Skip to main content

“Diffuse Bronchiectasis of Genetic Origin”

  • Chapter
  • First Online:
Orphan Lung Diseases

Abstract

Bronchiectasis is a significant cause of morbidity and mortality. It is the end point of a pathological process. We should be aiming to identify at risk patients before they develop bronchiectasis and treat them aggressively to prevent disease progression. With improved social conditions and health care, infective causes of bronchiectasis have diminished in the developed world, and genetic causes are therefore relatively more common. The underlying cause of bronchiectasis should always be sought and redressed, for example as discoveries of innate immune defects are made. ‘Idiopathic bronchiectasis’ should be a diagnosis of last resort. This chapter reviews potential genetic causes of bronchiectasis and suggests a plan for investigating the underlying aetiology. Management is discussed but it is important to note that suggested treatment strategies are often extrapolated from evidence in bronchiectasis associated with cystic fibrosis; this is likely to be inappropriate in diseases of differing pathophysiology. Rare lung diseases need to be moved out of the ‘orphan’ category by instigating multi-centre, multi-national clinical trials and producing disease specific evidence based guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nikolaizik WH, Warner JO. Aetiology of chronic suppurative lung disease. Arch Dis Child. 1994;70(2):141–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Wynn-Williams N. Bronchiectasis: a study centred on Bedford and its environs. Br Med J. 1953;1(4821):1194–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Shum DK, Chan SC, Ip MS. Neutrophil-mediated degradation of lung proteoglycans: stimulation by tumor necrosis factor-alpha in sputum of patients with bronchiectasis. Am J Respir Crit Care Med. 2000;162(5):1925–31.

    CAS  PubMed  Google Scholar 

  4. Gaga M, et al. Increases in CD4+ T lymphocytes, macrophages, neutrophils and interleukin 8 positive cells in the airways of patients with bronchiectasis. Thorax. 1998;53(8):685–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Cole P. The damaging role of bacteria in chronic lung infection. J Antimicrob Chemother. 1997;40 Suppl A:5–10.

    CAS  PubMed  Google Scholar 

  6. Tsao PC, Lin CY. Clinical spectrum of bronchiectasis in children. Acta Paediatr Taiwan. 2002;43(5):271–5.

    PubMed  Google Scholar 

  7. Liebow AA, Hales MR, Lindskog GE. Enlargement of the bronchial arteries, and their anastomoses with the pulmonary arteries in bronchiectasis. Am J Pathol. 1949;25(2):211–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Williams H. Bronchiectasis in children: its multiple clinical and pathological features. Med J Aust. 1959;46(2):385–90.

    PubMed  Google Scholar 

  9. Edwards EA, Asher MI, Byrnes CA. Paediatric bronchiectasis in the twenty-first century: experience of a tertiary children’s hospital in New Zealand. J Paediatr Child Health. 2003;39(2):111–7.

    CAS  PubMed  Google Scholar 

  10. Eastham KM, et al. The need to redefine non-cystic fibrosis bronchiectasis in childhood. Thorax. 2004;59(4):324–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Weycker D, et al. Prevalence and economic burden of bronchiectasis. Clin Pulmon Med. 2005;12(4):205–9.

    Google Scholar 

  12. Field CE. Bronchiectasis. Third report on a follow-up study of medical and surgical cases from childhood. Arch Dis Child. 1969;44(237):551–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Clark NS. Bronchiectasis in childhood. Br Med J. 1963;1(5323):80–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Twiss J, et al. New Zealand national incidence of bronchiectasis “too high” for a developed country. Arch Dis Child. 2005;90(7):737–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Chang AB, et al. Bronchiectasis in indigenous children in remote Australian communities. Med J Aust. 2002;177(4):200–4.

    PubMed  Google Scholar 

  16. Singleton R, et al. Bronchiectasis in Alaska Native children: causes and clinical courses. Pediatr Pulmonol. 2000;29(3):182–7.

    CAS  PubMed  Google Scholar 

  17. Waite DA, et al. Polynesian bronchiectasis. Eur J Respir Dis Suppl. 1983;127:31–6.

    CAS  PubMed  Google Scholar 

  18. Griese EU, et al. Allele and genotype frequencies of polymorphic cytochromes P4502D6, 2C19 and 2E1 in aborigines from western Australia. Pharmacogenetics. 2001;11(1):69–76.

    CAS  PubMed  Google Scholar 

  19. O’Callaghan C, Chetcuti P, Moya E. High prevalence of primary ciliary dyskinesia in a British Asian population. Arch Dis Child. 2010;95(1):51–2.

    PubMed  Google Scholar 

  20. Morrissey BM, Harper RW. Bronchiectasis: sex and gender considerations. Clin Chest Med. 2004;25(2):361–72.

    PubMed  Google Scholar 

  21. Lucas JSA, et al. Primary ciliary dyskinesia. Eur Resp Monogr. 2011;54:201–17.

    Google Scholar 

  22. Kuehni CE, et al. Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur Respir J. 2010;36(6):1248–58.

    CAS  PubMed  Google Scholar 

  23. Stick SM, et al. Bronchiectasis in infants and preschool children diagnosed with cystic fibrosis after newborn screening. J Pediatr. 2009;155(5):623–8.e1.

    PubMed  Google Scholar 

  24. Wood RE, Boat TF, Doershuk CF. Cystic fibrosis. Am Rev Respir Dis. 1976;113(6):833–78.

    CAS  PubMed  Google Scholar 

  25. Rodman DM, et al. Late diagnosis defines a unique population of long-term survivors of cystic fibrosis. Am J Respir Crit Care Med. 2005;171(6):621–6.

    PubMed  Google Scholar 

  26. Bombieri C, et al. Recommendations for the classification of diseases as CFTR-related disorders. J Cyst Fibros. 2011;10 Suppl 2:S86–102.

    CAS  PubMed  Google Scholar 

  27. Barbato A, et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur Respir J. 2009;34(6):1264–76.

    CAS  PubMed  Google Scholar 

  28. Lucas JS, et al. Static respiratory cilia associated with mutations in Dnahc11/DNAH11: a mouse model of PCD. Hum Mutat. 2012;33(3):495–503.

    CAS  PubMed  Google Scholar 

  29. Schwabe GC, et al. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum Mutat. 2008;29(2):289–98.

    CAS  PubMed  Google Scholar 

  30. Kennedy MP, et al. High-resolution CT of patients with primary ciliary dyskinesia. AJR Am J Roentgenol. 2007;188(5):1232–8.

    PubMed  Google Scholar 

  31. Coren ME, et al. Primary ciliary dyskinesia: age at diagnosis and symptom history. Acta Paediatr. 2002;91(6):667–9.

    CAS  PubMed  Google Scholar 

  32. Leigh MW, Zariwala MA, Knowles MR. Primary ciliary dyskinesia: improving the diagnostic approach. Curr Opin Pediatr. 2009;21(3):320–5.

    PubMed Central  PubMed  Google Scholar 

  33. Walker WT, et al. Nitric oxide in primary ciliary dyskinesia. Eur Respir J. 2012;40(4):1024–32.

    CAS  PubMed  Google Scholar 

  34. Zariwala MA, Omran H, Ferkol TW. The emerging genetics of primary ciliary dyskinesia. Proc Am Thorac Soc. 2011;8(5):430–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Pennarun G, et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet. 1999;65(6):1508–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Knowles MR, et al. Primary ciliary dyskinesia: recent advances in diagnostics, genetics, and characterization of clinical disease. Am J Respir Crit Care Med. 2013;188(8):913–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Olbrich H, et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet. 2002;30(2):143–4.

    CAS  PubMed  Google Scholar 

  38. Knowles MR, et al. Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax. 2012;67(5):433–41.

    PubMed Central  PubMed  Google Scholar 

  39. Bartoloni L, et al. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci U S A. 2002;99(16):10282–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Loges NT, et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet. 2008;83(5):547–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Duriez B, et al. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc Natl Acad Sci U S A. 2007;104(9):3336–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Mazor M, et al. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am J Hum Genet. 2011;88(5):599–607.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Omran H, et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature. 2008;456(7222):611–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Loges NT, et al. Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am J Hum Genet. 2009;85(6):883–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Mitchison HM, et al. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat Genet. 2012;44(4):381–9, S1–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Horani A, et al. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLoS One. 2013;8(3):e59436.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Kott E, et al. Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am J Hum Genet. 2012;91(5):958–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Panizzi JR, et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet. 2012;44(6):714–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Knowles MR, et al. Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am J Hum Genet. 2013;92(1):99–106.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Onoufriadis A, et al. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet. 2013;92(1):88–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Wu DH, Singaraja RR. Loss-of-function mutations in CCDC114 cause primary ciliary dyskinesia. Clin Genet. 2013;83(6):526–7.

    CAS  PubMed  Google Scholar 

  52. Horani A, et al. Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am J Hum Genet. 2012;91(4):685–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Horani A, et al. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS One. 2013;8(8):e72299.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Moore DJ, et al. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am J Hum Genet. 2013;93(2):346–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Zariwala MA, et al. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am J Hum Genet. 2013;93(2):336–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Castleman VH, et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet. 2009;84(2):197–209.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Kott E, et al. Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial-spoke defects. Am J Hum Genet. 2013;93(3):561–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Olbrich H, et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet. 2012;91(4):672–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Merveille AC, et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet. 2011;43(1):72–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Antony D, Becker-Heck A, Zariwala MA, Schmidts M, Onoufriadis A, Forouhan M, Wilson R, Taylor-Cox T, Dewar A, Jackson C, Goggin P, Loges NT, Olbrich H, Jaspers M, Jorissen M, Leigh MW, Wolf WE, Daniels ML, Noone PG, Ferkol TW, Sagel SD, Rosenfeld M, Rutman A, Dixit A, O’Callaghan C, Lucas JS, Hogg C, Scambler PJ, Emes RD, Uk10k, Chung EM, Shoemark A, Knowles MR, Omran H, Mitchison HM. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganisation and absent inner dynein arms. Hum Mutat. 2013;34(3):462–72.

    Google Scholar 

  61. Wirschell M, et al. The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet. 2013;45(3):262–8.

    CAS  PubMed  Google Scholar 

  62. Budny B, et al. A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum Genet. 2006;120(2):171–8.

    CAS  PubMed  Google Scholar 

  63. Hong DH, et al. A single, abbreviated RPGR-ORF15 variant reconstitutes RPGR function in vivo. Invest Ophthalmol Vis Sci. 2005;46(2):435–41.

    PubMed  Google Scholar 

  64. Hendry WF, A’Hern RP, Cole PJ. Was Young’s syndrome caused by exposure to mercury in childhood? BMJ. 1993;307(6919):1579–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Greenstone MA, et al. Ciliary function in Young’s syndrome. Thorax. 1988;43(2):153–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. de Iongh R, Ing A, Rutland J. Mucociliary function, ciliary ultrastructure, and ciliary orientation in Young’s syndrome. Thorax. 1992;47(3):184–7.

    PubMed Central  PubMed  Google Scholar 

  67. Le Lannou D, et al. Obstructive azoospermia with agenesis of vas deferens or with bronchiectasia (Young’s syndrome): a genetic approach. Hum Reprod. 1995;10(2):338–41.

    PubMed  Google Scholar 

  68. Wellesley D, Schwarz M. Cystic fibrosis and Young’s syndrome. Lancet. 1998;352(9133):1065–6.

    Google Scholar 

  69. Arya AK, et al. Does Young’s syndrome exist? J Laryngol Otol. 2009;123(5):477–81.

    CAS  PubMed  Google Scholar 

  70. Bonneau D, et al. Usher syndrome type I associated with bronchiectasis and immotile nasal cilia in two brothers. J Med Genet. 1993;30(3):253–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Iannaccone A, et al. Clinical and immunohistochemical evidence for an X linked retinitis pigmentosa syndrome with recurrent infections and hearing loss in association with an RPGR mutation. J Med Genet. 2003;40(11):e118.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet. 2007;369(9569):1287–301.

    PubMed  Google Scholar 

  73. Grantham JJ. Lillian Jean Kaplan International Prize for advancement in the understanding of polycystic kidney disease. Understanding polycystic kidney disease: a systems biology approach. Kidney Int. 2003;64(4):1157–62.

    PubMed  Google Scholar 

  74. Driscoll JA, et al. Autosomal dominant polycystic kidney disease is associated with an increased prevalence of radiographic bronchiectasis. Chest. 2008;133(5):1181–8.

    PubMed  Google Scholar 

  75. Parr DG, et al. Prevalence and impact of bronchiectasis in alpha1-antitrypsin deficiency. Am J Respir Crit Care Med. 2007;176(12):1215–21.

    PubMed  Google Scholar 

  76. Cuvelier A, et al. Distribution of alpha(1)-antitrypsin alleles in patients with bronchiectasis. Chest. 2000;117(2):415–9.

    CAS  PubMed  Google Scholar 

  77. Shoemark A, Ozerovitch L, Wilson R. Aetiology in adult patients with bronchiectasis. Respir Med. 2007;101(6):1163–70.

    CAS  PubMed  Google Scholar 

  78. Pasteur MC, Bilton D, Hill AT. British Thoracic Society guideline for non-CF bronchiectasis. Thorax. 2010;65 Suppl 1:i1–58.

    PubMed  Google Scholar 

  79. Woroniecka M, Ballow M. Office evaluation of children with recurrent infection. Pediatr Clin North Am. 2000;47(6):1211–24.

    CAS  PubMed  Google Scholar 

  80. Chapel H, et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112(2):277–86.

    CAS  PubMed  Google Scholar 

  81. Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol. 1999;92(1):34–48.

    CAS  PubMed  Google Scholar 

  82. Kralovicova J, et al. Fine-scale mapping at IGAD1 and genome-wide genetic linkage analysis implicate HLA-DQ/DR as a major susceptibility locus in selective IgA deficiency and common variable immunodeficiency. J Immunol. 2003;170(5):2765–75.

    CAS  PubMed  Google Scholar 

  83. Mullighan CG, et al. TNF and lymphotoxin-alpha polymorphisms associated with common variable immunodeficiency: role in the pathogenesis of granulomatous disease. J Immunol. 1997;159(12):6236–41.

    CAS  PubMed  Google Scholar 

  84. Grimbacher B, et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol. 2003;4(3):261–8.

    CAS  PubMed  Google Scholar 

  85. van Zelm MC, et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med. 2006;354(18):1901–12.

    PubMed  Google Scholar 

  86. Castigli E, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37(8):829–34.

    CAS  PubMed  Google Scholar 

  87. Thickett KM, et al. Common variable immune deficiency: respiratory manifestations, pulmonary function and high-resolution CT scan findings. QJM. 2002;95(10):655–62.

    CAS  PubMed  Google Scholar 

  88. Bruton OC. Agammaglobulinemia. Pediatrics. 1952;9(6):722–8.

    CAS  PubMed  Google Scholar 

  89. Tsukada S, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72(2):279–90.

    CAS  PubMed  Google Scholar 

  90. Furr PM, Taylor-Robinson D, Webster AD. Mycoplasmas and ureaplasmas in patients with hypogammaglobulinaemia and their role in arthritis: microbiological observations over twenty years. Ann Rheum Dis. 1994;53(3):183–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Conley M. Autosomal recessive agammaglobulinemia. In: Ochs HS, Smith CIE, Puck JM, editors. Primary immunodeficiency diseases: a molecular and genetic approach. New York: Oxford University Press; 2007. p. 304–12.

    Google Scholar 

  92. Winkelstein JA, et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine. 2006;85(4):193–202.

    PubMed  Google Scholar 

  93. Howard V, et al. The health status and quality of life of adults with X-linked agammaglobulinemia. Clin Immunol. 2006;118(2–3):201–8.

    CAS  PubMed  Google Scholar 

  94. Plebani A, et al. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol. 2002;104(3):221–30.

    CAS  PubMed  Google Scholar 

  95. Bjorkander J, et al. Impaired lung function in patients with IgA deficiency and low levels of IgG2 or IgG3. N Engl J Med. 1985;313(12):720–4.

    CAS  PubMed  Google Scholar 

  96. Roos DK, Kuijpers TW, Curnutte JT. Chronic granulomatous disease. In: Ochs HDS, Smith CIE, Puck JM, editors. Primary immunodeficiency disease: a molecular and genetic approach. New York: Oxford University Press; 2007. p. 525–49.

    Google Scholar 

  97. van den Berg JM, et al. Chronic granulomatous disease: the European experience. PLoS One. 2009;4(4):e5234.

    PubMed Central  PubMed  Google Scholar 

  98. Dale DC, et al. Severe chronic neutropenia: treatment and follow-up of patients in the Severe Chronic Neutropenia International Registry. Am J Hematol. 2003;72(2):82–93.

    PubMed  Google Scholar 

  99. Horwitz MS, et al. Neutrophil elastase in cyclic and severe congenital neutropenia. Blood. 2007;109(5):1817–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Klein C, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet. 2007;39(1):86–92.

    CAS  PubMed  Google Scholar 

  101. Bohn G, et al. A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med. 2007;13(1):38–45.

    CAS  PubMed  Google Scholar 

  102. Grimbacher B, et al. Hyper-IgE syndrome with recurrent infections–an autosomal dominant multisystem disorder. N Engl J Med. 1999;340(9):692–702.

    CAS  PubMed  Google Scholar 

  103. Levy DE, Loomis CA. STAT3 signaling and the hyper-IgE syndrome. N Engl J Med. 2007;357(16):1655–8.

    CAS  PubMed  Google Scholar 

  104. Boocock GR, et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet. 2003;33(1):97–101.

    CAS  PubMed  Google Scholar 

  105. Kilpatrick DC, et al. Stable bronchiectasis is associated with low serum L-ficolin concentrations. Clin Respir J. 2009;3(1):29–33.

    CAS  PubMed  Google Scholar 

  106. Fevang B, et al. Common variable immunodeficiency and the complement system; low mannose-binding lectin levels are associated with bronchiectasis. Clin Exp Immunol. 2005;142(3):576–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Garred P, et al. Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosis. J Clin Invest. 1999;104(4):431–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Pan-Hammarstrom Q, et al. Disparate roles of ATR and ATM in immunoglobulin class switch recombination and somatic hypermutation. J Exp Med. 2006;203(1):99–110.

    PubMed Central  PubMed  Google Scholar 

  109. Canny GJ, et al. A pulmonary infiltrate in a child with ataxia telangiectasia. Ann Allergy. 1988;61(6):422–3, 466–8.

    CAS  PubMed  Google Scholar 

  110. Lefton-Greif MA, et al. Oropharyngeal dysphagia and aspiration in patients with ataxia-telangiectasia. J Pediatr. 2000;136(2):225–31.

    CAS  PubMed  Google Scholar 

  111. Katz HL. Thoracic manifestation in Marfan’s syndrome (arachnodactyly). Q Bull Sea View Hosp. 1952;13(2):95–106.

    CAS  PubMed  Google Scholar 

  112. Dwyer Jr EM, Troncale F. Spontaneous pneumothorax and pulmonary disease in the Marfan syndrome. Report of two cases and review of the literature. Ann Intern Med. 1965;62:1285–92.

    PubMed  Google Scholar 

  113. Teoh PC. Bronchiectasis and spontaneous pneumothorax in Marfan’s syndrome. Chest. 1977;72(5):672–3.

    CAS  PubMed  Google Scholar 

  114. Williams H, Campbell P. Generalized bronchiectasis associated with deficiency of cartilage in the bronchial tree. Arch Dis Child. 1960;35:182–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Williams HE, Landau LI, Phelan PD. Generalized bronchiectasis due to extensive deficiency of bronchial cartilage. Arch Dis Child. 1972;47(253):423–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Jones VF, et al. Familial congenital bronchiectasis: Williams-Campbell syndrome. Pediatr Pulmonol. 1993;16(4):263–7.

    CAS  PubMed  Google Scholar 

  117. George J, Jain R, Tariq SM. CT bronchoscopy in the diagnosis of Williams-Campbell syndrome. Respirology. 2006;11(1):117–9.

    PubMed  Google Scholar 

  118. Mounier-Kuhn P. Dilatation de la trachee; constatations radiographiques et bronchoscopiques. Lyon Med. 1932;150:106–9.

    Google Scholar 

  119. Johnston RF, Green RA. Tracheobronchiomegaly. Report of five cases and demonstration of familial occurrence. Am Rev Respir Dis. 1965;91:35–50.

    CAS  PubMed  Google Scholar 

  120. Doyle AJ. Demonstration on computed tomography of tracheomalacia in tracheobronchomegaly (Mounier-Kuhn syndrome). Br J Radiol. 1989;62(734):176–7.

    CAS  PubMed  Google Scholar 

  121. Van Schoor J, Joos G, Pauwels R. Tracheobronchomegaly – the Mounier-Kuhn syndrome: report of two cases and review of the literature. Eur Respir J. 1991;4(10):1303–6.

    PubMed  Google Scholar 

  122. Ayres JG, et al. Abnormalities of the lungs and thoracic cage in the Ehlers-Danlos syndrome. Thorax. 1985;40(4):300–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Grunebaum M, et al. Tracheomegaly in Brachmann-de Lange syndrome. Pediatr Radiol. 1996;26(3):184–7.

    CAS  PubMed  Google Scholar 

  124. Barakat J, et al. Treatment of tracheobronchomegaly with an Ultraflex prosthesis. A case report. Rev Pneumol Clin. 2002;58(1):19–22.

    CAS  PubMed  Google Scholar 

  125. Cohen M, Sahn SA. Bronchiectasis in systemic diseases. Chest. 1999;116(4):1063–74.

    CAS  PubMed  Google Scholar 

  126. Boyton RJ, et al. IFN gamma and CXCR-1 gene polymorphisms in idiopathic bronchiectasis. Tissue Antigens. 2006;68(4):325–30.

    CAS  PubMed  Google Scholar 

  127. Hershko A, et al. Yellow nail syndrome. Postgrad Med J. 1997;73(862):466–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Samman PD, White WF. The “yellow nail” syndrome. Br J Dermatol. 1964;76:153–7.

    CAS  PubMed  Google Scholar 

  129. Varney VA, et al. Rhinitis, sinusitis and the yellow nail syndrome: a review of symptoms and response to treatment in 17 patients. Clin Otolaryngol Allied Sci. 1994;19(3):237–40.

    CAS  PubMed  Google Scholar 

  130. Battaglia A, et al. Pleural effusion and recurrent broncho-pneumonia with lymphedema, yellow nails and protein-losing enteropathy. Eur J Respir Dis. 1985;66(1):65–9.

    CAS  PubMed  Google Scholar 

  131. Bowers D. Unequal breasts, yellow nails, bronchiectasis and lymphedema. Can Med Assoc J. 1969;100(9):437–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Cebeci F, Celebi M, Onsun N. Nonclassical yellow nail syndrome in six-year-old girl: a case report. Cases J. 2009;2:165.

    PubMed Central  PubMed  Google Scholar 

  133. Bull RH, Fenton DA, Mortimer PS. Lymphatic function in the yellow nail syndrome. Br J Dermatol. 1996;134(2):307–12.

    CAS  PubMed  Google Scholar 

  134. Bokszczanin A, Levinson AI. Coexistent yellow nail syndrome and selective antibody deficiency. Ann Allergy Asthma Immunol. 2003;91(5):496–500.

    PubMed  Google Scholar 

  135. Finegold DN, et al. Truncating mutations in FOXC2 cause multiple lymphedema syndromes. Hum Mol Genet. 2001;10(11):1185–9.

    CAS  PubMed  Google Scholar 

  136. Noone PG, et al. Lung disease associated with the IVS8 5 T allele of the CFTR gene. Am J Respir Crit Care Med. 2000;162(5):1919–24.

    CAS  PubMed  Google Scholar 

  137. Rosen MJ. Chronic cough due to tuberculosis and other infections: ACCP evidence-based clinical practice guidelines. Chest. 2006;129(1 Suppl):197S–201.

    PubMed  Google Scholar 

  138. Dankert-Roelse JE, te Meerman GJ. Long term prognosis of patients with cystic fibrosis in relation to early detection by neonatal screening and treatment in a cystic fibrosis centre. Thorax. 1995;50(7):712–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Waters DL, et al. Clinical outcomes of newborn screening for cystic fibrosis. Arch Dis Child Fetal Neonatal Ed. 1999;80(1):F1–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Sims EJ, et al. Neonatal screening for cystic fibrosis is beneficial even in the context of modern treatment. J Pediatr. 2005;147(3 Suppl):S42–6.

    PubMed  Google Scholar 

  141. Corkey CW, Levison H, Turner JA. The immotile cilia syndrome. A longitudinal survey. Am Rev Respir Dis. 1981;124(5):544–8.

    CAS  PubMed  Google Scholar 

  142. Ellerman A, Bisgaard H. Longitudinal study of lung function in a cohort of primary ciliary dyskinesia. Eur Respir J. 1997;10(10):2376–9.

    CAS  PubMed  Google Scholar 

  143. Hellinckx J, Demedts M, De Boeck K. Primary ciliary dyskinesia: evolution of pulmonary function. Eur J Pediatr. 1998;157(5):422–6.

    CAS  PubMed  Google Scholar 

  144. Aurora P, et al. Lung clearance index at 4 years predicts subsequent lung function in children with cystic fibrosis. Am J Respir Crit Care Med. 2011;183(6):752–8.

    PubMed  Google Scholar 

  145. Green K, et al. Ventilation inhomogeneity in children with primary ciliary dyskinesia. Thorax. 2012;67(1):49–53.

    PubMed  Google Scholar 

  146. Hansell DM. Bronchiectasis. Radiol Clin North Am. 1998;36(1):107–28.

    CAS  PubMed  Google Scholar 

  147. Fall A, Spratt J, Mitchell L. Plain chest X-Ray vs high resolution CT (HRCT) in non-CF bronchiectasis (NCFB) in children. Thorax. 2001;56 Suppl 3:26.

    Google Scholar 

  148. Naidich DP, et al. Computed tomography of bronchiectasis. J Comput Assist Tomogr. 1982;6(3):437–44.

    CAS  PubMed  Google Scholar 

  149. Hansell DM, et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008;246(3):697–722.

    PubMed  Google Scholar 

  150. Kang EY, Miller RR, Muller NL. Bronchiectasis: comparison of preoperative thin-section CT and pathologic findings in resected specimens. Radiology. 1995;195(3):649–54.

    CAS  PubMed  Google Scholar 

  151. Coleman LT, et al. Bronchiectasis in children. J Thorac Imaging. 1995;10(4):268–79.

    CAS  PubMed  Google Scholar 

  152. Fall A, Spencer D. Paediatric bronchiectasis in Europe: what now and where next? Paediatr Respir Rev. 2006;7(4):268–74.

    PubMed  Google Scholar 

  153. Cystic Fibrosis Trust: Standards for the clinical care of children and adults with cystic fibrosis in the UK. Second edition, 2011 accessible from: http://cysticfibrosis.org.uk/about-cf/publications/consensus-documents

  154. Bush A, et al. Primary ciliary dyskinesia: current state of the art. Arch Dis Child. 2007;92(12):1136–40.

    PubMed Central  PubMed  Google Scholar 

  155. Conley ME, Notarangelo LD, Etzioni A. Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol. 1999;93(3):190–7.

    CAS  PubMed  Google Scholar 

  156. Loeys BL, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47(7):476–85.

    CAS  PubMed  Google Scholar 

  157. Li AM, et al. Non-CF bronchiectasis: does knowing the aetiology lead to changes in management? Eur Respir J. 2005;26(1):8–14.

    PubMed  Google Scholar 

  158. Wilson CB, et al. Validation of the St. George’s Respiratory Questionnaire in bronchiectasis. Am J Respir Crit Care Med. 1997;156(2 Pt 1):536–41.

    CAS  PubMed  Google Scholar 

  159. Konstan MW, Stern RC, Doershuk CF. Efficacy of the Flutter device for airway mucus clearance in patients with cystic fibrosis. J Pediatr. 1994;124(5 Pt 1):689–93.

    CAS  PubMed  Google Scholar 

  160. Patterson JE, et al. Airway clearance in bronchiectasis: a randomized crossover trial of active cycle of breathing techniques versus Acapella. Respiration. 2005;72(3):239–42.

    PubMed  Google Scholar 

  161. Schoni MH. Autogenic drainage: a modern approach to physiotherapy in cystic fibrosis. J R Soc Med. 1989;82 Suppl 16:32–7.

    PubMed Central  PubMed  Google Scholar 

  162. Kellett F, Redfern J, Niven RM. Evaluation of nebulised hypertonic saline (7 %) as an adjunct to physiotherapy in patients with stable bronchiectasis. Respir Med. 2005;99(1):27–31.

    CAS  PubMed  Google Scholar 

  163. Crockett AJ, et al. Mucolytics for bronchiectasis. Cochrane Database Syst Rev. 2001;(1):CD001289.

    Google Scholar 

  164. ten Berge M, et al. DNase treatment in primary ciliary dyskinesia – assessment by nocturnal pulse oximetry. Pediatr Pulmonol. 1999;27(1):59–61.

    PubMed  Google Scholar 

  165. Desai M, Weller PH, Spencer DA. Clinical benefit from nebulized human recombinant DNase in Kartagener’s syndrome. Pediatr Pulmonol. 1995;20(5):307–8.

    CAS  PubMed  Google Scholar 

  166. Devalia JL, et al. The effects of salmeterol and salbutamol on ciliary beat frequency of cultured human bronchial epithelial cells, in vitro. Pulm Pharmacol. 1992;5(4):257–63.

    CAS  PubMed  Google Scholar 

  167. Frohock JI, Wijkstrom-Frei C, Salathe M. Effects of albuterol enantiomers on ciliary beat frequency in ovine tracheal epithelial cells. J Appl Physiol. 2002;92(6):2396–402.

    CAS  PubMed  Google Scholar 

  168. Franco F, Sheikh A, Greenstone M. Short acting beta-2 agonists for bronchiectasis. Cochrane Database Syst Rev. 2003;(3):CD003572.

    Google Scholar 

  169. Sheikh A, Nolan D, Greenstone M. Long-acting beta-2-agonists for bronchiectasis. Cochrane Database Syst Rev. 2001;(4):CD002155.

    Google Scholar 

  170. Corless JA, Warburton CJ. Leukotriene receptor antagonists for non-cystic fibrosis bronchiectasis. Cochrane Database Syst Rev. 2000;(4):CD002174.

    Google Scholar 

  171. Steele K, Greenstone M, Lasserson JA. Oral methyl-xanthines for bronchiectasis. Cochrane Database Syst Rev, 2001;(1):CD002734.

    Google Scholar 

  172. Bradley J, Moran F. Physical training for cystic fibrosis. Cochrane Database Syst Rev. 2002;(2):CD002768.

    Google Scholar 

  173. Bradley J, Moran F, Greenstone M. Physical training for bronchiectasis. Cochrane Database Syst Rev. 2002;(3):CD002166.

    Google Scholar 

  174. Smyth AR, Walters S. Prophylactic antibiotics for cystic fibrosis (Cochrane Review). In: Cochrane Library. Oxford: Update software; 2003.

    Google Scholar 

  175. Currie DC, et al. Double-blind randomized study of prolonged higher-dose oral amoxycillin in purulent bronchiectasis. Q J Med. 1990;76(280):799–816.

    CAS  PubMed  Google Scholar 

  176. Anwar GA, et al. Effects of long-term low-dose azithromycin in patients with non-CF bronchiectasis. Respir Med. 2008;102(10):1494–6.

    CAS  PubMed  Google Scholar 

  177. Gorrini M, et al. Inhibition of human neutrophil elastase by erythromycin and flurythromycin, two macrolide antibiotics. Am J Respir Cell Mol Biol. 2001;25(4):492–9.

    CAS  PubMed  Google Scholar 

  178. Prince AS. Biofilms, antimicrobial resistance, and airway infection. N Engl J Med. 2002;347(14):1110–1.

    PubMed  Google Scholar 

  179. Davies G, Wilson R. Prophylactic antibiotic treatment of bronchiectasis with azithromycin. Thorax. 2004;59(6):540–1.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Cymbala AA, et al. The disease-modifying effects of twice-weekly oral azithromycin in patients with bronchiectasis. Treat Respir Med. 2005;4(2):117–22.

    CAS  PubMed  Google Scholar 

  181. Rayner CF, et al. Efficacy and safety of long-term ciprofloxacin in the management of severe bronchiectasis. J Antimicrob Chemother. 1994;34(1):149–56.

    CAS  PubMed  Google Scholar 

  182. Steinfort DP, Steinfort C. Effect of long-term nebulized colistin on lung function and quality of life in patients with chronic bronchial sepsis. Intern Med J. 2007;37(7):495–8.

    CAS  PubMed  Google Scholar 

  183. Barker AF, et al. Tobramycin solution for inhalation reduces sputum Pseudomonas aeruginosa density in bronchiectasis. Am J Respir Crit Care Med. 2000;162(2 Pt 1):481–5.

    CAS  PubMed  Google Scholar 

  184. Smith J, Finn A. Antimicrobial prophylaxis. Arch Dis Child. 1999;80(4):388–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Rosen MJ. Chronic cough due to bronchiectasis: ACCP evidence-based clinical practice guidelines. Chest. 2006;129(1 Suppl):122S–31.

    PubMed  Google Scholar 

  186. Evans DJ, Greenstone M. Long-term antibiotics in the management of non-CF bronchiectasis – do they improve outcome? Respir Med. 2003;97(7):851–8.

    CAS  PubMed  Google Scholar 

  187. Edwards EA, Twiss J, Byrnes CA. Treatment of paediatric non-cystic fibrosis bronchiectasis. Expert Opin Pharmacother. 2004;5(7):1471–84.

    CAS  PubMed  Google Scholar 

  188. Kapur N, et al. Inhaled steroids for bronchiectasis. Cochrane Database Syst Rev. 2009;(1):CD000996.

    Google Scholar 

  189. Tamaoki J, et al. Effect of indomethacin on bronchorrhea in patients with chronic bronchitis, diffuse panbronchiolitis, or bronchiectasis. Am Rev Respir Dis. 1992;145(3):548–52.

    CAS  PubMed  Google Scholar 

  190. Eijkhout HW, et al. The effect of two different dosages of intravenous immunoglobulin on the incidence of recurrent infections in patients with primary hypogammaglobulinemia. A randomized, double-blind, multicenter crossover trial. Ann Intern Med. 2001;135(3):165–74.

    CAS  PubMed  Google Scholar 

  191. Nicolay U, et al. Health-related quality of life and treatment satisfaction in North American patients with primary immunodeficiency diseases receiving subcutaneous IgG self-infusions at home. J Clin Immunol. 2006;26(1):65–72.

    CAS  PubMed  Google Scholar 

  192. Roifman CM, Levison H, Gelfand EW. High-dose versus low-dose intravenous immunoglobulin in hypogammaglobulinaemia and chronic lung disease. Lancet. 1987;1(8541):1075–7.

    CAS  PubMed  Google Scholar 

  193. Gallin JI, et al. Itraconazole to prevent fungal infections in chronic granulomatous disease. N Engl J Med. 2003;348(24):2416–22.

    CAS  PubMed  Google Scholar 

  194. Sechler JM, et al. Recombinant human interferon-gamma reconstitutes defective phagocyte function in patients with chronic granulomatous disease of childhood. Proc Natl Acad Sci U S A. 1988;85(13):4874–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Bonilla MA, et al. Long-term safety of treatment with recombinant human granulocyte colony-stimulating factor (r-metHuG-CSF) in patients with severe congenital neutropenias. Br J Haematol. 1994;88(4):723–30.

    CAS  PubMed  Google Scholar 

  196. Otgun I, et al. Surgical treatment of bronchiectasis in children. J Pediatr Surg. 2004;39(10):1532–6.

    PubMed  Google Scholar 

  197. Agasthian T, et al. Surgical management of bronchiectasis. Ann Thorac Surg. 1996;62(4):976–8; discussion 979–80.

    CAS  PubMed  Google Scholar 

  198. Mauchley DC, Mitchell JD. Surgery for bronchiectasis. Eur Respir Monogr. 2011;52:248–57.

    Google Scholar 

  199. Noone PG, et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med. 2004;169(4):459–67.

    PubMed  Google Scholar 

  200. Courtney JM, et al. Quality of life and inflammation in exacerbations of bronchiectasis. Chron Respir Dis. 2008;5(3):161–8.

    CAS  PubMed  Google Scholar 

  201. Loebinger MR, et al. Mortality in bronchiectasis: a long-term study assessing the factors influencing survival. Eur Respir J. 2009;34(4):843–9.

    CAS  PubMed  Google Scholar 

  202. Pai SY, et al. Stem cell transplantation for the Wiskott-Aldrich syndrome: a single-center experience confirms efficacy of matched unrelated donor transplantation. Bone Marrow Transplant. 2006;38(10):671–9.

    PubMed  Google Scholar 

  203. Seger RA, et al. Treatment of chronic granulomatous disease with myeloablative conditioning and an unmodified hemopoietic allograft: a survey of the European experience, 1985–2000. Blood. 2002;100(13):4344–50.

    CAS  PubMed  Google Scholar 

  204. Jiang H, et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther. 2006;14(3):452–5.

    CAS  PubMed  Google Scholar 

  205. Hacein-Bey-Abina S, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415–9.

    CAS  PubMed  Google Scholar 

  206. Aubert D, et al. Cytotoxic immune response blunts long-term transgene expression after efficient retroviral-mediated hepatic gene transfer in rat. Mol Ther. 2002;5(4):388–96.

    CAS  PubMed  Google Scholar 

  207. Antoine C, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet. 2003;361(9357):553–60.

    PubMed  Google Scholar 

  208. Aiuti A, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med. 2009;360(5):447–58.

    CAS  PubMed  Google Scholar 

  209. Wada T, et al. Somatic mosaicism in Wiskott–Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc Natl Acad Sci U S A. 2001;98(15):8697–702.

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Ott MG, et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med. 2006;12(4):401–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jane S. Lucas FRCPCH, FRCP, PhD or Katharine C. Pike BA, BM, BCh, MA, MRCPCH, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Lucas, J.S., Pike, K.C. (2015). “Diffuse Bronchiectasis of Genetic Origin”. In: Cottin, V., Cordier, JF., Richeldi, L. (eds) Orphan Lung Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-2401-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2401-6_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2400-9

  • Online ISBN: 978-1-4471-2401-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics