Skip to main content

Bio-inspired Clustering and Data Diffusion in Machine Social Networks

  • Chapter
  • First Online:
Computational Social Networks

Abstract

At the end of 2010, we are at the effective end of the second phase of research in the field of Social Networks (SNs) and aspects such as Human-to-Human (H2H) interactions have pretty much had their day due to advances in Machine-to-Machine (M2M) interactions. This chapter will provide a useful insight into the differences between those two types of SNs: the human SNs (hSNs) based on H2H interactions and the machine SNs (mSNs) based on M2M interactions. During the last two decades rapid improvements in computing and communication technologies have enabled a proliferation of hSNs and we believe they will induce the formation of mSNs in the next decades. To this end, we will show how to carry out successful SN analyses (e.g. clustering and data diffusion) by connecting ethological approaches to social behaviour in animals (e.g. the study of firefly synchronization) and M2M interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The SN was established in 2002. It is active today (http://www.friendster.com) and has over 115 million registered users, of which over 90% come from Asian countries (in Western countries it is no longer popular).

  2. 2.

    The SN was established in 2003. This SN (http://www.myspace.com) gained the first million users in 2004, while in early 2007 the number of its users reached the 100 million mark. The period between 2005 and 2007 was a time when MySpace was the most popular SNS in the world, after which Facebook assumed primacy. Today, the number of MySpace users is around the 130 million mark (70% of users are Americans). Since 2005 MySpace has been owned by News Corporation (the second largest media company in the world), which bought it for 580 million US dollars.

  3. 3.

    The SN was established in 2003. It is active today (http://www.linkedin.com) and has over 100 million users from over 200 countries representing today’s most important professional SN in which more than 150 different industries are represented, and whose members are leading people of all Fortune 500 global companies.

  4. 4.

    The SN was established in 2004 and today is the most popular SNS (http://www.facebook.com/) with over 700 million users worldwide (more than 10% of the entire world population) and is constantly growing. The value of the Facebook brand was estimated at a staggering 50 billion US dollars. General statistics about Facebook are available at http://www.facebook.com/press/info.php?statistics and http://www.socialbakers.com

  5. 5.

    The SN was established in 2005. The name Bebo is an acronym for “Blog early, blog often.” The target users of this SN (http://www.bebo.com/) are primarily residents of Ireland, UK, Australia, New Zealand and US, and their total number is about 40 million. Since 2008 Bebo has been owned by AOL (one of the world’s major Internet and media companies), who bought it for 850 million US dollars.

  6. 6.

    The SN was established in 2006. It is based on the microblogging principle – users can post and read short messages (text messages to a maximum of 140 characters long) called tweets. The similarities with the concept of the SMS (Short Message Service) in mobile telecommunications is responsible for Twitter being called the “SMS of the Internet.” This SN (http://www.twitter.com) recorded staggering user growth rates (greater than 1,000% per year), but the problem with Twitter is the fact that it has a large number of inactive users (compared to other leading SNSs – it is estimated that only 40% of Twitter users are actually active, while this number for Facebook and MySpace is around 70%). The current total number of Twitter users has exceeded 200 million, while the dizzying growth rate has began to calm down. There is, on average, 150 million tweets sent per day.

  7. 7.

    Smart vacuum cleaners – http://bestvacuumcleanerreviews.co.uk/

  8. 8.

    Smart washing machines – http://weblogs.asp.net/ssivakumar/archive/2004/09/21/232359.aspx

  9. 9.

    Smart fridges – http://www.guardian.co.uk/environment/2008/dec/02/energy-efficient-dynamic-demand-fridges

  10. 10.

    Smart heating and cooling subsystems – http://smartheat.com.au/

  11. 11.

    Smart cities – http://www.smart-cities.eu/

References

  1. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)

    Article  Google Scholar 

  2. Arcelus, A., Goubran, R., Sveistrup, H., Bilodeau, M., Knoefel, F.: Context-aware smart home monitoring through pressure measurement sequences. In: IEEE International Workshop on Medical Measurements and Applications, Ottawa, pp. 32–37 (2010)

    Google Scholar 

  3. Arenas, A., Díaz-Guilera, A., Pérez-Vicente, C.J.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96(11), 114102–114106 (2006)

    Article  Google Scholar 

  4. Attenborough, D.: Talking to strangers. In: The Trials of Life: A Natural History of Behaviour, vol. 10. Collins/BBC Books, London (1990)

    Google Scholar 

  5. Bass, F.: A new product growth model for consumer durables. Manag. Sci. 13(5), 215–227 (1969)

    Article  MathSciNet  Google Scholar 

  6. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web: Scientific American. Munn, New York. http://www.scientificamerican.com/article.cfm?id=thesemantic-web (2001)

  7. Boccaletti, S., Ivanchenko, M., Latora, V., Pluchino, A., Rapisarda, A.: Detecting complex network modularity by dynamical clustering. Phys. Rev. E 75(4), 045102–045106 (2007)

    Article  Google Scholar 

  8. Bojic, I., Podobnik, V., Kusek, M., Jezic, G.: Collaborative Urban Computing: Serendipitous Cooperation between Users in an Urban Environment. Cybernetics and Systems 42(5), 287–307 (2011)

    Article  Google Scholar 

  9. Bojic, I., Podobnik, V., Petric, A.: Swarm-oriented mobile services: Step towards green communication. Expert systems with applications. 39(9), 7874–7886 (2012)

    Article  Google Scholar 

  10. Borgatti, S., Mehra, A., Brass, D., Labianca, G.: Network analysis in the social sciences. Science 323(5916), 892–895 (2009)

    Article  Google Scholar 

  11. Boyd, D., Ellison, N.: Social network sites: definition, history, and scholarship. J Comput. Med. Commun. 13(1), 210–230 (2008)

    Article  Google Scholar 

  12. Brinkmeier, M., Schank, T.: Network statistics. In: Network Analysis: Methodological Foundations, vol. 3418, pp. 293–317. Springer, Berlin/New York (2005)

    Google Scholar 

  13. Brown, R.: Social Psychology. Free Press, New York (1965)

    Google Scholar 

  14. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)

    Google Scholar 

  15. Chi, E.: The social Web: research and opportunities. IEEE Comput. 41(9), 88–91 (2008)

    Article  MathSciNet  Google Scholar 

  16. Cook, D.J., Youngblood, M., Edwin O., Heierman, I., Gopalratnam, K., Rao, S., Litvin, A., Khawaja, F.: Mavhome: An agent-based smart home. In: IEEE International Conference on Pervasive Computing and Communications, Fort Worth, pp. 521–524 (2003)

    Google Scholar 

  17. Donath, J., Boyd, D.: Public displays of connection. BT Technol. J. 22(4), 71–82 (2004)

    Article  Google Scholar 

  18. Ernst, U., Pawelzik, K., Geisel, T.: Synchronization induced by temporal delays in pulse-coupled oscillators. Phys. Rev. Lett. 74(9), 1570–1573 (1995)

    Article  Google Scholar 

  19. Ernst, U., Pawelzik, K., Geisel, T.: Delay-induced multistable synchronization of biological oscillators. Phys. Rev. E 57, 2150–2162 (1998)

    Article  MathSciNet  Google Scholar 

  20. Fischer, C.: To Dwell Among Friends: Personal Networks in Town and City. University of Chicago Press, Chicago (1982)

    Google Scholar 

  21. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  22. Freeman, L.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1979)

    Article  Google Scholar 

  23. Gantz, J.: The Embedded Internet: Methodology and Findings. Intel Development Center. http://download.intel.com/embedded/15billion/applications/pdf/322202.pdf (1965)

  24. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 3(12), 211–223 (2001)

    Article  Google Scholar 

  26. Golding, R.A., Long, D.D.E.: Modeling replica divergence in a weak-consistency protocol for global-scale distributed data bases. Technical report, University of California, Santa Cruz (1993)

    Google Scholar 

  27. Granovetter, M.: The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380 (1973)

    Article  Google Scholar 

  28. Grossman, L.: Person of the Year 2010. In Time (15 December 2010): http://www.time.com/time/specials/packages/article/0,28804,2036683_2037183_2037185,00.html

  29. Gruhl, D., Guha, R., Nowell, D.L., Tomkins, A.: Information diffusion through blogspace. In: 13th International Conference on World Wide Web, New York, pp. 491–501 (2004)

    Google Scholar 

  30. Guan, S., Wang, X., Lai, Y.C., Lai, C.H.: Transition to global synchronization in clustered networks. Phys. Rev. E 77(4), 046211–046216 (2008)

    Article  Google Scholar 

  31. Hogan, B., Fielding, N., Lee, R., Blank, G.: Analyzing social networks via the Internet. In: The SAGE Handbook of Online Research Methods, pp. 141–160. SAGE, Los Angeles/London (2008)

    Google Scholar 

  32. Izhikevich, E.M.: Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory. IEEE Trans. Neural Netw. 10(3), 508–526 (1998)

    Article  Google Scholar 

  33. Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  34. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, pp. 137–146 (2003)

    Google Scholar 

  35. Klinglmayr, J., Bettstetter, C., Timme, M.: Globally stable synchronization by inhibitory pulse coupling. In: 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies, Bratislava, pp. 1–4 (2009)

    Google Scholar 

  36. Kuramoto, Y.: Collective synchronization of pulse-coupled oscillators and excitable units. Phys. D Nonlinear Phenom. 50(1), 15–30 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Phys. Rev. E 80(5), 056117 (2009)

    Article  Google Scholar 

  38. Li, D., Leyva, I., Almendral, J.A., Sendiña Nadal, I., Buldú, J.M., Havlin, S., Boccaletti, S.: Synchronization interfaces and overlapping communities in complex networks. Phys. Rev. Lett. 101(16), 168701–168705 (2008)

    Article  Google Scholar 

  39. Lucarelli, D., Wang, I.J.: Decentralized synchronization protocols with nearest neighbor communication. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, pp. 62–68 (2004)

    Google Scholar 

  40. Lundelius, J., Lynch, N.A.: An upper and lower bound for clock synchronization. Inf. Control 62(2/3), 190–204 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  41. McGraw, P.N., Menzinger, M.: Clustering and the synchronization of oscillator networks. Phys. Rev. E 72(1), 015101–015105 (2005)

    Article  MathSciNet  Google Scholar 

  42. Milgram, S.: The small world problem. Psychol. today 1(1), 61–67 (1967)

    MathSciNet  Google Scholar 

  43. Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50(6), 1645–1662 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mizruchi, M.S.: The Corporate Board Network. Sage, Thousand Oaks (1982)

    Google Scholar 

  45. Murata, T.: Detecting communities in social networks. In: Handbook of Social Network Technologies and Applications, pp. 269–280. Springer, New York (2010)

    Google Scholar 

  46. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113–026128 (2004)

    Article  Google Scholar 

  48. Nohria, N.: Networks and Organizations: Structure, Form and Action. Harvard Business School Press, Boston (1994)

    Google Scholar 

  49. Pluchino, A., Latora, V., Rapisarda A.: Compromise and synchronization in opinion dynamics. Eur. Phys. J. B 50(1), 169–176 (2006)

    Article  Google Scholar 

  50. Podobnik, V., Bojic, I., Vrdoljak, L., Kusek, M.: Achieving collaborative service provisioning for mobile network users: the colldown example. Infocommun. J. 65(3), 46–52 (2010)

    Google Scholar 

  51. Podobnik, V., Galetic, V., Trzec, K., Jezic, G.: Group-oriented service provisioning in next-generation network. In: Srinivasan, D., Jain, L. (eds.) Innovations in Multi-Agent Systems and Applications - 1. Studies in Computational Intelligence, vol. 310, pp. 277–298. Springer, Berlin/ Heidelberg (2010)

    Google Scholar 

  52. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Gr. Algorithm Appl. 10(2), 284–293 (2004)

    MathSciNet  Google Scholar 

  53. Reid, M., Gray, C.: Online social networks, virtual communities, enterprises, and information professionals part 1. Past and present. Searcher 15(7), 32–51 (2007)

    Google Scholar 

  54. Rhouma, M.B.H., Frigui, H.: Self-organization of pulse-coupled oscillators with application to clustering. IEEE Trans. Pattern Anal. Mach. Intel. 23(2), 180–195 (2001)

    Article  Google Scholar 

  55. Rogers, E.: Diffusion of Innovations. Free Press, New York (1995)

    Google Scholar 

  56. Salaff, J., Fong, E., Wong, S.: Using social networks to exit Hong Kong. In: Networks in the Global Village: Life in Contemporary Communities, pp. 299–329. Westview, Boulder (1999)

    Google Scholar 

  57. Taniguchi, Y., Wakamiya, N., Murata, M.: A Distributed and self-organizing data gathering scheme in wireless sensor networks. In: 6th Asia-Pacific Symposium on Information and Telecommunication Technologies, pp. 299–304. Yangon (2005)

    Google Scholar 

  58. Tilly, C.: Big structures, large processes, huge comparisons. Sage, New York (1984)

    Google Scholar 

  59. Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry 32(4), 425–443 (1969)

    Article  Google Scholar 

  60. Tyrrell, A., Auer, G., Bettstetter, C.: Emergent slot synchronization in wireless networks. IEEE Trans. Mobile Comput. 9(5), 719–732 (2010)

    Article  Google Scholar 

  61. Wallerstein, I.: The Modern World System: Capitalist Agriculture and the Origins of the European World Economy in the Sixteenth Century. Academic Press, New York (1997)

    Google Scholar 

  62. Wan, Y., Kumar, V., Bukhari, A.: Will the overseas expansion of facebook succeed? Internet Comput. IEEE 12(3), 69–73 (2008)

    Article  Google Scholar 

  63. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications (Structural Analysis in the Social Sciences). Cambridge University Press, New York (1994)

    Book  Google Scholar 

  64. Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. U. S. A. 99(9), 5766–5771 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  65. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  66. Weaver, A., Morrison, B.: Social networking. Computer 41(2), 97–100 (2008)

    Article  Google Scholar 

  67. Wellman, B.: The community question: the intimate networks of East Yorkers. Am. J Sociol. 84(5), 1201–1231 (1979)

    Article  Google Scholar 

  68. Wellman, B.: Computer networks as social networks. Science 293(5537), 2031–2034 (2001)

    Article  Google Scholar 

  69. Wellman, B., Wellman, B.: Domestic affairs and network relations. J Soc. Personal Relatsh. 9(3), 385–239 (1992)

    Article  Google Scholar 

  70. Werner-Allen, G., Tewari, G., Patel, A., Welsh, M., Nagpal, R.: Firefly-inspired sensor network synchronicity with realistic radio effects. In: Proceedings of the 3rd international conference on Embedded networked sensor systems, San Diego, pp. 142–153 (2005)

    Google Scholar 

  71. Westland, J.: Critical mass and willingness to pay for social networks. Electron. Commerce Res. Appl. 9(1), 6–19 (2010)

    Article  Google Scholar 

  72. Wibergh, J.: (Ericsson News: Johan Wibergh on 50 billion connected devices. In: Ericsson Business Innovation Forum. Shanghai: http://www.ericsson.com/news/100603_wibergh_50b_244218601_c (2010)

  73. Wokoma, I., Liabotis, I., Prnjat, O., Sacks, L., Marshall, I.: A weakly coupled adaptive gossip protocol for application level active networks. In: Third IEEE International Workshop on Policies for Distributed Systems and Networks, Monterey. pp. 244–247 (2002)

    Google Scholar 

  74. Wu, F., Huberman, B.A.: Finding communities in linear time: a physics approach. Eur. Phys. J. B – Condens. Matt. Complex Syst. 38(2), 331–338 (2004)

    Google Scholar 

  75. Young, H.P.: Innovation diffusion in heterogeneous populations: contagion, social influence, and social learning. Am. Econ. Rev. 99(5), 1899–1924 (2009)

    Article  Google Scholar 

  76. Zeichick, A.: A-twitter over twitter. NetWorker 13, 5–7 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the research project “Content Delivery and Mobility of Users and Services in New Generation Networks” (036-0362027-1639), funded by the Ministry of Science, Education and Sports of the Republic of Croatia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iva Bojic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Bojic, I., Lipic, T., Podobnik, V. (2012). Bio-inspired Clustering and Data Diffusion in Machine Social Networks. In: Abraham, A. (eds) Computational Social Networks. Springer, London. https://doi.org/10.1007/978-1-4471-4054-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4054-2_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4053-5

  • Online ISBN: 978-1-4471-4054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics