Skip to main content

Calcific Aortic Valve Disease: The Role of the Stem Cell Niche

  • Chapter
  • First Online:
Molecular Biology of Valvular Heart Disease

Abstract

Calcific Aortic Valve Disease is the most common indication for surgical valve replacement in the world [1]. For years this disease was thought to be a passive degenerative phenomenon. Understanding of the cellular mechanisms of this valve lesion will provide new cellular therapeutic options to slow disease progression. Until recently the etiology of valvular heart disease has been thought to be a degenerative process related to the passive accumulation of calcium binding to the surface of the valve leaflet. Recent descriptive studies have demonstrated the critical features of aortic valve calcification, including osteoblast expression, cell proliferation and atherosclerosis [2–5] and mitral valve degeneration, glycosaminglycan accumulation, proteoglycan expression, and abnormal collagen expression [6–9]. Studies have demonstrated that specific bone cell phenotypes are present in calcifying valve specimens in human specimens [10, 11]. This phenotype is the foundation for the studies focused on the cellular mechanism for osteoblastogenesis in the heart and the foundation for the Molecular Biology of Valvular Disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberts WC, Ko JM. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation. 2005;111:920–5.

    Article  PubMed  Google Scholar 

  2. O’Brien KD, Kuusisto J, Reichenbach DD, Ferguson M, Giachelli C, Alpers CE, Otto CM. Osteopontin is expressed in human aortic valvular lesions. Circulation. 1995;92:2163–8 [comment].

    Article  PubMed  Google Scholar 

  3. Mohler 3rd ER, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS. Bone formation and inflammation in cardiac valves. Circulation. 2001;103:1522–8.

    Article  PubMed  Google Scholar 

  4. Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M, Orszulak T, Fullerton DA, Tajik AJ, Bonow RO, Spelsberg T. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation. 2003;107:2181–4.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Rajamannan NM, Subramaniam M, Springett M, Sebo TC, Niekrasz M, McConnell JP, Singh RJ, Stone NJ, Bonow RO, Spelsberg TC. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation. 2002;105:2260–5.

    Article  CAS  Google Scholar 

  6. Whittaker P, Boughner DR, Perkins DG, Canham PB. Quantitative structural analysis of collagen in chordae tendineae and its relation to floppy mitral valves and proteoglycan infiltration. Br Heart J. 1987;57:264–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Wooley CF, Baker PB, Kolibash AJ, Kilman JW, Sparks EA, Boudoulas H. The floppy, myxomatous mitral valve, mitral valve prolapse, and mitral regurgitation. Prog Cardiovasc Dis. 1991;33:397–433.

    Article  PubMed  CAS  Google Scholar 

  8. Grande-Allen KJ, Borowski AG, Troughton RW, Houghtaling PL, Dipaola NR, Moravec CS, Vesely I, Griffin BP. Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements: an extracellular matrix and echocardiographic study. J Am Coll Cardiol. 2005;45:54–61 [see comment].

    Article  PubMed  CAS  Google Scholar 

  9. Grande-Allen KJ, Calabro A, Gupta V, Wight TN, Hascall VC, Vesely I. Glycosaminoglycans and proteoglycans in normal mitral valve leaflets and chordae: association with regions of tensile and compressive loading. Glycobiology. 2004;14:621–33.

    Article  PubMed  CAS  Google Scholar 

  10. Caira FC, Stock SR, Gleason TG, McGee EC, Huang J, Bonow RO, Spelsberg TC, McCarthy PM, Rahimtoola SH, Rajamannan NM. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol. 2006;47:1707–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Jian B, Jones PL, Li Q, Mohler 3rd ER, Schoen FJ, Levy RJ. Matrix metalloproteinase-2 is associated with tenascin-c in calcific aortic stenosis. Am J Pathol. 2001;159:321–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Mohler 3rd ER, Adam LP, McClelland P, Graham L, Hathaway DR. Detection of osteopontin in calcified human aortic valves. Arterioscler Thromb Vasc Biol. 1997;17:547–52.

    Article  PubMed  Google Scholar 

  13. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–54 [see comment].

    Article  PubMed  CAS  Google Scholar 

  14. Aubin JE, Liu F, Malaval L, Gupta AK. Osteoblast and chondroblast differentiation. Bone. 1995;17:77S–83.

    Article  PubMed  CAS  Google Scholar 

  15. Rajamannan NM. The role of lrp5/6 in cardiac valve disease: experimental hypercholesterolemia in the apoe-/- /lrp5-/- mice. J Cell Biochem. 2011;112:2987–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Rajamannan NM. The role of lrp5/6 in cardiac valve disease: Ldl-density-pressure theory. J Cell Biochem. 2011;112:2222–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Rajamannan NM. Bicuspid aortic valve disease: the role of oxidative stress in lrp5 bone formation. Cardiovasc Pathol. 2011;20:168–76.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Rajamannan NM. Oxidative-mechanical stress signals stem cell niche mediated lrp5 osteogenesis in enos(-/-) null mice. J Cell Biochem. 2012;113:1623–34.

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Rajamannan NM, Subramaniam M, Caira F, Stock SR, Spelsberg TC. Atorvastatin inhibits hypercholesterolemia-induced calcification in the aortic valves via the lrp5 receptor pathway. Circulation. 2005;112:I229–34.

    PubMed Central  PubMed  Google Scholar 

  20. Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, Lomedico PT, Recker SM, Van Eerdewegh P, Recker RR, Johnson ML. A mutation in the ldl receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70:11–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Juppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML, Osteoporosis-Pseudoglioma Syndrome Collaborative G. Ldl receptor-related protein 5 (lrp5) affects bone accrual and eye development. Cell. 2001;107:513–23.

    Article  PubMed  CAS  Google Scholar 

  22. Willert K, Nusse R. Beta-catenin: a key mediator of wnt signaling. Curr Opin Genet Dev. 1998;8:95–102.

    Article  PubMed  CAS  Google Scholar 

  23. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of beta-catenin with the transcription factor lef-1. Nature. 1996;382:638–42.

    Article  PubMed  CAS  Google Scholar 

  24. Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R. Nuclear localization of beta-catenin by interaction with transcription factor lef-1. Mech Dev. 1996;59:3–10.

    Article  PubMed  CAS  Google Scholar 

  25. Holmen SL, Salic A, Zylstra CR, Kirschner MW, Williams BO. A novel set of wnt-frizzled fusion proteins identifies receptor components that activate beta -catenin-dependent signaling. J Biol Chem. 2002;277:34727–35.

    Article  PubMed  CAS  Google Scholar 

  26. Caverzasio J. [wnt/lrp5, a new regulation osteoblastic pathway involved in reaching peak bone masses]. Rev Med Suisse Romande. 2004;124:81–2.

    PubMed  Google Scholar 

  27. Kahler RA, Westendorf JJ. Lymphoid enhancer factor-1 and beta-catenin inhibit runx2-dependent transcriptional activation of the osteocalcin promoter. J Biol Chem. 2003;278:11937–44.

    Article  PubMed  CAS  Google Scholar 

  28. Smith E, Frenkel B. Glucocorticoids inhibit the transcriptional activity of lef/tcf in differentiating osteoblasts in a glycogen synthase kinase-3{beta}-dependent and -independent manner. J Biol Chem. 2005;280:2388–94.

    Article  PubMed  CAS  Google Scholar 

  29. Wang HY, Malbon CC. Wnt signaling, ca2+, and cyclic gmp: visualizing frizzled functions. Science. 2003;300:1529–30.

    Article  PubMed  CAS  Google Scholar 

  30. Gregory CA, Perry AS, Reyes E, Conley A, Gunn WG, Prockop DJ. Dkk-1-derived synthetic peptides and lithium chloride for the control and recovery of adult stem cells from bone marrow. J Biol Chem. 2005;280:2309–23.

    Article  PubMed  CAS  Google Scholar 

  31. Yano F, Kugimiya F, Ohba S, Ikeda T, Chikuda H, Ogasawara T, Ogata N, Takato T, Nakamura K, Kawaguchi H, Chung UI. The canonical wnt signaling pathway promotes chondrocyte differentiation in a sox9-dependent manner. Biochem Biophys Res Commun. 2005;333:1300–8.

    Article  PubMed  CAS  Google Scholar 

  32. Drolet MC, Arsenault M, Couet J. Experimental aortic valve stenosis in rabbits. J Am Coll Cardiol. 2003;41:1211–7.

    Article  PubMed  Google Scholar 

  33. Weiss RM, Ohashi M, Miller JD, Young SG, Heistad DD. Calcific aortic valve stenosis in old hypercholesterolemic mice. Circulation. 2006;114:2065–9.

    Article  PubMed  Google Scholar 

  34. Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA, Aikawa M, Weissleder R. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation. 2007;115:377–86.

    Article  PubMed  CAS  Google Scholar 

  35. Rajamannan NM, Springett MJ, Pederson LG, Carmichael SW. Localization of caveolin 1 in aortic valve endothelial cells using antigen retrieval. J Histochem Cytochem. 2002;50:617–28.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Rajamannan NM, Edwards WD, Spelsberg TC. Hypercholesterolemic aortic-valve disease. N Engl J Med. 2003;349:717–8.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Rajamannan NM, Subramaniam M, Stock SR, Stone NJ, Springett M, Ignatiev KI, McConnell JP, Singh RJ, Bonow RO, Spelsberg TC. Atorvastatin inhibits calcification and enhances nitric oxide synthase production in the hypercholesterolaemic aortic valve. Heart. 2005;91:806–10.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Makkena B, Salti H, Subramaniam M, Thennapan S, Bonow RH, Caira F, Bonow RO, Spelsberg TC, Rajamannan NM. Atorvastatin decreases cellular proliferation and bone matrix expression in the hypercholesterolemic mitral valve. J Am Coll Cardiol. 2005;45:631–3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Ortlepp JR, Pillich M, Schmitz F, Mevissen V, Koos R, Weiss S, Stork L, Dronskowski R, Langebartels G, Autschbach R, Brandenburg V, Woodruff S, Kaden JJ, Hoffmann R. Lower serum calcium levels are associated with greater calcium hydroxyapatite deposition in native aortic valves of male patients with severe calcific aortic stenosis. J Heart Valve Dis. 2006;15:502–8.

    PubMed  Google Scholar 

  40. Rajamannan NM, Sangiorgi G, Springett M, Arnold K, Mohacsi T, Spagnoli LG, Edwards WD, Tajik AJ, Schwartz RS. Experimental hypercholesterolemia induces apoptosis in the aortic valve. J Heart Valve Dis. 2001;10:371–4.

    PubMed  CAS  Google Scholar 

  41. Shao JS, Cheng SL, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP, Towler DA. Msx2 promotes cardiovascular calcification by activating paracrine wnt signals. J Clin Invest. 2005;115:1210–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Egan KP, Kim JH, Mohler 3rd ER, Pignolo RJ. Role for circulating osteogenic precursor cells in aortic valvular disease. Arterioscler Thromb Vasc Biol. 2011;31:2965–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Rajamannan NM. Calcific aortic valve disease: cellular origins of valve calcification. Arterioscler Thromb Vasc Biol. 2011;31:2777–8.

    Article  PubMed  CAS  Google Scholar 

  44. Tanaka K, Sata M, Fukuda D, Suematsu Y, Motomura N, Takamoto S, Hirata Y, Nagai R. Age-associated aortic stenosis in apolipoprotein e-deficient mice. J Am Coll Cardiol. 2005;46:134–41.

    Article  PubMed  CAS  Google Scholar 

  45. Rajamannan NM, Evans FJ, Aikawa E, Grande-Allen KJ, Demer LL, Heistad DD, Simmons CA, Masters KS, Mathieu P, O’Brien KD, Schoen FJ, Towler DA, Yoganathan AP, Otto CM. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the national heart and lung and blood institute aortic stenosis working group. Executive summary: Calcific aortic valve disease-2011 update. Circulation. 2011;124:1783–91.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Rajamannan NM, Helgeson SC, Johnson CM. Anionic growth factor activity from cardiac valve endothelial cells: partial purification and characterization. Clin Res. 1988:309A.

    Google Scholar 

  47. Johnson CM, Hanson MN, Helgeson SC. Porcine cardiac valvular subendothelial cells in culture: cell isolation and growth characteristics. J Mol Cell Cardiol. 1987;19:1185–93.

    Article  PubMed  CAS  Google Scholar 

  48. Mohler 3rd ER, Chawla MK, Chang AW, Vyavahare N, Levy RJ, Graham L, Gannon FH. Identification and characterization of calcifying valve cells from human and canine aortic valves. J Heart Valve Dis. 1999;8:254–60.

    PubMed  Google Scholar 

  49. Osman L, Yacoub MH, Latif N, Amrani M, Chester AH. Role of human valve interstitial cells in valve calcification and their response to atorvastatin. Circulation. 2006;114:I547–52.

    Article  PubMed  Google Scholar 

  50. Paruchuri S, Yang JH, Aikawa E, Melero-Martin JM, Khan ZA, Loukogeorgakis S, Schoen FJ, Bischoff J. Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-a and transforming growth factor-beta2. Circ Res. 2006;99:861–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Hurlstone AF, Haramis AP, Wienholds E, Begthel H, Korving J, Van Eeden F, Cuppen E, Zivkovic D, Plasterk RH, Clevers H. The wnt/beta-catenin pathway regulates cardiac valve formation. Nature. 2003;425:633–7.

    Article  PubMed  CAS  Google Scholar 

  52. de Haan G, Dontje B, Nijhof W. Concepts of hemopoietic cell amplification. Synergy, redundancy and pleiotropy of cytokines affecting the regulation of erythropoiesis. Leuk Lymphoma. 1996;22:385–94.

    Article  PubMed  Google Scholar 

  53. Sciaudone M, Gazzerro E, Priest L, Delany AM, Canalis E. Notch 1 impairs osteoblastic cell differentiation. Endocrinology. 2003;144:5631–9.

    Article  PubMed  CAS  Google Scholar 

  54. Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E. Notch 1 overexpression inhibits osteoblastogenesis by suppressing wnt/beta-catenin but not bone morphogenetic protein signaling. J Biol Chem. 2006;281:6203–10.

    Article  PubMed  CAS  Google Scholar 

  55. Rajamannan NM. Role of oxidative stress in calcific aortic valve disease: from bench to bedside – the role of a stem cell niche. In: Morales-Gonzalez J.A.Oxidative Stress and Chronic Degenerative Diseases - A Role for Antioxidants, InTech Publisher, 2013; Chapter 11, pp. 265–87.

    Google Scholar 

  56. Johnson CM, Fass DN. Porcine cardiac valvular endothelial cells in culture. A relative deficiency of fibronectin synthesis in vitro. Lab Invest. 1983;49:589–98.

    PubMed  CAS  Google Scholar 

  57. Johnson CM, Helgeson SC. Platelet adherence to cardiac and noncardiac endothelial cells in culture: lack of a prostacyclin effect. J Lab Clin Med. 1988;112:372–9.

    PubMed  CAS  Google Scholar 

  58. Johnson CM, Helgeson SC. Fibronectin biosynthesis and cell-surface expression by cardiac and non-cardiac endothelial cells. Am J Pathol. 1993;142:1401–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Johnson CM, Helgeson SC. Glycoproteins synthesized by cultured cardiac valve endothelial cells: unique absence of fibronectin production. Biochem Biophys Res Commun. 1988;153:46–50.

    Article  PubMed  CAS  Google Scholar 

  60. Tintut Y, Alfonso Z, Saini T, Radcliff K, Watson K, Bostrom K, Demer LL. Multilineage potential of cells from the artery wall. Circulation. 2003;108:2505–10.

    Article  PubMed  Google Scholar 

  61. Wada T, McKee MD, Steitz S, Giachelli CM. Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ Res. 1999;84:166–78.

    Article  PubMed  CAS  Google Scholar 

  62. Kirton JP, Crofts NJ, George SJ, Brennan K, Canfield AE. Wnt/beta-catenin signaling stimulates chondrogenic and inhibits adipogenic differentiation of pericytes: potential relevance to vascular disease? Circ Res. 2007;101:581–9.

    Article  PubMed  CAS  Google Scholar 

  63. Lee TC, Zhao YD, Courtman DW, Stewart DJ. Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation. 2000;101:2345–8.

    Article  PubMed  CAS  Google Scholar 

  64. O’Brien KD. Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more). Arterioscler Thromb Vasc Biol. 2006;26:1721–8.

    Article  PubMed  CAS  Google Scholar 

  65. d’Uscio LV, Smith LA, Katusic ZS. Differential effects of enos uncoupling on conduit and small arteries in gtp-cyclohydrolase i-deficient hph-1 mice. Am J Physiol Heart Circ Physiol. 2011;301:H2227–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Sato J, Nair K, Hiddinga J, Eberhardt NL, Fitzpatrick LA, Katusic ZS, O’Brien T. Enos gene transfer to vascular smooth muscle cells inhibits cell proliferation via upregulation of p27 and p21 and not apoptosis. Cardiovasc Res. 2000;47:697–706.

    Article  PubMed  CAS  Google Scholar 

  67. Shah V, Cao S, Hendrickson H, Yao J, Katusic ZS. Regulation of hepatic enos by caveolin and calmodulin after bile duct ligation in rats. Am J Physiol Gastrointest Liver Physiol. 2001;280:G1209–16.

    PubMed  CAS  Google Scholar 

  68. Tsutsui M, Chen AF, O’Brien T, Crotty TB, Katusic ZS. Adventitial expression of recombinant enos gene restores no production in arteries without endothelium. Arterioscler Thromb Vasc Biol. 1998;18:1231–41.

    Article  PubMed  CAS  Google Scholar 

  69. Tsutsui M, Onoue H, Iida Y, Smith L, O’Brien T, Katusic ZS. Effects of recombinant enos gene expression on reactivity of small cerebral arteries. Am J Physiol Heart Circ Physiol. 2000;278:H420–7.

    PubMed  CAS  Google Scholar 

  70. Rajamannan NM. Mechanisms of aortic valve calcification: the ldl-density-radius theory a translation from cell signaling to physiology. Am J Physiol Heart Circ Physiol. 2010;298(1):H5–15.

    Google Scholar 

  71. Antonini-Canterin F, Moura LM, Enache R, Leiballi E, Pavan D, Piazza R, Popescu BA, Ginghina C, Nicolosi GL, Rajamannan NM. Effect of hydroxymethylglutaryl coenzyme-a reductase inhibitors on the long-term progression of rheumatic mitral valve disease. Circulation. 2010;121(19):2130–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini M. Rajamannan MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Rajamannan, N.M., Johnson, C.M. (2014). Calcific Aortic Valve Disease: The Role of the Stem Cell Niche. In: Rajamannan, N. (eds) Molecular Biology of Valvular Heart Disease. Springer, London. https://doi.org/10.1007/978-1-4471-6350-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6350-3_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6349-7

  • Online ISBN: 978-1-4471-6350-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics