ, Sahay A, Samaha FJ, Welge JA, Gong J, Gartner M, Yue X, Yu L. Genotype and smoking history affect risk of levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord. 2006;21(5):654–9.

    PubMed  Google Scholar 

  50. Calabresi P, Di Filippo M, Ghiglieri V, Picconi B. Molecular mechanisms underlying levodopa-induced dyskinesia. Mov Disord. 2008;23 Suppl 3:S570–9.

    PubMed  Google Scholar 

  51. Picconi B, Centonze D, Håkansson K, Bernardi G, Greengard P, Fisone G, Cenci MA, Calabresi P. Loss of bidirectional striatal synaptic plasticity in levodopa induced dyskinesia. Nat Neurosci. 2003;6:501–6.

    PubMed  CAS  Google Scholar 

  52. Ota VK, Spíndola LN, Gadelha A, dos Santos Filho AF, Santoro ML, Christofolini DM, Bellucco FT, Ribeiro-dos-Santos ÂK, Santos S, Mari Jde J, Melaragno MI, Bressan RA, Smith Mde A, Belangero SI. DRD1 rs4532 polymorphism: a potential pharmacogenomic marker for treatment response to antipsychotic drugs. Schizophr Res. 2012;142(1–3):206–8.

    PubMed  Google Scholar 

  53. Lundstrom K, Turpin MP. Proposed schizophrenia-related gene polymorphism: expression of the Ser9Gly mutant human dopamine D3 receptor with the Semliki Forest virus system. Biochem Biophys Res Commun. 1996;225:1068–72.

    PubMed  CAS  Google Scholar 

  54. Waters N, Svensson K, Haadsma-Svensson SR, Smith MW, Carlsson A. The dopamine D3 receptor: a postsynaptic receptor inhibitory on rat locomotor activity. J Neural Transm. 1993;94:11–9.

    CAS  Google Scholar 

  55. Bordet R, Ridray S, Carboni S, Diaz J, Sokoloff P, Schwartz JC. Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proc Natl Acad Sci U S A. 1997;94:3363–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Bézard E, Ferry S, Mach U, Stark H, Leriche L, Boraud T, Gross C, Sokoloff P. Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat Med. 2003;9:762–7.

    PubMed  Google Scholar 

  57. Guigoni C, Aubert I, Li Q, Gurevich VV, Benovic JL, Ferry S, Mach U, Stark H, Leriche L, Håkansson K, Bioulac BH, Gross CE, Sokoloff P, Fisone G, Gurevich EV, Bloch B, Bezard E. Pathogenesis of levodopa-induced dyskinesia: focus on D1 and D3 dopamine receptors. Parkinsonism Relat Disord. 2005;11:S25–9.

    PubMed  Google Scholar 

  58. Bordet R, Ridray S, Schwartz JC, Sokoloff P. Involvement of the direct striatonigral pathway in levodopa-induced sensitization in 6-hydroxydopaine-lesioned rats. Eur J Neurosci. 2000;12:2117–23.

    PubMed  CAS  Google Scholar 

  59. Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Solokoff P. BDNF controls dopamine D3 receptor expression and triggers behavioral sensitization. Nature. 2001;411:86–9.

    PubMed  CAS  Google Scholar 

  60. Richtand NM. Behavioral sensitization, alternative splicing, and D3 dopamine receptor-mediated inhibitory function. Neuropsychopharmacology. 2006;31(11):2368–745.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Kaiser R, Hofer A, Grapengiesser A, Gasser T, Kupsch A, Roots I, Brockmöller J. L -dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology. 2003;60(11):1750–5.

    PubMed  CAS  Google Scholar 

  62. Paus S, Gadow F, Knapp M, Klein C, Klockgether T, Wüllner U. Motor complications in patients from the German competence network on Parkinson’s disease and the DRD3 Ser9Gly polymorphism. Mov Disord. 2009;24:1080–4.

    PubMed  Google Scholar 

  63. Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG. Levodopa-induced dyskinesia. Mov Disord. 2007;22(10):1379–89.

    PubMed  Google Scholar 

  64. Wang J, Liu ZL, Chen B. Dopamine D5 receptor gene polymorphism and the risk of levodopa-induced motor fluctuations in patients with Parkinson’s disease. Neurosci Lett. 2001;308(1):21–4.

    PubMed  CAS  Google Scholar 

  65. Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, Wudel J, Pal PK, de la Fuente-Fernandez R, Calne DB, Stoessl AJ. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol. 2000;47(4):493–503.

    PubMed  CAS  Google Scholar 

  66. Troiano AR, de la Fuente-Fernandez R, Sossi V, Schulzer M, Mak E, Ruth TJ, Stoessl AJ. PET demonstrates reduced dopamine transporter expression in PD with dyskinesia. Neurology. 2009;72(14):1211–6.

    PubMed  CAS  Google Scholar 

  67. Contin M, Martinelli P, Mochi M, Albani F, Riva R, Scaglione C, Dondi M, Fanti S, Pettinato C, Baruzzi A. Dopamine transporter gene polymorphism, spect imaging, and levodopa response in patients with Parkinson disease. Clin Neuropharmacol. 2004;27(3):111–5.

    PubMed  CAS  Google Scholar 

  68. D’souza UM, Craig IW. Functional polymorphisms in dopamine and serotonin pathway genes. Hum Mutat. 2006;27:1–13.

    PubMed  Google Scholar 

  69. Białecka M, Droździk M, Kłodowska-Duda G, Honczarenko K, Gawrońska-Szklarz B, Opala G, Stankiewicz J. The effect of monoamine oxidase B (MAOB) and catechol-O-methyltransferase (COMT) polymorphisms on levodopa therapy in patients with sporadic Parkinson’s disease. Acta Neurol Scand. 2004;110(4):260–6.

    PubMed  Google Scholar 

  70. Lee MS, Lyoo CH, Ulmanen I, Syvänen AC, Rinne JO. Genotypes of catechol-O-methyltransferase and response to levodopa treatment in patients with Parkinson’s disease. Neurosci Lett. 2001;298(2):131–4.

    PubMed  CAS  Google Scholar 

  71. Lee MS, Kim HS, Cho EK, Lim JH, Rinne JO. COMT genotype and effectiveness of entacapone in patients with fluctuating Parkinson’s disease. Neurology. 2002;58(4):564–7.

    PubMed  CAS  Google Scholar 

  72. Contin M, Martinelli P, Mochi M, Riva R, Albani F, Baruzzi A. Genetic polymorphism of catechol-O-methyltransferase and levodopa pharmacokinetic-pharmacodynamic pattern in patients with Parkinson’s disease. Mov Disord. 2005;20(6):734–9.

    PubMed  Google Scholar 

  73. Białecka M, Kurzawski M, Klodowska-Duda G, Opala G, Tan EK, Drozdzik M. The association of functional catechol-O-methyltransferase haplotypes with risk of Parkinson’s disease, levodopa treatment response, and complications. Pharmacogenet Genomics. 2008;18(9):815–21.

    PubMed  Google Scholar 

  74. Foltynie T, Goldbery TE, Lewis SG, Blackwell AD, Kolachana BS, Weinberger DR, et al. Planning ability in Parkinson’s disease is influenced by the COMT val158met polymorphism. Mov Disord. 2004;19:885–91.

    PubMed  Google Scholar 

  75. Williams-Gray CH, Hampshire A, Barker R, Owen AM. Attentional control in Parkinson’s disease is dependent on COMT val158met genotype. Brain. 2008;131:397–408.

    PubMed  Google Scholar 

  76. Watanabe M, Harada S, Nakamura T, Ohkoshi N, Yoshizawa K, Hayashi A, Shoji S. Association between catechol-O-methyltransferase gene polymorphisms and wearing-off and dyskinesia in Parkinson’s disease. Neuropsychobiology. 2003;48(4):190–3.

    PubMed  CAS  Google Scholar 

  77. Torkaman-Boutorabi A, Shahidi GA, Choopani S, Rezvani M, Pourkosary K, Golkar M, Zarrindast MR. The catechol-O-methyltransferase and monoamine oxidase B polymorphisms and levodopa therapy in the Iranian patients with sporadic Parkinson’s disease. Acta Neurobiol Exp (Wars). 2012;72(3):272–82.

    Google Scholar 

  78. de Lau LM, Verbaan D, Marinus J, Heutink P, van Hilten JJ. Catechol-O-methyltransferase Val158Met and the risk of dyskinesia in Parkinson’s disease. Mov Disord. 2012;27(1):131–5.

    Google Scholar 

  79. Wu K, O’Keeffe D, Politis M, O’Keeffe GC, Robbins TW, Bose SK, Brooks DJ, Piccini P, Barker RA. The catechol-O-methyltransferase Val(158)Met polymorphism modulates fronto-cortical dopamine turnover in early Parkinson’s disease: a PET study. Brain. 2012;135:2449–57.

    PubMed  Google Scholar 

  80. Moussa BH, Youdim MB, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci. 2006;7:295–309.

    Google Scholar 

  81. Kurth JH, Kurth MC, Poduslo SE, Schwankhaus JD. Association of a monoamine oxidase B allele with Parkinson’s disease. Ann Neurol. 1993;33:368–72.

    PubMed  CAS  Google Scholar 

  82. Garpenstrand J, Ekblom K, Forslund G, Rylander L, Oreland L. Platelet monoamine oxidase activity is related to MAOB intron 13 genotype. J Neural Transm. 2000;107:523–30.

    PubMed  CAS  Google Scholar 

  83. Costa-Mallen P, Kelada SN, Costa LG, Checkoway H. Characterization of the in vitro transcriptional activity of polymorphic alleles of the human monoamine oxidase-B gene. Neurosci Lett. 2005;383:171–5.

    PubMed  CAS  Google Scholar 

  84. Pinsonneault JK, Papp AC, Sadee W. Allelic mRNA expression of X-linked monoamine oxidase a (MAOA) in human brain: dissection of epigenetic and genetic factors. Hum Mol Genet. 2006;15:2636–49.

    PubMed  CAS  Google Scholar 

  85. Cheshire P, Bertram K, Ling H, O’Sullivan SS, Halliday G, McLean C, Bras J, Foltynie T, Storey E, Williams DR. Influence of Single Nucleotide Polymorphisms in COMT, MAO-A and BDNF Genes on Dyskinesia and Levodopa Use in Parkinson’s Disease. Neurodegener Dis. 2014;13:24–8.

    PubMed  CAS  Google Scholar 

  86. Arning L, Saft C, Wieczorek S, Andrich J, Kraus PH, Epplen JT. NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Hum Genet. 2007;122:175–82.

    PubMed  CAS  Google Scholar 

  87. Hong CJ, Yu YW, Lin CH, Cheng CY, Tsai SJ. Association analysis for NMDA receptor subunit 2B (GRIN2B) genetic variants and psychopathology and clozapine response in schizophrenia. Psychiatr Genet. 2001;11:219–22.

    PubMed  CAS  Google Scholar 

  88. Do T, Kerr B, Kuzhikandathil EV. Brain-derived neurotrophic factor regulates the expression of D1 dopamine receptors. J Neurochem. 2007;100:416–28.

    PubMed  CAS  Google Scholar 

  89. Mamounas LA, Altar CA, Blue ME, Kaplan DR, Tessarollo L, Lyons WE. BDNF promotes the regenerative sprouting, but not survival, of injured serotonergic axons in the adult rat brain. J Neurosci. 2000;20:771–82.

    PubMed  CAS  Google Scholar 

  90. Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 2004;27:589–94.

    PubMed  CAS  Google Scholar 

  91. Chen ZY, Patel PD, Sant G, Meng CX, Teng KK, Hempstead BL, Lee FS. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci. 2004;24:4401–11.

    PubMed  CAS  Google Scholar 

  92. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–69.

    PubMed  CAS  Google Scholar 

  93. Foltynie T, Cheeran B, Williams-Gray CH, Edwards MJ, Schneider SA, Weinberger D, Rothwell JC, Barker RA, Bhatia KP. BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2009;80(2):141–4.

    PubMed  CAS  Google Scholar 

  94. Carta M, Carlsson T, Kirik D, Björklund A. Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain. 2007;130:1819–33.

    PubMed  Google Scholar 

  95. Rylander D, Parent M, O’Sullivan SS, Dovero S, Lees AJ, Bezard E, Descarries L, Cenci MA. Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol. 2010;68(5):619–28.

    PubMed  CAS  Google Scholar 

  96. Carlsson T, Carta M, Muñoz A, Mattsson B, Winkler C, Kirik D, Björklund A. Impact of grafted serotonin and dopamine neurons on development of L-DOPA-induced dyskinesia in parkinsonian rats is determined by the extent of dopamine neuron degeneration. Brain. 2009;132:319–35.

    PubMed  Google Scholar 

  97. Heins A, Jones DW, Mazzanti C, Goldman D, Ragan P, Hommer D, Linnoila M, Weinberger DR. A relationship between serotonin transporter genotype and in vivo protein expression and alcohol neurotoxicity. Biol Psychiatry. 2000;47:643–9.

    Google Scholar 

  98. Piccini P, Weeks RA, Brooks DJ. Alterations in opioid receptor binding in Parkinson’s disease patients with levodopa-induced dyskinesia. Ann Neurol. 1997;42(5):720–6.

    PubMed  CAS  Google Scholar 

  99. Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L, Gong J, Schluger J, Strong JA, Leal SM, Tischfield JA, Kreek MJ, Yu L. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci U S A. 1998;95:9608–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Labandeira-Garcia JL, Rodriguez-Pallares J, Dominguez-Meijide A, Valenzuela R, Villar-Cheda B, Rodríguez-Perez AI. Dopamine-Angiotensin interactions in the basal ganglia and their relevance for Parkinson’s disease. Mov Disord. 2013;28(10):1337–42.

    PubMed  CAS  Google Scholar 

  101. Lin JJ, Yueh KC, Lin SZ, Harn HJ, Liu JT. Genetic polymorphism of the angiotensin converting enzyme and L-dopa-induced adverse effects in Parkinson’s disease. J Neurol Sci. 2007;252(2):130–4.

    PubMed  CAS  Google Scholar 

  102. Pascale E, Purcaro C, Passarelli E, Guglielmi R, Vestri AR, Passarelli F, Meco G. Genetic polymorphism of Angiotensin-Converting Enzyme is not associated with the development of Parkinson’s disease and of L-dopa-induced adverse effects. J Neurol Sci. 2009;276(1–2):18–21.

    PubMed  CAS  Google Scholar 

  103. Molchadski I, Korczyn AD, Cohen OS, Katzav A, Nitzan Z, Chapman J, Hassin-Baer S. The role of apolipoprotein E polymorphisms in levodopa-induced dyskinesia. Acta Neurol Scand. 2011;123(2):117–21.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom S. Jeon MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Lee, JY., Jeon, B.S. (2014). Risk Factors for Levodopa-Induced Dyskinesia. In: Fox, S., Brotchie, J. (eds) Levodopa-Induced Dyskinesia in Parkinson's Disease. Springer, London. https://doi.org/10.1007/978-1-4471-6503-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6503-3_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6502-6

  • Online ISBN: 978-1-4471-6503-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics