Skip to main content

Chronic Beryllium Disease and Other Interstitial Lung Diseases of Occupational Origin

  • Chapter
  • First Online:
Orphan Lung Diseases

Abstract

Clinical manifestations of interstitial lung diseases of occupational origin cover a wide spectrum and they are a moving target. They change their appearance in response to safety measures and new types of exposure. Recently recognized but long existing exposure requests new diagnostic approaches and safety measures. Thus, the incidence of well known disorders like asbestosis is reducing while newly identified exposure fields for beryllium lead to an increase of chronic beryllium disease which needs to be separated from chronic sarcoidosis, its perfect phenocopy. New techniques and new products cause new disorders like indium tin oxide-lung and flock worker’s lung disease which are hard to diagnose since pathognomonic features are missing. For timely diagnoses an intense cooperation of pulmonary and occupational specialists is mandatory. New hazardous techniques and materials like nanoparticles are introduced and widely used even with exposures of consumers without an in-depth knowledge of their toxicological features. These new developments request surveillance measures which still are in their infancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Müller-Quernheim J, Zissel G, Schopf R, Vollmer E, Schlaak M. Differentialdiagnose Berylliose/Sarkoidose bei einem Zahntechniker. Dtsch Med Wochenschr. 1996;121:1462–6.

    PubMed  Google Scholar 

  2. Müller-Quernheim J, Gaede KI, Fireman E, Zissel G. Diagnoses of chronic beryllium disease within cohorts of sarcoidosis patients. Eur Respir J. 2006;27:1190–5. PubMed PMID: 16540500.

    PubMed  Google Scholar 

  3. Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am J Respir Crit Care Med. 1999;160(2):736–55. PubMed PMID: 10430755.

    Google Scholar 

  4. Ribeiro M, Fritscher LG, Al-Musaed AM, Balter MS, Hoffstein V, Mazer BD, et al. Search for chronic beryllium disease among sarcoidosis patients in Ontario, Canada. Lung. 2011;189(3):233–41. PubMed PMID: 21400234.

    PubMed  Google Scholar 

  5. Marchand-Adam S, El Khatib A, Guillon F, Brauner MW, Lamberto C, Lepage V, et al. Short- and long-term response to corticosteroid therapy in chronic beryllium disease. Eur Respir J. 2008;32(3):687–93. PubMed PMID: 18757698.

    CAS  PubMed  Google Scholar 

  6. Eisenbud M, Wanta RC, et al. Non-occupational berylliosis. J Ind Hyg Toxicol. 1949;31(5):282–94. PubMed PMID: 18141686.

    CAS  PubMed  Google Scholar 

  7. Hardy HL, Tabershaw IR. Delayed chemical pneumonitis in workers exposed to beryllium compounds. J Ind Hyg Toxicol. 1946;28:197–211.

    CAS  PubMed  Google Scholar 

  8. Newman LS, Kreiss K. Nonoccupational beryllium disease masquerading as sarcoidosis: identification by blood lymphocyte proliferative response to beryllium. Am Rev Respir Dis. 1992;145(5):1212–4. PubMed PMID: 1586067.

    CAS  PubMed  Google Scholar 

  9. Maier LA, Martyny JW, Liang J, Rossman MD. Recent chronic beryllium disease in residents surrounding a beryllium facility. Am J Respir Crit Care Med. 2008;177(9):1012–7. PubMed PMID: 18244954.

    PubMed  Google Scholar 

  10. Kreiss K, Day GA, Schuler CR. Beryllium: a modern industrial hazard. Annu Rev Public Health. 2007;28:259–77. PubMed PMID: 17094767.

    PubMed  Google Scholar 

  11. Knishkowy B, Baker EL. Transmission of occupational disease to family contacts. Am J Ind Med. 1986;9(6):543–50. PubMed PMID: 2426943.

    CAS  PubMed  Google Scholar 

  12. Richeldi L, Sorrentino R, Saltini C. HLA-DPB 1 glutamate 69: a genetic marker of beryllium disease. Science. 1993;262:242–4.

    CAS  PubMed  Google Scholar 

  13. Maier LA, McGrath DS, Sato H, Lympany P, Welsh K, Du Bois R, et al. Influence of MHC class II in susceptibility to beryllium sensitization and chronic beryllium disease. J Immunol. 2003;171(12):6910–8. PubMed PMID: 14662898.

    CAS  PubMed  Google Scholar 

  14. Rossman MD, Stubbs J, Lee CW, Argyris E, Magira E, Monos D. Human leukocyte antigen Class II amino acid epitopes: susceptibility and progression markers for beryllium hypersensitivity. Am J Respir Crit Care Med. 2002;165(6):788–94. PubMed PMID: 11897645.

    PubMed  Google Scholar 

  15. Karkinen-Jaaskelainen M, Maatta K, Pasila M, Saxen L. Pulmonary berylliosis: report on a fatal case. Br J Dis Chest. 1982;76(3):290–7. PubMed PMID: 7126443.

    CAS  PubMed  Google Scholar 

  16. Hooper WF. Acute beryllium lung disease. N C Med J. 1981;42(8):551–3.

    CAS  PubMed  Google Scholar 

  17. Kriebel D, Sprince NL, Eisen EA, Greaves IA. Pulmonary function in beryllium workers: assessment of exposure. Br J Ind Med. 1988;45(2):83–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Cummings KJ, Stefaniak AB, Virji MA, Kreiss K. A reconsideration of acute Beryllium disease. Environ Health Perspect. 2009;117(8):1250–6. PubMed PMID: 19672405.

    PubMed Central  PubMed  Google Scholar 

  19. Newman LS, Mroz MM, Balkissoon R, Maier LA. Beryllium sensitization progresses to chronic beryllium disease: a longitudinal study of disease risk. Am J Respir Crit Care Med. 2005;171(1):54–60. PubMed PMID: 15374840.

    PubMed  Google Scholar 

  20. Bailey RL, Thomas CA, Deubner DC, Kent MS, Kreiss K, Schuler CR. Evaluation of a preventive program to reduce sensitization at a beryllium metal, oxide, and alloy production plant. J Occup Environ Med. 2010;52(5):505–12. PubMed PMID: 20431418.

    CAS  PubMed  Google Scholar 

  21. Henneberger PK, Goe SK, Miller WE, Doney B, Groce DW. Industries in the United States with airborne beryllium exposure and estimates of the number of current workers potentially exposed. J Occup Environ Hyg. 2004;1(10):648–59. PubMed PMID: 15631056.

    CAS  PubMed  Google Scholar 

  22. Fontenot AP, Kotzin BL, Comment CE, Newman LS. Expansions of T-cell subsets expressing particular T-cell receptor variable regions in chronic beryllium disease. Am J Respir Cell Mol Biol. 1998;18(4):581–9.

    CAS  PubMed  Google Scholar 

  23. Bowerman NA, Falta MT, Mack DG, Kappler JW, Fontenot AP. Mutagenesis of beryllium-specific TCRs suggests an unusual binding topology for antigen recognition. J Immunol. 2011;187(7):3694–703. PubMed PMID: 21873524.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Schuler CR, Virji MA, Deubner DC, Stanton ML, Stefaniak AB, Day GA, et al. Sensitization and chronic beryllium disease at a primary manufacturing facility, part 3: exposure-response among short-term workers. Scand J Work Environ Health. 2012;38(3):270–81. PubMed PMID: 21877099.

    CAS  PubMed  Google Scholar 

  25. Verma DK, Ritchie AC, Shaw ML. Measurement of beryllium in lung tissue of a chronic beryllium disease case and cases with sarcoidosis. Occup Med (Lond). 2003;53(3):223–7. PubMed PMID: 12724557.

    CAS  Google Scholar 

  26. Wang Z, White PS, Petrovic M, Tatum OL, Newman LS, Maier LA, et al. Differential susceptibilities to chronic beryllium disease contributed by different Glu69 HLA-DPB1 and -DPA1 alleles. J Immunol. 1999;163(3):1647–53.

    CAS  PubMed  Google Scholar 

  27. Van Dyke MV, Martyny JW, Mroz MM, Silveira LJ, Strand M, Fingerlin TE, et al. Risk of chronic beryllium disease by HLA-DPB1 E69 genotype and beryllium exposure in nuclear workers. Am J Respir Crit Care Med. 2011;183(12):1680–8. PubMed PMID: 21471109.

    PubMed Central  PubMed  Google Scholar 

  28. Newman LS. Metals that cause sarcoidosis. Semin Respir Infect. 1998;13(3):212–20.

    CAS  PubMed  Google Scholar 

  29. Newman LS, Kreiss K, King TE, Seay S, Campbell AP. Pathological and immunological alterations in early stages of beryllium disease. Re-examination of disease definition and natural history. Am Rev Respir Dis. 1989;139:1479–86.

    CAS  PubMed  Google Scholar 

  30. Meyer K. Beryllium and lung disease. Chest. 1994;106:942–6.

    CAS  PubMed  Google Scholar 

  31. Handa T, Nagai S, Kitaichi M, Chin K, Ito Y, Oga T, et al. Long-term complications and prognosis of chronic beryllium disease. Sarcoidosis Vasc Diffuse Lung Dis. 2009;26(1):24–31. PubMed PMID: 19960785.

    CAS  PubMed  Google Scholar 

  32. Newman LS, Buschman DL, Newell Jr JD, Lynch DA. Beryllium disease: assessment with CT. Radiology. 1994;190(3):835–40. PubMed PMID: 8115636.

    CAS  PubMed  Google Scholar 

  33. Newman LS, Lloyd J, Daniloff E. The natural history of beryllium sensitization and chronic beryllium disease. Environ Health Perspect. 1996;104S(5):937–43.

    Google Scholar 

  34. Duggal M, Deubner DC, Curtis AM, Cullen MR. Long-term follow-up of beryllium sensitized workers from a single employer. BMC Public Health. 2010;10:5. PubMed PMID: 20047684.

    PubMed Central  PubMed  Google Scholar 

  35. Schubauer-Berigan MK, Couch JR, Petersen MR, Carreon T, Jin Y, Deddens JA. Cohort mortality study of workers at seven beryllium processing plants: update and associations with cumulative and maximum exposure. Occup Environ Med. 2011;68(5):345–53. PubMed PMID: 20952555.

    CAS  PubMed  Google Scholar 

  36. Ward E, Okun A, Ruder A, Fingerhut M, Steenland K. A mortality study of workers at seven beryllium processing plants. Am J Ind Med. 1992;22(6):885–904. PubMed PMID: 1463033.

    CAS  PubMed  Google Scholar 

  37. Rossman MD, Kern JA, Elias JA, Cullen MR, Epstein PE, Preuss OP, et al. Proliferative response of bronchoalveolar lymphocytes to beryllium. A test for chronic beryllium disease. Ann Intern Med. 1988;108(5):687–93. PubMed PMID: 3282464.

    CAS  PubMed  Google Scholar 

  38. Mroz MM, Kreiss K, Lezotte DC, Campbell PA, Newman LS. Reexamination of the blood lymphocyte transformation test in the diagnosis of chronic beryllium disease. J Allergy Clin Immunol. 1991;88:54–60.

    CAS  PubMed  Google Scholar 

  39. Stokes RF, Rossman MD. Blood cell proliferation response to beryllium: analysis by receiver-operating characteristics. J Occup Med. 1991;33(1):23–8.

    CAS  PubMed  Google Scholar 

  40. Stange AW, Furman FJ, Hilmas DE. The beryllium lymphocyte proliferation test: relevant issues in beryllium health surveillance. Am J Ind Med. 2004;46(5):453–62. PubMed PMID: 15490468.

    PubMed  Google Scholar 

  41. Deubner DC, Goodman M, Iannuzzi J. Variability, predictive value, and uses of the beryllium blood lymphocyte proliferation test (BLPT): preliminary analysis of the ongoing workforce survey. Appl Occup Environ Hyg. 2001;16(5):521–6.

    CAS  PubMed  Google Scholar 

  42. Kreiss K, Mroz MM, Zhen B, Martyny JW, Newman LS. Epidemiology of beryllium sensitization and disease in nuclear workers. Am Rev Respir Dis. 1993;148(4 Pt 1):985–91. PubMed PMID: 8214955.

    CAS  PubMed  Google Scholar 

  43. Kreiss K, Newman LS, Mroz MM, Campbell PA. Screening blood test identifies subclinical beryllium disease. J Occup Med. 1989;31:603–8.

    CAS  PubMed  Google Scholar 

  44. Milovanova TN. Comparative analysis between CFSE flow cytometric and tritiated thymidine incorporation tests for beryllium sensitivity. Cytometry B Clin Cytom. 2007;72(4):265–75. PubMed PMID: 17328032.

    PubMed  Google Scholar 

  45. Milovanova TN, Popma SH, Cherian S, Moore JS, Rossman MD. Flow cytometric test for beryllium sensitivity. Cytometry B Clin Cytom. 2004;60(1):23–30. PubMed PMID: 15221866.

    PubMed  Google Scholar 

  46. Pott GB, Palmer BE, Sullivan AK, Silviera L, Maier LA, Newman LS, et al. Frequency of beryllium-specific, TH1-type cytokine-expressing CD4+ T cells in patients with beryllium-induced disease. J Allergy Clin Immunol. 2005;115(5):1036–42. PubMed PMID: 15867863.

    CAS  PubMed  Google Scholar 

  47. Tooker BC, Bowler RP, Orcutt JM, Maier LA, Christensen HM, Newman LS. SELDI-TOF derived serum biomarkers failed to differentiate between patients with beryllium sensitisation and patients with chronic beryllium disease. Occup Environ Med. 2011;68(10):759–64. PubMed PMID: 21278142.

    CAS  PubMed  Google Scholar 

  48. Sumino K, Hayakawa K, Shibata T, Kitamura S. Heavy metals in normal Japanese tissues. Amounts of 15 heavy metals in 30 subjects. Arch Environ Health. 1975;30(10):487–94.

    CAS  PubMed  Google Scholar 

  49. Wegner R, Heinrich-Ramm R, Nowak D, Olma K, Poschadel B, Szadkowski D. Lung function, biological monitoring, and biological effect monitoring of gemstone cutters exposed to beryls. Occup Environ Med. 2000;57:133–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Schepers G. The mineral content of the lung in chronic berylliosis. J Dis Chest. 1962;42:600–7.

    CAS  Google Scholar 

  51. Sprince NL, Kazemi H. Beryllium disease. In: Fanburg B, editor. Sarcoidosis and other granulomatous diseases of the lung. Basel: Dekker; 1983. p. 453–68.

    Google Scholar 

  52. Sood A, Beckett WS, Cullen MR. Variable response to long-term corticosteroid therapy in chronic beryllium disease. Chest. 2004;126(6):2000–7. PubMed PMID: 15596705.

    CAS  PubMed  Google Scholar 

  53. Bartell SM, Ponce RA, Takaro TK, Zerbe RO, Omenn GS, Faustman EM. Risk estimation and value-of-information analysis for three proposed genetic screening programs for chronic beryllium disease prevention. Risk Anal. 2000;20(1):87–99.

    CAS  PubMed  Google Scholar 

  54. Newman LS, Orton R, Kreiss K. Serum angiotensin converting enzyme activity in chronic beryllium disease. Am Rev Respir Dis. 1992;146:39–42.

    CAS  PubMed  Google Scholar 

  55. Harris J, Bartelson BB, Barker E, Balkissoon R, Kreiss K, Newman LS. Serum neopterin in chronic beryllium disease. Am J Ind Med. 1997;32(1):21–6. PubMed PMID: 9131208.

    CAS  PubMed  Google Scholar 

  56. Müller-Quernheim J, Pfeifer S, Strausz J, Ferlinz R. Correlation of clinical and immunologic parameters of the inflammatory activity of pulmonary sarcoidosis. Am Rev Respir Dis. 1991;144(6):1322–9. PubMed PMID: 1741545.

    PubMed  Google Scholar 

  57. Sood A. Current treatment of chronic beryllium disease. J Occup Environ Hyg. 2009;6(12):762–5. PubMed PMID: 19894178.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Müller-Quernheim J, Kienast K, Held M, Pfeifer S, Costabel U. Treatment of chronic sarcoidosis with an azathioprine/prednisolone regimen. Eur Respir J. 1999;14(5):1117–22.

    PubMed  Google Scholar 

  59. Baughman RP, Lower EE. Steroid-sparing alternative treatments for sarcoidosis. Clin Chest Med. 1997;18(4):853–64.

    CAS  PubMed  Google Scholar 

  60. Borak J, Woolf SH, Fields CA. Use of beryllium lymphocyte proliferation testing for screening of asymptomatic individuals: an evidence-based assessment. J Occup Environ Med. 2006;48(9):937–47. PubMed PMID: 16966961.

    PubMed  Google Scholar 

  61. Middleton DC, Fink J, Kowalski PJ, Lewin MD, Sinks T. Optimizing BeLPT criteria for beryllium sensitization. Am J Ind Med. 2008;51(3):166–72. PubMed PMID: 18181198.

    CAS  PubMed  Google Scholar 

  62. Middleton DC, Lewin MD, Kowalski PJ, Cox SS, Kleinbaum D. The BeLPT: algorithms and implications. Am J Ind Med. 2006;49(1):36–44. PubMed PMID: 16362939.

    CAS  PubMed  Google Scholar 

  63. Homma T, Ueno T, Sekizawa K, Tanaka A, Hirata M. Interstitial pneumonia developed in a worker dealing with particles containing indium-tin oxide. J Occup Health. 2003;45(3):137–9. PubMed PMID: 14646287.

    PubMed  Google Scholar 

  64. Nakano M, Omae K, Tanaka A, Hirata M, Michikawa T, Kikuchi Y, et al. Causal relationship between indium compound inhalation and effects on the lungs. J Occup Health. 2009;51(6):513–21. PubMed PMID: 19834281.

    CAS  PubMed  Google Scholar 

  65. Chonan T, Taguchi O, Omae K. Interstitial pulmonary disorders in indium-processing workers. Eur Respir J. 2007;29(2):317–24. PubMed PMID: 17050566.

    CAS  PubMed  Google Scholar 

  66. Liu HH, Chen CY, Chen GI, Lee LH, Chen HL. Relationship between indium exposure and oxidative damage in workers in indium tin oxide production plants. Int Arch Occup Environ Health. 2012;85(4):447–53. PubMed PMID: 21833746.

    CAS  PubMed  Google Scholar 

  67. Cummings KJ, Donat WE, Ettensohn DB, Roggli VL, Ingram P, Kreiss K. Pulmonary alveolar proteinosis in workers at an indium processing facility. Am J Respir Crit Care Med. 2010;181(5):458–64. PubMed PMID: 20019344.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Masuko H, Hizawa N, Chonan T, Amata A, Omae K, Nakano M, et al. Indium-tin oxide does not induce GM-CSF autoantibodies. Am J Respir Crit Care Med. 2011;184(6):741. author reply −2. PubMed PMID: 21920929.

    PubMed  Google Scholar 

  69. Lison D, Laloy J, Corazzari I, Muller J, Rabolli V, Panin N, et al. Sintered indium-tin-oxide (ITO) particles: a new pneumotoxic entity. Toxicol Sci. 2009;108(2):472–81. PubMed PMID: 19176593.

    CAS  PubMed  Google Scholar 

  70. Homma S, Miyamoto A, Sakamoto S, Kishi K, Motoi N, Yoshimura K. Pulmonary fibrosis in an individual occupationally exposed to inhaled indium-tin oxide. Eur Respir J. 2005;25(1):200–4. PubMed PMID: 15640342.

    CAS  PubMed  Google Scholar 

  71. Maier L, Glazer C, Pacheo K. ILD and other occupational exposures (hard metal pneumoconiosis). In: King T, Schwartz D, editors. Interstitial lung diseases. Denver: People’s Medical Publishing House; 2011. p. 581–93.

    Google Scholar 

  72. Nemery B, Abraham JL. Hard metal lung disease: still hard to understand. Am J Respir Crit Care Med. 2007;176(1):2–3. PubMed PMID: 17586761.

    PubMed  Google Scholar 

  73. Nemery B, Verbeken EK, Demedts M. Giant cell interstitial pneumonia (hard metal lung disease, cobalt lung). Semin Respir Crit Care Med. 2001;22(4):435–48. PubMed PMID: 16088691.

    CAS  PubMed  Google Scholar 

  74. Demedts M, Gheysens B, Nagels J, Verbeken E, Lauweryns J, van den Eeckhout A, et al. Cobalt lung in diamond polishers. Am Rev Respir Dis. 1984;130(1):130–5. PubMed PMID: 6742597.

    CAS  PubMed  Google Scholar 

  75. Abraham JL, Burnett BR, Hunt A. Development and use of a pneumoconiosis database of human pulmonary inorganic particulate burden in over 400 lungs. Scanning Microsc. 1991;5(1):95–104. discussion 5–8; PubMed PMID: 1647058.

    CAS  PubMed  Google Scholar 

  76. Ohori NP, Sciurba FC, Owens GR, Hodgson MJ, Yousem SA. Giant-cell interstitial pneumonia and hard-metal pneumoconiosis. A clinicopathologic study of four cases and review of the literature. Am J Surg Pathol. 1989;13(7):581–7. PubMed PMID: 2660610.

    CAS  PubMed  Google Scholar 

  77. Harding HE, Mc LA. Pulmonary fibrosis in non-ferrous foundry workers. Br J Ind Med. 1955;12(2):92–9. PubMed PMID: 14363588.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Adamis Z, Tatrai E, Honma K, Karpati J, Ungvary G. A study on lung toxicity of respirable hard metal dusts in rats. Ann Occup Hyg. 1997;41(5):515–26. PubMed PMID: 9332157.

    CAS  PubMed  Google Scholar 

  79. Huaux F, Lasfargues G, Lauwerys R, Lison D. Lung toxicity of hard metal particles and production of interleukin-1, tumor necrosis factor-alpha, fibronectin, and cystatin-c by lung phagocytes. Toxicol Appl Pharmacol. 1995;132(1):53–62. PubMed PMID: 7747285.

    CAS  PubMed  Google Scholar 

  80. Lison D, Lauwerys R. In vitro cytotoxic effects of cobalt-containing dusts on mouse peritoneal and rat alveolar macrophages. Environ Res. 1990;52(2):187–98. PubMed PMID: 2168316.

    CAS  PubMed  Google Scholar 

  81. Lison D, Lauwerys R. Cobalt bioavailability from hard metal particles. Further evidence that cobalt alone is not responsible for the toxicity of hard metal particles. Arch Toxicol. 1994;68(8):528–31. PubMed PMID: 7802596.

    CAS  PubMed  Google Scholar 

  82. Potolicchio I, Mosconi G, Forni A, Nemery B, Seghizzi P, Sorrentino R. Susceptibility to hard metal lung disease is strongly associated with the presence of glutamate 69 in HLA-DP beta chain. Eur J Immunol. 1997;27(10):2741–3. PubMed PMID: 9368635.

    CAS  PubMed  Google Scholar 

  83. Cugell DW. The hard metal diseases. Clin Chest Med. 1992;13(2):269–79. PubMed PMID: 1511554.

    CAS  PubMed  Google Scholar 

  84. Davison AG, Haslam PL, Corrin B, Coutts II, Dewar A, Riding WD, et al. Interstitial lung disease and asthma in hard-metal workers: bronchoalveolar lavage, ultrastructural, and analytical findings and results of bronchial provocation tests. Thorax. 1983;38(2):119–28. PubMed PMID: 6857569.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Anttila S, Sutinen S, Paananen M, Kreus KE, Sivonen SJ, Grekula A, et al. Hard metal lung disease: a clinical, histological, ultrastructural and X-ray microanalytical study. Eur J Respir Dis. 1986;69(2):83–94. PubMed PMID: 3758243.

    CAS  PubMed  Google Scholar 

  86. Kelleher P, Pacheco K, Newman LS. Inorganic dust pneumonias: the metal-related parenchymal disorders. Environ Health Perspect. 2000;108 Suppl 4:685–96. PubMed PMID: 10931787; Pubmed Central PMCID: 1637664.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Card JW, Zeldin DC, Bonner JC, Nestmann ER. Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol. 2008;295(3):L400–11. PubMed PMID: 18641236; Pubmed Central PMCID: 2536798.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Hesterberg TW, McConnell EE, Miller WC, Hamilton R, Bunn WB. Pulmonary toxicity of inhaled polypropylene fibers in rats. Fundam Appl Toxicol. 1992;19(3):358–66. PubMed PMID: 1459367.

    CAS  PubMed  Google Scholar 

  89. Atis S, Tutluoglu B, Levent E, Ozturk C, Tunaci A, Sahin K, et al. The respiratory effects of occupational polypropylene flock exposure. Eur Respir J. 2005;25(1):110–7. PubMed PMID: 15640331.

    CAS  PubMed  Google Scholar 

  90. Kern DG, Crausman RS, Durand KT, Nayer A, Kuhn 3rd C. Flock worker's lung: chronic interstitial lung disease in the nylon flocking industry. Ann Intern Med. 1998;129(4):261–72. PubMed PMID: 9729178.

    CAS  PubMed  Google Scholar 

  91. Lougheed MD, Roos JO, Waddell WR, Munt PW. Desquamative interstitial pneumonitis and diffuse alveolar damage in textile workers. Potential role of mycotoxins. Chest. 1995;108(5):1196–200. PubMed PMID: 7587416.

    CAS  PubMed  Google Scholar 

  92. Sigsgaard T, Pedersen OF, Juul S, Gravesen S. Respiratory disorders and atopy in cotton, wool, and other textile mill workers in Denmark. Am J Ind Med. 1992;22(2):163–84. PubMed PMID: 1415284.

    CAS  PubMed  Google Scholar 

  93. Kern DG, Kern E, Crausman RS, Clapp RW. A retrospective cohort study of lung cancer incidence in nylon flock workers, 1998–2008. Int J Occup Environ Health. 2011;17(4):345–51. PubMed PMID: 22069933.

    PubMed  Google Scholar 

  94. Kern DG, Kuhn 3rd C, Ely EW, Pransky GS, Mello CJ, Fraire AE, et al. Flock worker’s lung: broadening the spectrum of clinicopathology, narrowing the spectrum of suspected etiologies. Chest. 2000;117(1):251–9. PubMed PMID: 10631226.

    CAS  PubMed  Google Scholar 

  95. Boag AH, Colby TV, Fraire AE, Kuhn 3rd C, Roggli VL, Travis WD, et al. The pathology of interstitial lung disease in nylon flock workers. Am J Surg Pathol. 1999;23(12):1539–45. PubMed PMID: 10584708.

    CAS  PubMed  Google Scholar 

  96. Washko RM, Day B, Parker JE, Castellan RM, Kreiss K. Epidemiologic investigation of respiratory morbidity at a nylon flock plant. Am J Ind Med. 2000;38(6):628–38. PubMed PMID: 11071685.

    CAS  PubMed  Google Scholar 

  97. Burkhart J, Jones W, Porter DW, Washko RM, Eschenbacher WL, Castellan RM. Hazardous occupational exposure and lung disease among nylon flock workers. Am J Ind Med. 1999;36(Supp1):145–6. PubMed PMID: 10519816.

    Google Scholar 

  98. Kern D, Crausman R. Nylon Flock Worker’s Lung. In: King T, editor. UpToDate. Wolters Kluwer; Alphen aan den Rijn, The Netherlands 2012.

    Google Scholar 

  99. Porter DW, Castranova V, Robinson VA, Hubbs AF, Mercer RR, Scabilloni J, et al. Acute inflammatory reaction in rats after intratracheal instillation of material collected from a nylon flocking plant. J Toxicol Environ Health A. 1999;57(1):25–45. PubMed PMID: 10321900.

    CAS  PubMed  Google Scholar 

  100. American Thoracic Society. Diagnosis and initial management of nonmalignant diseases related to asbestos. Am J Respir Crit Care Med. 2004;170(6):691–715. PubMed PMID: 15355871.

    Google Scholar 

  101. Mossman BT, Gee JB. Asbestos-related diseases. N Engl J Med. 1989;320(26):1721–30. PubMed PMID: 2659987.

    CAS  PubMed  Google Scholar 

  102. Churg A, Vedal S. Fiber burden and patterns of asbestos-related disease in workers with heavy mixed amosite and chrysotile exposure. Am J Respir Crit Care Med. 1994;150(3):663–9. PubMed PMID: 8087335.

    CAS  PubMed  Google Scholar 

  103. Steele M, Schwartz M. Asbestosis and asbestosis-induced pleural fibrosis. In: King T, Schwartz D, editors. Interstitial lung diseases. Denver: People’s Medical Publishing House; 2011. p. 543–55.

    Google Scholar 

  104. Wagner GR. Asbestosis and silicosis. Lancet. 1997;349(9061):1311–5. PubMed PMID: 9142077.

    CAS  PubMed  Google Scholar 

  105. Brody AR, Hill LH, Adkins Jr B, O’Connor RW. Chrysotile asbestos inhalation in rats: deposition pattern and reaction of alveolar epithelium and pulmonary macrophages. Am Rev Respir Dis. 1981;123(6):670–9. PubMed PMID: 6267971.

    CAS  PubMed  Google Scholar 

  106. Hesterberg TW, Hart GA, Chevalier J, Miiller WC, Hamilton RD, Bauer J, et al. The importance of fiber biopersistence and lung dose in determining the chronic inhalation effects of X607, RCF1, and chrysotile asbestos in rats. Toxicol Appl Pharmacol. 1998;153(1):68–82. PubMed PMID: 9875301.

    CAS  PubMed  Google Scholar 

  107. Quinlan TR, Marsh JP, Janssen YM, Leslie KO, Hemenway D, Vacek P, et al. Dose-responsive increases in pulmonary fibrosis after inhalation of asbestos. Am J Respir Crit Care Med. 1994;150(1):200–6. PubMed PMID: 8025751.

    CAS  PubMed  Google Scholar 

  108. Churg A, Stevens B. Enhanced retention of asbestos fibers in the airways of human smokers. Am J Respir Crit Care Med. 1995;151(5):1409–13. PubMed PMID: 7735593.

    CAS  PubMed  Google Scholar 

  109. Rodman T, Rodman MS. Pleural thickening: its significance and relationship to asbestos dust exposure. Am Rev Respir Dis. 1983;127(5):656–7. PubMed PMID: 6846944.

    CAS  PubMed  Google Scholar 

  110. Sichletidis L, Chloros D, Spyratos D, Haidich AB, Fourkiotou I, Kakoura M, et al. Mortality from occupational exposure to relatively pure chrysotile: a 39-year study. Respiration. 2009;78(1):63–8. PubMed PMID: 18843176.

    CAS  PubMed  Google Scholar 

  111. Mossman BT, Craighead JE, MacPherson BV. Asbestos-induced epithelial changes in organ cultures of hamster trachea: inhibition by retinyl methyl ether. Science. 1980;207(4428):311–3. PubMed PMID: 7350661.

    CAS  PubMed  Google Scholar 

  112. Coin PG, Osornio-Vargas AR, Roggli VL, Brody AR. Pulmonary fibrogenesis after three consecutive inhalation exposures to chrysotile asbestos. Am J Respir Crit Care Med. 1996;154(5):1511–9. PubMed PMID: 8912773.

    CAS  PubMed  Google Scholar 

  113. Lemaire I, Beaudoin H, Dubois C. Cytokine regulation of lung fibroblast proliferation. Pulmonary and systemic changes in asbestos-induced pulmonary fibrosis. Am Rev Respir Dis. 1986;134(4):653–8. PubMed PMID: 3532882.

    CAS  PubMed  Google Scholar 

  114. Rom WN, Travis WD, Brody AR. Cellular and molecular basis of the asbestos-related diseases. Am Rev Respir Dis. 1991;143(2):408–22. PubMed PMID: 1990961.

    CAS  PubMed  Google Scholar 

  115. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674–7. PubMed PMID: 18403674.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Gasse P, Mary C, Guenon I, Noulin N, Charron S, Schnyder-Candrian S, et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest. 2007;117(12):3786–99. PubMed PMID: 17992263.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Craighead JE, Abraham JL, Churg A, Green FH, Kleinerman J, Pratt PC, et al. The pathology of asbestos-associated diseases of the lungs and pleural cavities: diagnostic criteria and proposed grading schema. Report of the Pneumoconiosis Committee of the College of American Pathologists and the National Institute for Occupational Safety and Health. Arch Pathol Lab Med. 1982;106(11):544–96. PubMed PMID: 6897166.

    CAS  PubMed  Google Scholar 

  118. Copley SJ, Wells AU, Sivakumaran P, Rubens MB, Lee YC, Desai SR, et al. Asbestosis and idiopathic pulmonary fibrosis: comparison of thin-section CT features. Radiology. 2003;229(3):731–6. PubMed PMID: 14576443.

    PubMed  Google Scholar 

  119. Kishimoto T, Kato K, Arakawa H, Ashizawa K, Inai K, Takeshima Y. Clinical, radiological, and pathological investigation of asbestosis. Int J Environ Res Public Health. 2011;8(3):899–912. PubMed PMID: 21556185; Pubmed Central PMCID: 3083676.

    PubMed Central  PubMed  Google Scholar 

  120. Gevenois PA, de Maertelaer V, Madani A, Winant C, Sergent G, De Vuyst P. Asbestosis, pleural plaques and diffuse pleural thickening: three distinct benign responses to asbestos exposure. Eur Respir J. 1998;11(5):1021–7. PubMed PMID: 9648950.

    CAS  PubMed  Google Scholar 

  121. Roach HD, Davies GJ, Attanoos R, Crane M, Adams H, Phillips S. Asbestos: when the dust settles an imaging review of asbestos-related disease. Radiographics. 2002;22(Spec No):S167–84. PubMed PMID: 12376609.

    PubMed  Google Scholar 

  122. Lynch DA, Gamsu G, Aberle DR. Conventional and high resolution computed tomography in the diagnosis of asbestos-related diseases. Radiographics. 1989;9(3):523–51. PubMed PMID: 2727359.

    CAS  PubMed  Google Scholar 

  123. De Vuyst P, Dumortier P, Moulin E, Yourassowsky N, Yernault JC. Diagnostic value of asbestos bodies in bronchoalveolar lavage fluid. Am Rev Respir Dis. 1987;136(5):1219–24. PubMed PMID: 3314616.

    PubMed  Google Scholar 

  124. Dodson RF, Williams Jr MG, Corn CJ, Brollo A, Bianchi C. Asbestos content of lung tissue, lymph nodes, and pleural plaques from former shipyard workers. Am Rev Respir Dis. 1990;142(4):843–7. PubMed PMID: 2171386.

    CAS  PubMed  Google Scholar 

  125. Karjalainen A, Piipari R, Mantyla T, Monkkonen M, Nurminen M, Tukiainen P, et al. Asbestos bodies in bronchoalveolar lavage in relation to asbestos bodies and asbestos fibres in lung parenchyma. Eur Respir J. 1996;9(5):1000–5. PubMed PMID: 8793463.

    CAS  PubMed  Google Scholar 

  126. Dumortier P, Thimpont J, de Maertelaer V, De Vuyst P. Trends in asbestos body counts in bronchoalveolar lavage fluid over two decades. Eur Respir J. 2003;22(3):519–24. PubMed PMID: 14516145.

    CAS  PubMed  Google Scholar 

  127. Miller A, Lilis R, Godbold J, Chan E, Selikoff IJ. Relationship of pulmonary function to radiographic interstitial fibrosis in 2,611 long-term asbestos insulators. An assessment of the International Labour Office profusion score. Am Rev Respir Dis. 1992;145(2 Pt 1):263–70. PubMed PMID: 1736729.

    CAS  PubMed  Google Scholar 

  128. Becklake MR, Bagatin E, Neder JA. Asbestos-related diseases of the lungs and pleura: uses, trends and management over the last century. Int J Tuberc Lung Dis. 2007;11(4):356–69. PubMed PMID: 17394680.

    CAS  PubMed  Google Scholar 

  129. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 2005;289(5):L698–708. PubMed PMID: 15951334.

    CAS  PubMed  Google Scholar 

  130. Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol. 2000;12(12):1113–26. PubMed PMID: 11114784.

    CAS  PubMed  Google Scholar 

  131. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7. PubMed PMID: 16456071.

    CAS  PubMed  Google Scholar 

  132. Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77(1):126–34. PubMed PMID: 14514958.

    CAS  PubMed  Google Scholar 

  133. Bonner JC, Rice AB, Moomaw CR, Morgan DL. Airway fibrosis in rats induced by vanadium pentoxide. Am J Physiol Lung Cell Mol Physiol. 2000;278(1):L209–16. PubMed PMID: 10645909.

    CAS  PubMed  Google Scholar 

  134. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, et al. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci. 2004;77(2):347–57. PubMed PMID: 14600271.

    CAS  PubMed  Google Scholar 

  135. Cho WS, Duffin R, Bradley M, Megson IL, Macnee W, Howie SE, et al. NiO and Co3O4 nanoparticles induce lung DTH-like responses and alveolar lipoproteinosis. Eur Respir J. 2012;39(3):546–57. PubMed PMID: 21828028.

    CAS  PubMed  Google Scholar 

  136. Song Y, Li X, Du X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J. 2009;34(3):559–67. PubMed PMID: 19696157.

    CAS  PubMed  Google Scholar 

  137. Brain JD, Kreyling W, Gehr P. To the editors: express concern about the recent paper by Song et al. Eur Respir J. 2010;35(1):226–7. PubMed PMID: 20044468.

    CAS  PubMed  Google Scholar 

  138. Ogami A, Yamamoto K, Morimoto Y, Fujita K, Hirohashi M, Oyabu T, et al. Pathological features of rat lung following inhalation and intratracheal instillation of C(60) fullerene. Inhal Toxicol. 2011;23(7):407–16. PubMed PMID: 21639709.

    CAS  PubMed  Google Scholar 

  139. Shinohara N, Gamo M, Nakanishi J. Fullerene c60: inhalation hazard assessment and derivation of a period-limited acceptable exposure level. Toxicol Sci. 2011;123(2):576–89. PubMed PMID: 21856993.

    CAS  PubMed  Google Scholar 

  140. Bonner JC. Nanoparticles as a potential cause of pleural and interstitial lung disease. Proc Am Thorac Soc. 2010;7(2):138–41. PubMed PMID: 20427587; Pubmed Central PMCID: 3266021.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Müller-Quernheim MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Müller-Quernheim, J., Zissel, G., Kayser, G., Prasse, A. (2015). Chronic Beryllium Disease and Other Interstitial Lung Diseases of Occupational Origin. In: Cottin, V., Cordier, JF., Richeldi, L. (eds) Orphan Lung Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-2401-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2401-6_30

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2400-9

  • Online ISBN: 978-1-4471-2401-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics