Skip to main content

Current Progress in Adoptive T-Cell Therapy of Lymphoma

  • Chapter
  • First Online:
Innate Immune Regulation and Cancer Immunotherapy

Abstract

The lymphomas are a diverse group of malignancies arising from the lymphoreticular system. Individual subtypes have unique pathological features, clinical courses, and response to traditional chemotherapy agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen MH, Svane IM, Kvistborg P et al (2005) Immunogenicity of Bcl-2 in patients with cancer. Blood 105:728–734

    Article  PubMed  CAS  Google Scholar 

  • Armstrong AC, Dermime S, Mulryan K, Stern PL, Bhattacharyya T, Hawkins RE (2004) Adoptive transfer of anti-idiotypic T cells cure mice of disseminated B cell lymphoma. J Immunother 27:227–231

    Article  PubMed  Google Scholar 

  • Awwad M, North RJ (1988) Cyclophosphamide (Cy)-facilitated adoptive immunotherapy of a Cy-resistant tumour. Evidence that Cy permits the expression of adoptive T-cell mediated immunity by removing suppressor T cells rather than by reducing tumour burden. Immunology 65:87–92

    PubMed  CAS  Google Scholar 

  • Berger C, Blau CA, Huang ML et al (2004) Pharmacologically regulated Fas-mediated death of adoptively transferred T cells in a nonhuman primate model. Blood 103:1261–1269

    Article  PubMed  CAS  Google Scholar 

  • Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR (2008) Adoptive transfer of effector CD8± T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 118:294–305

    Article  PubMed  CAS  Google Scholar 

  • Bishop MR, Dean RM, Steinberg SM et al (2008) Clinical evidence of a graft-versus-lymphoma effect against relapsed diffuse large B-cell lymphoma after allogeneic hematopoietic stem-cell transplantation. Ann Oncol 19:1935–1940

    Article  PubMed  CAS  Google Scholar 

  • Bollard CM, Rossig C, Calonge MJ et al (2002) Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood 99:3179–3187

    Article  PubMed  CAS  Google Scholar 

  • Bollard CM, Aguilar L, Straathof KC et al (2004) Cytotoxic T lymphocyte therapy for Epstein-Barr virus± Hodgkin’s disease. J Exp Med 200:1623–1633

    Article  PubMed  CAS  Google Scholar 

  • Bollard CM, Gottschalk S, Huls MH et al (2006) In vivo expansion of LMP 1- and 2-specific T-cells in a patient who received donor-derived EBV-specific T-cells after allogeneic stem cell transplantation. Leuk Lymphoma 47:837–842

    Article  PubMed  Google Scholar 

  • Bollard CM, Gottschalk S, Leen AM et al (2007) Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood 110:2838–2845

    Article  PubMed  CAS  Google Scholar 

  • Bonini C, Ferrari G, Verzeletti S et al (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276:1719–1724

    Article  PubMed  CAS  Google Scholar 

  • Brentjens RJ, Latouche JB, Santos E et al (2003) Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 9:279–286

    Article  PubMed  CAS  Google Scholar 

  • Chambost H, Van Baren N, Brasseur F et al (2000) Expression of gene MAGE-A4 in Reed-Sternberg cells. Blood 95:3530–3533

    PubMed  CAS  Google Scholar 

  • Chamoto K, Tsuji T, Funamoto H et al (2004) Potentiation of tumor eradication by adoptive immunotherapy with T-cell receptor gene-transduced T-helper type 1 cells. Cancer Res 64:386–390

    Article  PubMed  CAS  Google Scholar 

  • Chaperot L, Delfau-Larue MH, Jacob MC et al (1999) Differentiation of antitumor-specific cytotoxic T lymphocytes from autologous tumor infiltrating lymphocytes in non-Hodgkin’s lymphomas. Exp Hematol 27:1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Cheadle EJ, Gilham DE, Thistlethwaite FC, Radford JA, Hawkins RE (2005) Killing of non-Hodgkin lymphoma cells by autologous CD19 engineered T cells. Br J Haematol 129:322–332

    Article  PubMed  CAS  Google Scholar 

  • Cheadle EJ, Hawkins RE, Batha H, Rothwell DG, Ashton G, Gilham DE (2009) Eradication of established B-cell lymphoma by CD19-specific murine T cells is dependent on host lymphopenic environment and can be mediated by CD4± and CD8± T cells. J Immunother 32:207–218

    Article  PubMed  Google Scholar 

  • Cho HI, Hong YS, Lee MA et al (2006) Adoptive transfer of Epstein-Barr virus-specific cytotoxic T-lymphocytes for the treatment of angiocentric lymphomas. Int J Hematol 83:66–73

    Article  PubMed  Google Scholar 

  • Circosta P, Granziero L, Follenzi A et al (2009) T cell receptor (TCR) gene transfer with lentiviral vectors allows efficient redirection of tumor specificity in naive and memory T cells without prior stimulation of endogenous TCR. Hum Gene Ther 20(12):1576–1588

    Article  PubMed  CAS  Google Scholar 

  • Colleoni GW, Capodieci P, Tickoo S, Cossman J, Filippa DA, Ladanyi M (2002) Expression of SSX genes in the neoplastic cells of Hodgkin’s lymphoma. Hum Pathol 33:496–502

    Article  PubMed  CAS  Google Scholar 

  • Comoli P, Labirio M, Basso S et al (2002) Infusion of autologous Epstein-Barr virus (EBV)-specific cytotoxic T cells for prevention of EBV-related lymphoproliferative disorder in solid organ transplant recipients with evidence of active virus replication. Blood 99:2592–2598

    Article  PubMed  CAS  Google Scholar 

  • Comoli P, Maccario R, Locatelli F et al (2005) Treatment of EBV-related post-renal transplant lymphoproliferative disease with a tailored regimen including EBV-specific T cells. Am J Transplant 5:1415–1422

    Article  PubMed  Google Scholar 

  • Comoli P, Basso S, Zecca M et al (2007) Preemptive therapy of EBV-related lymphoproliferative disease after pediatric haploidentical stem cell transplantation. Am J Transplant 7:1648–1655

    Article  PubMed  CAS  Google Scholar 

  • Comoli P, Basso S, Labirio M, Baldanti F, Maccario R, Locatelli F (2008) T cell therapy of Epstein-Barr virus and adenovirus infections after hemopoietic stem cell transplant. Blood Cells Mol Dis 40:68–70

    Article  PubMed  CAS  Google Scholar 

  • Cooper LJ, Topp MS, Serrano LM et al (2003) T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect. Blood 101:1637–1644

    Article  PubMed  CAS  Google Scholar 

  • Cooper LJ, Ausubel L, Gutierrez M et al (2006) Manufacturing of gene-modified cytotoxic T lymphocytes for autologous cellular therapy for lymphoma. Cytotherapy 8:105–117

    Article  PubMed  CAS  Google Scholar 

  • Curtis RE, Travis LB, Rowlings PA et al (1999) Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood 94:2208–2216

    PubMed  CAS  Google Scholar 

  • De Smet C, Lurquin C, Lethe B, Martelange V, Boon T (1999) DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19:7327–7335

    PubMed  Google Scholar 

  • Dudley ME, Wunderlich JR, Robbins PF et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854

    Article  PubMed  CAS  Google Scholar 

  • Dudley ME, Wunderlich JR, Yang JC et al (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23:2346–2357

    Article  PubMed  CAS  Google Scholar 

  • Edinger M, Cao YA, Verneris MR, Bachmann MH, Contag CH, Negrin RS (2003) Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 101:640–648

    Article  PubMed  CAS  Google Scholar 

  • Emanuel DJ, Lucas KG, Mallory GB Jr et al (1997) Treatment of posttransplant lymphoproliferative disease in the central nervous system of a lung transplant recipient using allogeneic leukocytes. Transplantation 63:1691–1694

    Article  PubMed  CAS  Google Scholar 

  • Eshhar Z, Waks T, Gross G, Schindler DG (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 90:720–724

    Article  PubMed  CAS  Google Scholar 

  • Finney HM, Lawson AD, Bebbington CR, Weir AN (1998) Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol 161:2791–2797

    PubMed  CAS  Google Scholar 

  • Gandhi MK, Wilkie GM, Dua U et al (2007) Immunity, homing and efficacy of allogeneic adoptive immunotherapy for posttransplant lymphoproliferative disorders. Am J Transplant 7:1293–1299

    Article  PubMed  CAS  Google Scholar 

  • Gattei V, Fonsatti E, Sigalotti L et al (2005) Epigenetic immunomodulation of hematopoietic malignancies. Semin Oncol 32:503–510

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk S, Ng CY, Perez M et al (2001) An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood 97:835–843

    Article  PubMed  CAS  Google Scholar 

  • Groeper C, Gambazzi F, Zajac P et al (2007) Cancer/testis antigen expression and specific cytotoxic T lymphocyte responses in non small cell lung cancer. Int J Cancer 120:337–343

    Article  PubMed  CAS  Google Scholar 

  • Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 86:10024–10028

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson A, Levitsky V, Zou JZ et al (2000) Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood 95:807–814

    PubMed  CAS  Google Scholar 

  • Hagihara M, Tsuchiya T, Hyodo O et al (2003) Clinical effects of infusing anti-Epstein-Barr virus (EBV)-specific cytotoxic T-lymphocytes into patients with severe chronic active EBV infection. Int J Hematol 78:62–68

    Article  PubMed  Google Scholar 

  • Haque T, Amlot PL, Helling N et al (1998) Reconstitution of EBV-specific T cell immunity in solid organ transplant recipients. J Immunol 160:6204–6209

    PubMed  CAS  Google Scholar 

  • Haque T, Taylor C, Wilkie GM et al (2001) Complete regression of posttransplant lymphoproliferative disease using partially HLA-matched Epstein Barr virus-specific cytotoxic T cells. Transplantation 72:1399–1402

    Article  PubMed  CAS  Google Scholar 

  • Haque T, Wilkie GM, Taylor C et al (2002) Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet 360:436–442

    Article  PubMed  Google Scholar 

  • Haque T, Wilkie GM, Jones MM et al (2007) Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 110:1123–1131

    Article  PubMed  CAS  Google Scholar 

  • Harig S, Witzens M, Krackhardt AM et al (2001) Induction of cytotoxic T-cell responses against immunoglobulin V region-derived peptides modified at human leukocyte antigen-A2 binding residues. Blood 98:2999–3005

    Article  PubMed  CAS  Google Scholar 

  • Heemskerk MH, Griffioen M, Falkenburg JH (2008) T-cell receptor gene transfer for treatment of leukemia. Cytotherapy 10:108–115

    Article  PubMed  CAS  Google Scholar 

  • Heslop HE (2009) How I treat EBV lymphoproliferation. Blood 114:4002–4008

    Article  PubMed  CAS  Google Scholar 

  • Heslop HE, Brenner MK, Rooney CM (1994) Donor T cells to treat EBV-associated lymphoma. N Engl J Med 331:679–680

    Article  PubMed  CAS  Google Scholar 

  • Heslop HE, Ng CY, Li C et al (1996) Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 2:551–555

    Article  PubMed  CAS  Google Scholar 

  • Heslop HE, Slobod KS, Pule MA et al (2010) Long term outcome of EBV specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115(5):925–935

    Article  PubMed  CAS  Google Scholar 

  • Hombach A, Heuser C, Sircar R et al (1998) An anti-CD30 chimeric receptor that mediates CD3-zeta-independent T-cell activation against Hodgkin’s lymphoma cells in the presence of soluble CD30. Cancer Res 58:1116–1119

    PubMed  CAS  Google Scholar 

  • Hong R, Shen V, Rooney C et al (2001) Correction of DiGeorge anomaly with EBV-induced lymphoma by transplantation of organ-cultured thymus and Epstein-Barr-specific cytotoxic T lymphocytes. Clin Immunol 98:54–61

    Article  PubMed  CAS  Google Scholar 

  • Hoogendoorn M, Wolbers JO, Smit WM et al (2004) Generation of B-cell chronic lymphocytic leukemia (B-CLL)-reactive T-cell lines and clones from HLA class I-matched donors using modified B-CLL cells as stimulators: implications for adoptive immunotherapy. Leukemia 18:1278–1287

    Article  PubMed  CAS  Google Scholar 

  • Hoogendoorn M, Olde Wolbers J, Smit WM et al (2005) Primary allogeneic T-cell responses against mantle cell lymphoma antigen-presenting cells for adoptive immunotherapy after stem cell transplantation. Clin Cancer Res 11:5310–5318

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Guo H, Kang J et al (2008) Sleeping Beauty transposon-mediated engineering of human primary T cells for therapy of CD19± lymphoid malignancies. Mol Ther 16:580–589

    Article  PubMed  CAS  Google Scholar 

  • Huls MH, Rooney CM, Heslop HE (2003) Adoptive T-cell therapy for Epstein-Barr virus-positive Hodgkin’s disease. Acta Haematol 110:149–153

    Article  PubMed  Google Scholar 

  • Hwu P, Shafer GE, Treisman J et al (1993) Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor gamma chain. J Exp Med 178:361–366

    Article  PubMed  CAS  Google Scholar 

  • Imashuku S, Goto T, Matsumura T et al (1997) Unsuccessful CTL transfusion in a case of post-BMT Epstein-Barr virus-associated lymphoproliferative disorder (EBV-LPD). Bone Marrow Transplant 20:337–340

    Article  PubMed  CAS  Google Scholar 

  • James SE, Greenberg PD, Jensen MC et al (2008) Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane. J Immunol 180:7028–7038

    PubMed  CAS  Google Scholar 

  • Jensen M, Tan G, Forman S, Wu AM, Raubitschek A (1998) CD20 is a molecular target for scFvFc:zeta receptor redirected T cells: implications for cellular immunotherapy of CD20± malignancy. Biol Blood Marrow Transplant 4:75–83

    Article  PubMed  CAS  Google Scholar 

  • Jurgens LA, Khanna R, Weber J, Orentas RJ (2006) Transduction of primary lymphocytes with Epstein-Barr virus (EBV) latent membrane protein-specific T-cell receptor induces lysis of virus-infected cells: a novel strategy for the treatment of Hodgkin’s disease and nasopharyngeal carcinoma. J Clin Immunol 26:22–32

    Article  PubMed  CAS  Google Scholar 

  • Kalos M, Levine BL et al (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95):95ra73

    Article  PubMed  CAS  Google Scholar 

  • Khanna R, Bell S, Sherritt M et al (1999) Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci USA 96:10391–10396

    Article  PubMed  CAS  Google Scholar 

  • Khouri IF, McLaughlin P, Saliba RM et al (2008) Eight-year experience with allogeneic stem cell transplantation for relapsed follicular lymphoma after nonmyeloablative conditioning with fludarabine, cyclophosphamide, and rituximab. Blood 111:5530–5536

    Article  PubMed  CAS  Google Scholar 

  • Kowolik CM, Topp MS, Gonzalez S et al (2006) CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 66:10995–11004

    Article  PubMed  CAS  Google Scholar 

  • Krause A, Guo HF, Latouche JB, Tan C, Cheung NK, Sadelain M (1998) Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J Exp Med 188:619–626

    Article  PubMed  CAS  Google Scholar 

  • Kuwana Y, Asakura Y, Utsunomiya N et al (1987) Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun 149:960–968

    Article  PubMed  CAS  Google Scholar 

  • Kuzushima K, Yamamoto M, Kimura H et al (1996) Establishment of anti-Epstein-Barr virus (EBV) cellular immunity by adoptive transfer of virus-specific cytotoxic T lymphocytes from an HLA-matched sibling to a patient with severe chronic active EBV infection. Clin Exp Immunol 103:192–198

    Article  PubMed  CAS  Google Scholar 

  • Lamers CH, Sleijfer S, Vulto AG et al (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24:e20–e22

    Article  PubMed  Google Scholar 

  • Leshem B, Dorfman Y, Kedar E (1999) Induction of preferential cytotoxicity against allogeneic mouse lymphoma cells: in vitro and in vivo studies. Cancer Immunol Immunother 48:179–188

    Article  PubMed  CAS  Google Scholar 

  • Lucas KG, Salzman D, Garcia A, Sun Q (2004) Adoptive immunotherapy with allogeneic Epstein-Barr virus (EBV)-specific cytotoxic T-lymphocytes for recurrent, EBV-positive Hodgkin disease. Cancer 100:1892–1901

    Article  PubMed  Google Scholar 

  • Mandigers CM, Verdonck LF, Meijerink JP, Dekker AW, Schattenberg AV, Raemaekers JM (2003) Graft-versus-lymphoma effect of donor lymphocyte infusion in indolent lymphomas relapsed after allogeneic stem cell transplantation. Bone Marrow Transplant 32:1159–1163

    Article  PubMed  CAS  Google Scholar 

  • Merlo A, Turrini R, Dolcetti R, Zanovello P, Amadori A, Rosato A (2008) Adoptive cell therapy against EBV-related malignancies: a survey of clinical results. Expert Opin Biol Ther 8:1265–1294

    Article  PubMed  CAS  Google Scholar 

  • Milone MC, Fish JD, Carpenito C et al (2009) Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 17:1453–1464

    Article  PubMed  CAS  Google Scholar 

  • Mitsuyasu RT, Anton PA, Deeks SG et al (2000) Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(±) and CD8(±) T cells in human immunodeficiency virus-infected subjects. Blood 96:785–793

    PubMed  CAS  Google Scholar 

  • Mohty M, Isnardon D, Charbonnier A et al (2002) Generation of potent T(h)1 responses from patients with lymphoid malignancies after differentiation of B lymphocytes into dendritic-like cells. Int Immunol 14:741–750

    Article  PubMed  CAS  Google Scholar 

  • Morgan RA, Dudley ME, Wunderlich JR et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    Article  PubMed  CAS  Google Scholar 

  • O’Connor OA, Heaney ML, Schwartz L et al (2006) Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol 24:166–173

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly RJ, Doubrovina E, Trivedi D, Hasan A, Kollen W, Koehne G (2007) Adoptive transfer of antigen-specific T-cells of donor type for immunotherapy of viral infections following allogeneic hematopoietic cell transplants. Immunol Res 38:237–250

    Article  PubMed  CAS  Google Scholar 

  • Opelz G, Dohler B (2004) Lymphomas after solid organ transplantation: a collaborative transplant study report. Am J Transplant 4:222–230

    Article  PubMed  Google Scholar 

  • Orentas RJ, Roskopf SJ, Nolan GP, Nishimura MI (2001) Retroviral transduction of a T cell receptor specific for an Epstein-Barr virus-encoded peptide. Clin Immunol 98:220–228

    Article  PubMed  CAS  Google Scholar 

  • Pakakasama S, Eames GM, Morriss MC et al (2004) Treatment of Epstein-Barr virus lymphoproliferative disease after hematopoietic stem-cell transplantation with hydroxyurea and cytotoxic T-cell lymphocytes. Transplantation 78:755–757

    Article  PubMed  Google Scholar 

  • Pallesen G, Hamilton-Dutoit SJ, Zhou X (1993) The association of Epstein-Barr virus (EBV) with T cell lymphoproliferations and Hodgkin’s disease: two new developments in the EBV field. Adv Cancer Res 62:179–239

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos EB, Ladanyi M, Emanuel D et al (1994) Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 330:1185–1191

    Article  PubMed  CAS  Google Scholar 

  • Paya CV, Fung JJ, Nalesnik MA et al (1999) Epstein-Barr virus-induced posttransplant lymphoproliferative disorders. ASTS/ASTP EBV-PTLD Task Force and the Mayo Clinic Organized International Consensus Development Meeting. Transplantation 68:1517–1525

    Article  PubMed  CAS  Google Scholar 

  • Porter DL, Levine BL et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733

    Article  PubMed  CAS  Google Scholar 

  • Pule MA, Savoldo B, Myers GD et al (2008) Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 14:1264–1270

    Article  PubMed  CAS  Google Scholar 

  • Quintarelli C, Vera JF, Savoldo B et al (2007) Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood 110:2793–2802

    Article  PubMed  CAS  Google Scholar 

  • Riddell SR (2007) Engineering antitumor immunity by T-cell adoptive immunotherapy. Hematology Am Soc Hematol Educ Program 250–256

    Google Scholar 

  • Riddell SR, Elliott M, Lewinsohn DA et al (1996) T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat Med 2:216–223

    Article  PubMed  CAS  Google Scholar 

  • Rooney CM, Smith CA, Ng CY et al (1995) Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345:9–13

    Article  PubMed  CAS  Google Scholar 

  • Rooney CM, Smith CA, Ng CY et al (1998a) Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92:1549–1555

    PubMed  CAS  Google Scholar 

  • Rooney CM, Heslop HE, Brenner MK (1998b) EBV specific CTL: a model for immune therapy. Vox Sang 74(Suppl 2):497–498

    Article  PubMed  CAS  Google Scholar 

  • Rooney CM, Bollard C, Huls MH et al (2002) Immunotherapy for Hodgkin’s disease. Ann Hematol 81(Suppl 2):S39–S42

    PubMed  CAS  Google Scholar 

  • Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233:1318–1321

    Article  PubMed  CAS  Google Scholar 

  • Roskrow MA, Suzuki N, Gan Y et al (1998) Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin’s disease. Blood 91:2925–2934

    PubMed  CAS  Google Scholar 

  • Rossig C, Pscherer S, Landmeier S, Altvater B, Jurgens H, Vormoor J (2005) Adoptive cellular immunotherapy with CD19-specific T cells. Klin Padiatr 217:351–356

    Article  PubMed  CAS  Google Scholar 

  • Sackstein R (2005) The lymphocyte homing receptors: gatekeepers of the multistep paradigm. Curr Opin Hematol 12:444–450

    Article  PubMed  Google Scholar 

  • Savoldo B, Huls MH, Liu Z et al (2002) Autologous Epstein-Barr virus (EBV)-specific cytotoxic T cells for the treatment of persistent active EBV infection. Blood 100:4059–4066

    Article  PubMed  CAS  Google Scholar 

  • Savoldo B, Goss JA, Hammer MM et al (2006) Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs). Blood 108:2942–2949

    Article  PubMed  CAS  Google Scholar 

  • Savoldo B, Rooney CM, Di Stasi A et al (2007) Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 110:2620–2630

    Article  PubMed  CAS  Google Scholar 

  • Savoldo B, Ramos CA, et al (2011) CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 121(5):1822–1826

    Article  PubMed  CAS  Google Scholar 

  • Schmitter D, Bolliger U, Hallek M, Pichert G (1999) Involvement of the CD27-CD70 co-stimulatory pathway in allogeneic T-cell response to follicular lymphoma cells. Br J Haematol 106:64–70

    Article  PubMed  CAS  Google Scholar 

  • Serrano LM, Pfeiffer T, Olivares S et al (2006) Differentiation of naive cord-blood T cells into CD19-specific cytolytic effectors for posttransplantation adoptive immunotherapy. Blood 107:2643–2652

    Article  PubMed  CAS  Google Scholar 

  • Shafer JA, Leen AM, Cruz CR et al (2008) The “side-population” of human lymphoma cells have increased chemo-resistance, stem-cell like properties and are potential targets for immunotherapy. ASH Annu Meet Abstr 112:2620

    Google Scholar 

  • Sharpe AH (2009) Mechanisms of costimulation. Immunol Rev 229:5–11

    Article  PubMed  CAS  Google Scholar 

  • Sherritt MA, Bharadwaj M, Burrows JM et al (2003) Reconstitution of the latent T-lymphocyte response to Epstein-Barr virus is coincident with long-term recovery from posttransplant lymphoma after adoptive immunotherapy. Transplantation 75:1556–1560

    Article  PubMed  Google Scholar 

  • Shichijo S, Yamada A, Sagawa K et al (1996) Induction of MAGE genes in lymphoid cells by the demethylating agent 5-aza-2′-deoxycytidine. Jpn J Cancer Res 87:751–756

    Article  PubMed  CAS  Google Scholar 

  • Straathof KC, Pule MA, Yotnda P et al (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105:4247–4254

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Burton R, Reddy V, Lucas KG (2002) Safety of allogeneic Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for patients with refractory EBV-related lymphoma. Br J Haematol 118:799–808

    Article  PubMed  Google Scholar 

  • Thomis DC, Marktel S, Bonini C et al (2001) A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 97:1249–1257

    Article  PubMed  CAS  Google Scholar 

  • Thorley-Lawson DA, Gross A (2004) Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med 350:1328–1337

    Article  PubMed  CAS  Google Scholar 

  • Thorley-Lawson DA, Duca KA, Shapiro M (2008) Epstein-Barr virus: a paradigm for persistent infection – for real and in virtual reality. Trends Immunol 29:195–201

    Article  PubMed  CAS  Google Scholar 

  • Till BG, Jensen MC, Wang J et al (2008) Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112:2261–2271

    Article  PubMed  CAS  Google Scholar 

  • Tsao L, Hsi ED (2007) The clinicopathologic spectrum of posttransplantation lymphoproliferative disorders. Arch Pathol Lab Med 131:1209–1218

    PubMed  Google Scholar 

  • Vera J, Savoldo B, Vigouroux S et al (2006) T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 108:3890–3897

    Article  PubMed  CAS  Google Scholar 

  • Wagner HJ, Cheng YC, Huls MH et al (2004) Prompt versus preemptive intervention for EBV lymphoproliferative disease. Blood 103:3979–3981

    Article  PubMed  CAS  Google Scholar 

  • Walker RE, Bechtel CM, Natarajan V et al (2000) Long-term in vivo survival of receptor-modified syngeneic T cells in patients with human immunodeficiency virus infection. Blood 96:467–474

    PubMed  CAS  Google Scholar 

  • Wang J, Jensen M, Lin Y et al (2007) Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 18:712–725

    Article  PubMed  CAS  Google Scholar 

  • Wynn RF, Arkwright PD, Haque T et al (2005) Treatment of Epstein-Barr-virus-associated primary CNS B cell lymphoma with allogeneic T-cell immunotherapy and stem-cell transplantation. Lancet Oncol 6:344–346

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm K. Brenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Micklethwaite, K.P., Heslop, H.E., Brenner, M.K. (2012). Current Progress in Adoptive T-Cell Therapy of Lymphoma. In: Wang, R. (eds) Innate Immune Regulation and Cancer Immunotherapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9914-6_23

Download citation

Publish with us

Policies and ethics