Skip to main content

Cytoplasmic Sensing of Viral Double-Stranded RNA and Activation of Innate Immunity by RIG-I-Like Receptors

  • Chapter
  • First Online:
Innate Immune Regulation and Cancer Immunotherapy

Abstract

Innate antiviral reactions are induced within hours of a viral infection. These reactions are critical to the activation of adaptive immunity. The major innate antiviral reaction is that mediated by type I and III interferons (IFNs), which activate antiviral genes through cell surface receptors, signal transducers, and transcription factors (Samuel. Clin Microbiol Rev 14:778–809, 2001; Theofilopoulos et al. Annu Rev Immunol 23:307–336, 2005; Uze and Monneron. Biochimie 89:729–734, 2007). Once the antiviral gene products establish an antiviral state, viral replication is selectively repressed. Efficient expression of IFN is observed in cells infected with viruses, suggesting that viral components produced during replication are detected by cellular sensors. A family of RNA helicases termed RIG-I-like receptors (RLRs), including retinoic acid-inducible gene-I (RIG-I), melanoma differentiation associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), senses viral double-stranded (ds) RNA and triggers an antiviral program including the production of IFN (Kawai and Akira. Ann N Y Acad Sci 1143:1–20, 2008; Yoneyama and Fujita. Immunol Rev 227:54–65, 2009). We review here the structure and function of RLRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ablasser A, Bauernfeind F, Hartmann G et al (2009) RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10(10):1065–1072

    Article  PubMed  CAS  Google Scholar 

  • Arimoto K, Takahashi H, Hishiki T et al (2007) Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci U S A 104:7500–7505

    Article  PubMed  CAS  Google Scholar 

  • Balachandran S, Thomas E, Barber GN (2004) A FADD-dependent innate immune mechanism in mammalian cells. Nature 432:401–405

    Article  PubMed  CAS  Google Scholar 

  • Besch R, Poeck H, Hohenauer T et al (2009) Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J Clin Invest 119:2399–2411

    PubMed  CAS  Google Scholar 

  • Chiu YH, Macmillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138:576–591

    Article  PubMed  CAS  Google Scholar 

  • Cui S, Eisenacher K, Kirchhofer A et al (2008) The C-terminal regulatory domain is the RNA 5’-triphosphate sensor of RIG-I. Mol Cell 29:169–179

    Article  PubMed  CAS  Google Scholar 

  • Diao F, Li S, Tian Y et al (2007) Negative regulation of MDA5- but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase. Proc Natl Acad Sci USA 104:11706–11711

    Article  PubMed  CAS  Google Scholar 

  • Fredericksen BL, Keller BC, Fornek J et al (2008) Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol 82:609–616

    Article  PubMed  CAS  Google Scholar 

  • Friedman CS, O’Donnell MA, Legarda-Addison D et al (2008) The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep 9:930–936

    Article  PubMed  CAS  Google Scholar 

  • Gack MU, Shin YC, Joo CH et al (2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916–920

    Article  PubMed  CAS  Google Scholar 

  • Gao D, Yang YK, Wang RP et al (2009) REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I. PLoS One 4:e5760

    Article  PubMed  Google Scholar 

  • Hornung V, Ellegast J, Kim S et al (2006) 5’-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997

    Article  PubMed  Google Scholar 

  • Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–678

    Article  PubMed  CAS  Google Scholar 

  • Jounai N, Takeshita F, Kobiyama K et al (2007) The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci USA 104:14050–14055

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Sato S, Yoneyama M et al (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:19–28

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Takeuchi O, Sato S et al (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Takeuchi O, Mikamo-Satoh E et al (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205:1601–1610

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2008) Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 1143:1–20

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Takahashi K, Sato S et al (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981–988

    Article  PubMed  CAS  Google Scholar 

  • Kayagaki N, Phung Q, Chan S et al (2007) DUBA: A deubiquitinase that regulates type I interferon production. Science 318:1628–1632

    Article  PubMed  CAS  Google Scholar 

  • Komuro A, Horvath CM (2006) RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2. J Virol 80:12332–12342

    Article  PubMed  CAS  Google Scholar 

  • Li X, Lu C, Stewart M et al (2009) Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5. Arch Biochem Biophys 488:23–33

    Article  PubMed  CAS  Google Scholar 

  • Lin R, Lacoste J, Nakhaei P et al (2006a) Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A ­proteolytic cleavage. J Virol 80:6072–6083

    Article  PubMed  CAS  Google Scholar 

  • Lin R, Yang L, Nakhaei P et al (2006b) Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J Biol Chem 281:2095–2103

    Article  PubMed  CAS  Google Scholar 

  • Loo YM, Owen DM, Li K et al (2006) Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc Natl Acad Sci USA 103:6001–6006

    Article  PubMed  CAS  Google Scholar 

  • Loo YM, Fornek J, Crochet N et al (2008) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 82:335–345

    Article  PubMed  CAS  Google Scholar 

  • Meylan E, Curran J, Hofmann K et al (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–1172

    Article  PubMed  CAS  Google Scholar 

  • Michallet MC, Meylan E, Ermolaeva MA et al (2008) TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28:651–661

    Article  PubMed  CAS  Google Scholar 

  • Moore CB, Bergstralh DT, Duncan JA et al (2008) NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451:573–577

    Article  PubMed  CAS  Google Scholar 

  • Oganesyan G, Saha SK, Guo B et al (2006) Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439:208–211

    Article  PubMed  CAS  Google Scholar 

  • Oshiumi H, Matsumoto M, Hatakeyama S et al (2009) Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284:807–817

    Article  PubMed  CAS  Google Scholar 

  • Pichlmair A, Schulz O, Tan CP et al (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. Science 314:997–1001

    Article  PubMed  CAS  Google Scholar 

  • Pippig DA, Hellmuth JC, Cui S et al (2009) The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res 37:2014–2025

    Article  PubMed  CAS  Google Scholar 

  • Rothenfusser S, Goutagny N, DiPerna G et al (2005) The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J Immunol 175:5260–5268

    PubMed  CAS  Google Scholar 

  • Saha SK, Pietras EM, He JQ et al (2006) Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J 25:3257–3263

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Hirai R, Loo YM et al (2007) Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci USA 104:582–587

    Article  PubMed  CAS  Google Scholar 

  • Samuel CE (2001) Antiviral actions of interferons. Clin Microbiol Rev 14:778–809

    Article  PubMed  CAS  Google Scholar 

  • Schlee M, Roth A, Hornung V et al (2009) Recognition of 5’ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31:25–34

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Schwerd T, Hamm W et al (2009) 5’-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc Natl Acad Sci USA 106:12067–12072

    Article  PubMed  CAS  Google Scholar 

  • Seth RB, Sun L, Ea CK et al (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669–682

    Article  PubMed  CAS  Google Scholar 

  • Sumpter R Jr, Loo YM, Foy E et al (2005) Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79:2689–2699

    Article  PubMed  CAS  Google Scholar 

  • Tabara H, Yigit E, Siomi H et al (2002) The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109:861–871

    Article  PubMed  CAS  Google Scholar 

  • Takahasi K, Yoneyama M, Nishihori T et al (2008) Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29:428–440

    Article  PubMed  CAS  Google Scholar 

  • Tal MC, Sasai M, Lee HK et al (2009) Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci U S A 106:2770–2775

    Article  PubMed  CAS  Google Scholar 

  • Theofilopoulos AN, Baccala R, Beutler B et al (2005) Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23:307–336

    Article  PubMed  CAS  Google Scholar 

  • Uze G, Monneron D (2007) IL-28 and IL-29: Newcomers to the interferon family. Biochimie 89:729–734

    Article  PubMed  CAS  Google Scholar 

  • Venkataraman T, Valdes M, Elsby R et al (2007) Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol 178:6444–6455

    PubMed  CAS  Google Scholar 

  • Wang Y, Zhang HX, Sun YP et al (2007) Rig-I−/− mice develop colitis associated with downregulation of G alpha i2. Cell Res 17:858–868

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Gao X, Barrett JW et al (2008) RIG-I mediates the co-induction of tumor necrosis factor and type I interferon elicited by myxoma virus in primary human macrophages. PLoS Pathog 4:e1000099

    Article  PubMed  Google Scholar 

  • Xu LG, Wang YY, Han KJ et al (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19:727–740

    Article  PubMed  CAS  Google Scholar 

  • Yasukawa K, Oshiumi H, Takeda M et al (2009) Mitofusin 2 inhibits mitochondrial antiviral ­signaling. Sci Signal 2:ra47

    Article  PubMed  Google Scholar 

  • Yoneyama M, Fujita T (2009) RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 227:54–65

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama M, Kikuchi M, Natsukawa T et al (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama M, Kikuchi M, Matsumoto K et al (2005) Shared and unique functions of the DExD/H-Box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858

    PubMed  CAS  Google Scholar 

  • Yoshida R, Takaesu G, Yoshida H et al (2008) TRAF6 and MEKK1 play a pivotal role in the RIG-I-like helicase antiviral pathway. J Biol Chem 283:36211–36220

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Wu X, Lee AJ et al (2008) Regulation of IkappaB kinase-related kinases and antiviral responses by tumor suppressor CYLD. J Biol Chem 283:18621–18626

    Article  PubMed  CAS  Google Scholar 

  • Zhong B, Yang Y, Li S et al (2008) The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29:538–550

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yoneyama, M., Fujita, T. (2012). Cytoplasmic Sensing of Viral Double-Stranded RNA and Activation of Innate Immunity by RIG-I-Like Receptors. In: Wang, R. (eds) Innate Immune Regulation and Cancer Immunotherapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9914-6_5

Download citation

Publish with us

Policies and ethics