Slow Wave Activity as Substrate of Homeostatic Regulation

  • Péter Halász
  • Róbert Bódizs


During the last 15–20 years, a new knowledge accumulated about NREM slow wave oscillations that have become the key issue of homeostatic regulation. A frequency-based classification of slow waves has been developed, differentiating between 0.1–1- and 1–4-Hz groups. The cortical <1-Hz slow activity during the so-called up states (surface-positive half wave), even ripple-like (50–200 Hz) fast activity, and down state (surface-negative half wave), an interruption of synaptic and neural activity, have been described. The alternation of these two microstates ensures a unique double working mode for the cortex, providing continuity for the contact and information processing with the environment during the up states even in deep sleep and providing a separation for trophotropic functions for further cognitive demands during the down states.

With progressive development of neuroimaging, source modeling studies on sleep slow waves by new neuroimaging tools have confirmed that the cortical areas are differentially involved in slow wave production and showed that sleep slow waves can be locally – mainly frontally – regulated. They are traveling along an anterior-posterior axis largely mediated by the so-called cingulate highway. Studies in this field emphasized that those areas with maximal involvement in slow waves’ production also show considerable overlap with the default network, paradoxically implicated in monitoring the external environment, and can be altered by sleep deprivation.

Ontogenetic studies revealed that the delta oscillation associated with rapid spindling is the agent of plastic changes of the cortex. Reactive (input-dependent) delta activity seems to be an essential element of plastic changes as early as during the neonatal development. Before the fetal brain might receive elaborated sensory inputs from the external word, spontaneous fetal movements provide sensory stimulation and drive delta-brush oscillation, contributing to the formation of cortical body maps.

The spectral power of sleep slow wave activity and the steepness of the slopes of sleep slow waves were shown to correlate positively with the gray matter volume of several cortical areas in children and adolescents between 8 and 19 years of age. When the production of cortical synapses is more efficient than their elimination (from birth until the prepubertal age), slow wave activity is high and increasing; while in adulthood, when the elimination of synapses exceeds their production, the amount of sleep slow wave activity decreases.

Discussing phylogenetic relations of slow wave activity during different vigilance states and state-dependent reactions to sensory inputs, we try to interpret some paradoxical observations on reptiles. We are proposing that the reason why reptiles are in a continuous NREM sleep like condition during behavioral waking state is the lack or underdevelopment of their cholinergic arousal system. Therefore, sensory stimulation elicits K-complex-like slow wave responses. In the waking state, reptiles apparently have sleep EEG and sleep-like EEG activity during behavioral activation. Our proposal incorporates an explanation for the lack of long-term homeostatic sleep regulation in reptiles, having at the same time short-term homeostatic slow wave supplementation in response to sensory stimulation.


Slow oscillation Delta activity Infraslow oscillation Up states Down states Neuroimaging Ontogenesis of sleep Brain development Phylogenesis of sleep Reptilian wakefulness 


  1. Achermann P, Borbély AA. Low-frequency (<1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience. 1997;81(1):213–22.PubMedCrossRefGoogle Scholar
  2. Albrecht D, Royl G, Kaneoke Y. Very slow oscillatory activities in lateral geniculate neurons of freely moving and anesthetized rats. Neurosci Res. 1998;32(3):209–20.PubMedCrossRefGoogle Scholar
  3. Amzica F, Steriade M. Cellular substrates and laminar profile of sleep K-complex. Neuroscience. 1998;82(3):671–86.PubMedCrossRefGoogle Scholar
  4. Anderson C, Horne JA. Prefrontal cortex: links between low frequency delta EEG in sleep and neuropsychological performance in healthy, older people. Psychophysiology. 2003;40(3):349–57.PubMedCrossRefGoogle Scholar
  5. Arnolds DE, Aitink JW, Boeyinga P, Lopes da Silva FH. Hippocampal EEG in dog, cat and man (author’s transl). Rev Electroencephalogr Neurophysiol Clin. 1979;9(4):326–32.PubMedCrossRefGoogle Scholar
  6. Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science. 1953;118(3062):273–4.PubMedCrossRefGoogle Scholar
  7. Bersagliere A, Achermann P. Slow oscillations in human non-rapid eye movement sleep electroencephalogram: effects of increased sleep pressure. J Sleep Res. 2010;19(1 Pt 2):228–37.PubMedCrossRefGoogle Scholar
  8. Blumberg MS. An allometric analysis of the frequency of hippocampal theta: the significance of brain metabolic rate. Brain Behav Evol. 1989;34(6):351–6.PubMedCrossRefGoogle Scholar
  9. Bódizs R, Kántor S, Szabó G, Szűcs A, Erőss L, Halász P. Rhythmic hippocampal slow oscillation characterizes REM sleep in humans. Hippocampus. 2001;11:747–53.PubMedCrossRefGoogle Scholar
  10. Bódizs R, Békésy M, Szűcs A, Barsi P, Halász P. Sleep-dependent hippocampal slow activity correlates with waking memory performance in humans. Neurobiol Learn Mem. 2002;78(2):441–57.PubMedCrossRefGoogle Scholar
  11. Borbély AA, Baumann F, Brandeis D, Strauch I, Lehmann D. Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol. 1981;51(5):483–95.PubMedCrossRefGoogle Scholar
  12. Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P, Selbie S, Belenky G, Herscovitch P. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain. 1997;120(Pt 7):1173–97.PubMedCrossRefGoogle Scholar
  13. Buchmann A, Kurth S, Ringli M, Geiger A, Jenni OG, Huber R. Anatomical markers of sleep slow wave activity derived from structural magnetic resonance images. J Sleep Res. 2011;20(4):506–13.PubMedCrossRefGoogle Scholar
  14. Bullock TH, Basar E. Comparison of ongoing compound field potentials in the brains of invertebrates and vertebrates. Brain Res. 1988;472(1):57–75.PubMedGoogle Scholar
  15. Bullock, TH and Achimowicz JZ. A comparative survey of oscillatory brain activity, especially gamma-band rhythms. In: Symposium on “oscillatory event related brain dynamics”, Tecklenburg/Münsterland, 1993.Google Scholar
  16. Cirelli C, Huber R, Gopalakrishnan A, Southard TL, Tononi G. Locus ceruleus control of slow-wave homeostasis. J Neurosci. 2005;25(18):4503–11.PubMedCrossRefGoogle Scholar
  17. Clemens Z, Weiss B, Szucs A, Eross L, Rásonyi G, Halász P. Phase coupling between rhythmic slow activity and gamma characterizes mesiotemporal rapid-eye-movement sleep in humans. Neuroscience. 2009;163(1):388–96.PubMedCrossRefGoogle Scholar
  18. Colonnese MT, Khazipov R. “Slow activity transients” in infant rat visual cortex: a spreading synchronous oscillation patterned by retinal waves. J Neurosci. 2010;30(12):4325–37.PubMedCrossRefGoogle Scholar
  19. Csercsa R, Dombovári B, Fabó D, Wittner L, Eross L, Entz L, Sólyom A, Rásonyi G, Szucs A, Kelemen A, Jakus R, Juhos V, Grand L, Magony A, Halász P, Freund TF, Maglóczky Z, Cash SS, Papp L, Karmos G, Halgren E, Ulbert I. Laminar analysis of slow wave activity in humans. Brain. 2010;133(9):2814–29.PubMedCrossRefGoogle Scholar
  20. Czisch M, Wetter TC, Kaufmann C, Pollmächer T, Holsboer F, Auer DP. Altered processing of acoustic stimuli during sleep: reduced auditory activation and visual deactivation detected by a combined fMRI/EEG study. Neuroimage. 2002;16(1):251–8.PubMedCrossRefGoogle Scholar
  21. Czisch M, Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Pollmächer T, Auer DP. Functional MRI during sleep: BOLD signal decreases and their electrophysiological correlates. Eur J Neurosci. 2004;20(2):566–74.PubMedCrossRefGoogle Scholar
  22. Czisch M, Wehrle R, Stiegler A, Peters H, Andrade K, Holsboer F, Sämann PG. Acoustic oddball during NREM sleep: a combined EEG/fMRI study. PLoS One. 2009;4(8):e6749.PubMedCrossRefGoogle Scholar
  23. Czopf J, Karmos G, Gaszner P, Kelényi L. A vizuális kiváltott válasz változása terápiás atropin coma alatt. Ideggyogy Sz. 1977;30:81–9.Google Scholar
  24. Dang-Vu TT, Schabus M, Desseilles M, Albouy G, Boly M, Darsaud A, Gais S, Rauchs G, Sterpenich V, Vandewalle G, Carrier J, Moonen G, Balteau E, Degueldre C, Luxen A, Phillips C, Maquet P. Spontaneous neural activity during human slow wave sleep. Proc Natl Acad Sci USA. 2008;105(39):15160–5.PubMedCrossRefGoogle Scholar
  25. De Vera L, González J, Rial RV. Reptilian waking EEG: slow waves, spindles and evoked potentials. Electroencephalogr Clin Neurophysiol. 1994;90(4):298–303.PubMedCrossRefGoogle Scholar
  26. Depootere H, Granger P, Leonardon J, Terzano MG. Evaluation of cyclic alternating pattern in rats by automatic analysis of sleep amplitude variations. Effect of zolpidem. In: Terzano MG, Halász P, Declerck AC, editors. Phasic events and dynamic organization of sleep. New York: Raven Press; 1991. p. 17–33.Google Scholar
  27. Domínguez L, Morona R, Joven A, González A, López JM. Immunohistochemical localization of orexins (hypocretins) in the brain of reptiles and its relation to monoaminergic systems. J Chem Neuroanat. 2010;39(1):20–34.PubMedCrossRefGoogle Scholar
  28. Dringenberg HC, Vanderwolf CH. Involvement of direct and indirect pathways in electrocorticographic activation. Neurosci Biobehav Rev. 1998;22(2):243–57.PubMedCrossRefGoogle Scholar
  29. Ehlers CL, Foote SL. Ultradian periodicities in EEG and behavior in the squirrel monkey (Saimiri sciureus). Am J Primatol. 1984;7:381–9.CrossRefGoogle Scholar
  30. Feinberg I, Thode Jr HC, Chugani HT, March JD. Gamma distribution model describes maturational curves for delta wave amplitude, cortical metabolic rate and synaptic density. J Theor Biol. 1990;142(2):149–61.PubMedCrossRefGoogle Scholar
  31. Fischgold H, Mathis P. Obnubilations, comas et stupeurs. Etudes electroenceph. Paris: Masson et Cie; 1959.Google Scholar
  32. Gaztelu JM, García-Austt E, Bullock TH. Electrocorticograms of hippocampal and dorsal cortex of two reptiles: comparison with possible mammalian homologs. Brain Behav Evol. 1991;37(3):144–60.PubMedCrossRefGoogle Scholar
  33. Grastyan E, Karmos G. A study of a possible “dreaming” mechanism in the cat. Acta Physiol Acad Sci Hung. 1961;20:41–50.PubMedGoogle Scholar
  34. Halász P. K-complex, a reactive EEG graphoelement of NREM sleep: an old chap in a new garment. Sleep Med Rev. 2005;9(5):391–412.PubMedCrossRefGoogle Scholar
  35. Halász P. The role of the non-specific sensory activation in sleep regulation and in the pathomechanism of generalized epilepsy with generalized spike-wave discharge. Doctoral thesis, The Hungarian Academy of Sciences, Budapest; 1982.Google Scholar
  36. Hanlon EC, Vyazovskiy VV, Faraguna U, Tononi G, Cirelli C. Synaptic potentiation and sleep need: clues from molecular and electrophysiological studies. Curr Top Med Chem. 2011;11(19):2472–82.PubMedGoogle Scholar
  37. Hilakivi I, Mäkelä J, Leppävuori A, Putkonen PT. Effects of two adrenergic beta-receptor blockers on the sleep cycle of the cat. Med Biol. 1978;56(3):138–43.PubMedGoogle Scholar
  38. Hilakivi I, Kovala T, Leppävuori A, Shvaloff A. Effects of serotonin and noradrenaline uptake blockers on wakefulness and sleep in cats. Pharmacol Toxicol. 1987;60(3):161–6.PubMedCrossRefGoogle Scholar
  39. Hofle N, Paus T, Reutens D, Fiset P, Gotman J, Evans AC, Jones BE. Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J Neurosci. 1997;17(12):4800–8.PubMedGoogle Scholar
  40. Huesa G, van den Pol AN, Finger TE. Differential distribution of hypocretin (orexin) and melanin-concentrating hormone in the goldfish brain. J Comp Neurol. 2005;488(4):476–91.PubMedCrossRefGoogle Scholar
  41. Hughes SW, Lorincz ML, Parri HR, Crunelli V. Infraslow (<0.1 Hz) oscillations in thalamic relay nuclei basic mechanisms and significance to health and disease states. Prog Brain Res. 2011;193:145–62.PubMedCrossRefGoogle Scholar
  42. Hunsaker 2nd D, Lansing RW. Electroencephalographic studies of reptiles. J Exp Zool. 1962;149:21–32.PubMedCrossRefGoogle Scholar
  43. Jahnke K, von Wegner F, Morzelewski A, Borisov S, Maischein M, Steinmetz H, Laufs H. To wake or not to wake? The two-sided nature of the human K-complex. Neuroimage. 2012;59(2):1631–8.PubMedCrossRefGoogle Scholar
  44. Jones BE. From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci. 2005;26(11):578–86.PubMedCrossRefGoogle Scholar
  45. Jouvet M, Michel F, Courjon J. On a stage of rapid cerebral electrical activity in the course of physiological sleep. C R Seances Soc Biol Fil. 1959;153:1024–8.PubMedGoogle Scholar
  46. Kaufmann C, Wehrle R, Wetter TC, Holsboer F, Auer DP, Pollmächer T, Czisch M. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain. 2006;129(Pt 3):655–67.PubMedCrossRefGoogle Scholar
  47. Khazipov R, Sirota A, Leinekugel X, Holmes GL, Ben-Ari Y, Buzsáki G. Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature. 2004;432(7018):758–61.PubMedCrossRefGoogle Scholar
  48. Kleinlogel H. Sleep in various species of laboratory animals. Neuropsychobiology. 1983;9(2–3):174–7.PubMedCrossRefGoogle Scholar
  49. Kurth S, Jenni OG, Riedner BA, Tononi G, Carskadon MA, Huber R. Characteristics of sleep slow waves in children and adolescents. Sleep. 2010a;33(4):475–80.PubMedGoogle Scholar
  50. Kurth S, Ringli M, Geiger A, LeBourgeois M, Jenni OG, Huber R. Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study. J Neurosci. 2010b;30(40):13211–9.PubMedCrossRefGoogle Scholar
  51. Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science. 2008;320(5872):110–3.PubMedCrossRefGoogle Scholar
  52. Lambertz M, Langhorst P. Simultaneous changes of rhythmic organization in brainstem neurons, respiration, cardiovascular system and EEG between 0.05 Hz and 0.5 Hz. J Auton Nerv Syst. 1998;68(1–2):58–77.PubMedCrossRefGoogle Scholar
  53. Lee J, Kim D, Shin HS. Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking alpha1G-subunit of T-type calcium channels. Proc Natl Acad Sci USA. 2004;101(52):18195–9.PubMedCrossRefGoogle Scholar
  54. Loomis AL, Harvey EN, Hobart G. Further observations on the potential rhythms of the cerebral cortex during sleep. Science. 1935;82(2122):198–200.PubMedCrossRefGoogle Scholar
  55. Loomis AL, Harvey EN, Hobart GA. Distribution of disturbance-patterns in the human electroencephalogram, with special reference to sleep. J Neurophysiol. 1938;1(5):413–30.Google Scholar
  56. Lörincz ML, Geall F, Bao Y, Crunelli V, Hughes SW. ATP-dependent infra-slow (<0.1 Hz) ­oscillations in thalamic networks. PLoS One. 2009;4(2):e4447.PubMedCrossRefGoogle Scholar
  57. Magnin M, Bastuji H, Garcia-Larrea L, Mauguière F. Human thalamic medial pulvinar nucleus is not activated during paradoxical sleep. Cereb Cortex. 2004;14(8):858–62.PubMedCrossRefGoogle Scholar
  58. Maquet P. Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res. 2000;9(3):207–31.PubMedCrossRefGoogle Scholar
  59. Maquet P, Phillips C. Functional brain imaging of human sleep. J Sleep Res. 1998;7 Suppl 1:42–7.PubMedCrossRefGoogle Scholar
  60. Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444(7119):610–3.PubMedCrossRefGoogle Scholar
  61. Marzano C, Ferrara M, Curcio G, De Gennaro L. The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep. J Sleep Res. 2010;19(2):260–8.PubMedCrossRefGoogle Scholar
  62. Massimini M, Rosanova M, Mariotti M. EEG slow (approximately 1 Hz) waves are associated with nonstationarity of thalamo-cortical sensory processing in the sleeping human. J Neurophysiol. 2003;89(3):1205–13.PubMedCrossRefGoogle Scholar
  63. McKeown MJ, Humphries C, Achermann P, Borbély AA, Sejnowski TJ. A new method for detecting state changes in the EEG: exploratory application to sleep data. J Sleep Res. 1998;7:48–56.PubMedCrossRefGoogle Scholar
  64. Miyamoto H, Katagiri H, Hensch T. Experience-dependent slow-wave sleep development. Nat Neurosci. 2003;6(6):553–4.PubMedCrossRefGoogle Scholar
  65. Mölle M, Marshall L, Gais S, Born J. Learning increases human electroencephalographic coherence during subsequent slow sleep oscillations. Proc Natl Acad Sci USA. 2004;101(38):13963–8.PubMedCrossRefGoogle Scholar
  66. Monto S, Palva S, Voipio J, Palva JM. Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. J Neurosci. 2008;28(33):8268–72.PubMedCrossRefGoogle Scholar
  67. Moroni F, Nobili L, De Carli F, Massimini M, Francione S, Marzano C, Proserpio P, Cipolli C, De Gennaro L, Ferrara M. Slow EEG rhythms and inter-hemispheric synchronization across sleep and wakefulness in the human hippocampus. Neuroimage. 2011;60(1):497–504.PubMedCrossRefGoogle Scholar
  68. Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1(4):455–73.PubMedGoogle Scholar
  69. Murphy M, Riedner BA, Huber R, Massimini M, Ferrarelli F, Tononi G. Source modeling sleep slow waves. Proc Natl Acad Sci USA. 2009;106(5):1608–13.PubMedCrossRefGoogle Scholar
  70. Nicolau MC, Akaârir M, Gamundí A, González J, Rial RV. Why we sleep: the evolutionary pathway to the mammalian sleep. Prog Neurobiol. 2000;62(4):379–406.PubMedCrossRefGoogle Scholar
  71. Nofzinger EA, Mintun MA, Wiseman M, Kupfer DJ, Moore RY. Forebrain activation in REM sleep: an FDG PET study. Brain Res. 1997;770(1–2):192–201.PubMedCrossRefGoogle Scholar
  72. Novak P, Lepicovska V. Slow modulation of EEG. Neuroreport. 1992;3(2):189–92.PubMedCrossRefGoogle Scholar
  73. Panula P. Hypocretin/orexin in fish physiology with emphasis on zebrafish. Acta Physiol (Oxf). 2010;198(3):381–6.CrossRefGoogle Scholar
  74. Pappenheimer JR, Koski G, Fencl V, Karnovsky ML, Krueger J. Extraction of sleep-promoting factor S from cerebrospinal fluid and from brains of sleep-deprived animals. J Neurophysiol. 1975;38(6):1299–311.PubMedGoogle Scholar
  75. Penttonen M, Nurminen N, Mietinnen R, Sirviö J, Henze DA, Csicsvári J, Buzsáki G. Ultra-slow oscillation (0.025 Hz) triggers hippocampal afterdischarges in Wistar rats. Neuroscience. 1999;94:735–43.PubMedCrossRefGoogle Scholar
  76. Pereda E, Gamundi A, Rial R, González J. Non-linear behaviour of human EEG: fractal exponent versus correlation dimension in awake and sleep stages. Neurosci Lett. 1998;250(2):91–4.PubMedCrossRefGoogle Scholar
  77. Picchioni D, Horovitz SG, Fukunaga M, Carr WS, Meltzer JA, Balkin TJ, Duyn JH, Braun AR. Infraslow EEG oscillations organize large-scale cortical-subcortical interactions during sleep: a combined EEG/fMRI study. Brain Res. 2011;1374:63–72.PubMedCrossRefGoogle Scholar
  78. Prechtl JC, von der Emde G, Wolfart J, Karamürsel S, Akoev GN, Andrianov YN, Bullock TH. Sensory processing in the pallium of a mormyrid fish. J Neurosci. 1998;18(18):7381–93.PubMedGoogle Scholar
  79. Rattenborg NC. Evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: a hypothesis. Brain Res Bull. 2006;69(1):20–9.PubMedCrossRefGoogle Scholar
  80. Rial RV, Akaârir M, Gamundí A, Nicolau C, Garau C, Aparicio S, Tejada S, Gené L, González J, De Vera LM, Coenen AM, Barceló P, Esteban S. Evolution of wakefulness, sleep and hibernation: from reptiles to mammals. Neurosci Biobehav Rev. 2010;34(8):1144–60.PubMedCrossRefGoogle Scholar
  81. Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, Tononi G. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep. 2007;30(12):1643–57.PubMedGoogle Scholar
  82. Riedner BA, Hulse BK, Murphy MJ, Ferrarelli F, Tononi G. Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves. Prog Brain Res. 2011;193:201–18.PubMedCrossRefGoogle Scholar
  83. Ringli M, Huber R. Developmental aspects of sleep slow waves: linking sleep, brain maturation and behavior.Prog Brain Res. 2011;193:63–82.PubMedCrossRefGoogle Scholar
  84. Robinson TE. Hippocampal rhythmic slow activity (RSA; theta): a critical analysis of selected studies and discussion of possible species-differences. Brain Res. 1980;203(1):69–101.PubMedGoogle Scholar
  85. Ruskin DN, Bergstrom DA, Kaneoke Y, Patel BN, Twery MJ, Walters JR. Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor activation and anesthesia. J Neurophysiol. 1999;81(5):2046–55.PubMedGoogle Scholar
  86. Schabus M, Dang-Vu TT, Albouy G, Balteau E, Boly M, Carrier J, Darsaud A, Degueldre C, Desseilles M, Gais S, Phillips C, Rauchs G, Schnakers C, Sterpenich V, Vandewalle G, Luxen A, Maquet P. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci USA. 2007;104(32):13164–9.PubMedCrossRefGoogle Scholar
  87. Schoenenberger GA, Maier PF, Tobler JH, Monnier M. A naturally occurring delta-EEG enhancing nonapeptide in rabbits. X. Final isolation, characterization and activity test. Pflugers Arch. 1977;369(2):99–109.PubMedCrossRefGoogle Scholar
  88. Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience. 2006;137(4):1087–106.PubMedCrossRefGoogle Scholar
  89. Steriade M, Contreras D, Curró Dossi R, Nuñez A. The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci. 1993a;13(8):3284–99.PubMedGoogle Scholar
  90. Steriade M, Nuñez A, Amzica F. Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci. 1993b;13(8):3266–83.PubMedGoogle Scholar
  91. Steriade M, Nuñez A, Amzica F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993c;13(8):3252–65.PubMedGoogle Scholar
  92. Stern JM, Caporro M, Haneef Z, Yeh HJ, Buttinelli C, Lenartowicz A, Mumford JA, Parvizi J, Poldrack R. A functional imaging of sleep vertex sharp transients. Clin Neurophysiol. 2011;122(7):1382–6.PubMedCrossRefGoogle Scholar
  93. Tinguely G, Finelli LA, Landolt HP, Borbély AA, Achermann P. Functional EEG topography in sleep and waking: state-dependent and state-independent features. Neuroimage. 2006;32(1):283–92.PubMedCrossRefGoogle Scholar
  94. Tobler I, Borbély AA. The effect of 3-h and 6-h sleep deprivation on sleep and EEG spectra of the rat. Behav Brain Res. 1990;36(1–2):73–8.PubMedCrossRefGoogle Scholar
  95. Trachsel L, Dijk DJ, Brunner DP, Klene C, Borbély AA. Effect of zopiclone and midazolam on sleep and EEG spectra in a phase-advanced sleep schedule. Neuropsychopharmacology. 1990;3(1):11–8.PubMedGoogle Scholar
  96. Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol. 1969;26(4):407–18.PubMedCrossRefGoogle Scholar
  97. Vanhatalo S, Tallgren P, Andersson S, Sainio K, Voipio J, Kaila K. DC-EEG discloses prominent, very slow activity patterns during sleep in preterm infants. Clin Neurophysiol. 2002;113(11):1822–5.PubMedCrossRefGoogle Scholar
  98. Vanhatalo S, Palva JM, Holmes MD, Miller JW, Voipio J, Kaila K. Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proc Natl Acad Sci USA. 2004;101(14):5053–7.PubMedCrossRefGoogle Scholar
  99. Walter WG. The location of cerebral tumours by electro-encephalography. Lancet. 1936;228(5893):305–8.CrossRefGoogle Scholar
  100. Webb WB, Agnew Jr HW. Stage 4 sleep: influence of time course variables. Science. 1971;174(4016):1354–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Péter Halász
    • 1
  • Róbert Bódizs
    • 2
  1. 1.Institute of Experimental Medicine and Institute of NeuroscienceBudapestHungary
  2. 2.Semmelweis University Institute of Behavioral ScienceBudapestHungary

Personalised recommendations